2018届高考数学总复习教学案:集合
2018版高中数学第一章集合与函数概念章末复习课学案

第一章集合与函数概念章末复习课网络构建核心归纳1.集合的“三性”正确理解集合元素的三性,即确定性、互异性和无序性.在集合运算中,常利用元素的互异性检验所得的结论是否正确,因互异性易被忽略,在解决含参集合问题时应格外注意.2.集合与集合之间的关系集合与集合之间的关系有包含、真包含和相等.判断集合与集合之间的关系的本质是判断元素与集合的关系,包含关系的传递性是推理的重要依据.空集比较特殊,它不包含任何元素,是任意集合的子集,是任意非空集合的真子集.解题时,已知条件中出现A⊆B时,不要遗漏A=∅。
3.集合与集合之间的运算并、交、补是集合间的基本运算,Venn图与数轴是集合运算的重要工具.注意集合之间的运算与集合间的关系之间的转化,如A⊆B⇔A∩B=A⇔A∪B=B.4.函数与映射的概念(1)已知A,B是两个非空集合,在对应关系f 的作用下,对于A中的任意一个元素x,在B中都有唯一的一个元素与之对应,这个对应叫做从A到B的映射,记作f:A→B。
若f:A→B是从A到B的映射,且B中任一元素在A中有且只有一个元素与之对应,则这样的映射叫做从A到B的一一映射.(2)函数是一个特殊的映射,其特殊点在于A,B 都为非空数集,函数有三要素:定义域、值域、对应关系.两个函数只有当定义域和对应关系分别相同时,这两个函数才是同一函数.5.函数的单调性(1)函数的单调性主要涉及求函数的单调区间,利用函数的单调性比较函数值的大小,利用函数的单调性解不等式等相关问题.深刻理解函数单调性的定义是解答此类问题的关键.(2)函数单调性的证明根据增函数、减函数的定义分为四个步骤证明,步骤如下:①取值:任取x1,x2∈D,且x1<x2,得x2-x1>0;②作差变形:Δy=y2-y1=f(x2)-f(x1)=…,向有利于判断差的符号的方向变形;③判断符号:确定Δy的符号,当符号不确定时,可以进行分类讨论;④下结论:根据定义得出结论.(3)证明函数单调性的等价变形:①f(x)是单调递增函数⇔任意x1<x2,都有f(x1)<f(x2)⇔f x1-f x2x1-x2〉0⇔[f(x1)-f(x2)]·(x1-x2)>0;②f(x)是单调递减函数⇔任意x1〈x2,都有f(x1)>f (x2)⇔错误!<0⇔[f(x1)-f(x2)]·(x1-x2)〈0.6.函数的奇偶性判定函数奇偶性,一是用其定义判断,即先看函数f(x)的定义域是否关于原点对称,再检验f(-x)与f(x)的关系;二是用其图象判断,考察函数的图象是否关于原点或y轴对称去判断,但必须注意它是函数这一大前提.要点一集合的基本概念解决集合的概念问题的两个注意点(1)研究一个集合,首先要看集合中的代表元素.然后再看元素的限制条件,当集合用描述法表示时,注意弄清元素表示的意义是什么.(2)对于含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.【例1】集合M={x|ax2-3x-2=0,a∈R}中只有一个元素,求a的取值范围.解由题意可知若集合M中只有一个元素,则方程ax2-3x-2=0只有一个根,当a=0时,方程为-3x -2=0,只有一个根x=-错误!;当a≠0时,Δ=(-3)2-4×a×(-2)=0,得a=-错误!。
2018版高考数学浙江 文理通用大一轮复习讲义文档:第

1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p q,则p是q的必要不充分条件;(5)如果p q,且q p,则p是q的既不充分也不必要条件.【知识拓展】1.两个命题互为逆否命题,它们具有相同的真假性.2.若A={x|p(x)},B={x|q(x)},则(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)“x 2+2x -3<0”是命题.( × )(2)命题“若p ,则q ”的否命题是“若p ,则綈q ”.( × ) (3)若一个命题是真命题,则其逆否命题也是真命题.( √ ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( √ )(5)当p 是q 的充要条件时,也可说成q 成立当且仅当p 成立.( √ ) (6)若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件.( √ )1.下列命题为真命题的是( ) A .若1x =1y ,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2答案 A2.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x >1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x >1”的逆否命题 答案 A解析 对于A ,其逆命题是若x >|y |,则x >y ,是真命题,这是因为x >|y |≥y ,必有x >y . 3.(2016·慈溪中学高三适应性考试)设a ,b 为实数,则“log 2a >log 2b ”是“a >b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由log 2a >log 2b ,得a >b >0, 而a >b ⇔a >b ≥0,故log 2a >log 2b 是a >b 的充分不必要条件.4.在下列三个结论中,正确的是________.(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件; ③“x ≠1”是“x 2≠1”的充分不必要条件. 答案 ①②解析易知①②正确.对于③,若x=-1,则x2=1,充分性不成立,故③错误.题型一命题及其关系例1(2016·湖州一模)有下列四个命题:①若“xy=1,则x,y互为倒数”的逆命题;②“面积相等的三角形是全等三角形”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中真命题为()A.①②B.②③C.①④D.①②③答案 D解析①的逆命题:“若x,y互为倒数,则xy=1”是真命题;②的否命题:“面积不相等的三角形不是全等三角形”是真命题;③的逆否命题:“若x2-2x+m=0没有实数解,则m>1”是真命题;命题④是假命题,所以它的逆否命题也是假命题.故选D.思维升华(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q“形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.(1)命题“若x>0,则x2>0”的否命题是()A.若x>0,则x2≤0B.若x2>0,则x>0C.若x≤0,则x2≤0D.若x2≤0,则x≤0(2)某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是()A.不拥有的人们会幸福B.幸福的人们不都拥有C.拥有的人们不幸福D.不拥有的人们不幸福答案(1)C(2)D题型二充分必要条件的判定例2(1)(2016·北京)设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)D(2)A解析(1)若|a|=|b|成立,则以a,b为邻边构成的四边形为菱形,a+b,a-b表示该菱形的对角线,而菱形的对角线不一定相等,所以|a+b|=|a-b|不一定成立;反之,若|a+b|=|a -b|成立,则以a,b为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a|=|b|不一定成立,所以“|a|=|b|”是“|a+b|=|a-b|”的既不充分也不必要条件.(2)由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p q,所以綈p⇒綈q,綈q綈p,所以綈p是綈q的充分不必要条件,故选A.思维升华充分条件、必要条件的三种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母的范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题.(1)(2016·四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)已知p:x+y≠-2,q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案(1)A(2)A解析 (1)当x >1,y >1时,x +y >2一定成立,即p ⇒q , 当x +y >2时,可以x =-1,y =4,即q p ,故p 是q 的充分不必要条件.(2)(等价法)因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以綈p :x +y =-2,綈q :x =-1且y =-1, 因为綈q ⇒綈p 但綈p綈q ,所以綈q 是綈p 的充分不必要条件, 即p 是q 的充分不必要条件,故选A. 题型三 充分必要条件的应用例3 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. 引申探究1.若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例条件不变,若x ∈綈P 是x ∈綈S 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且SP .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.(1)已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________________.(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________. 答案 (1)(0,3) (2)[0,12]解析 (1)令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}. ∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3. (2)命题p 为{x |12≤x ≤1},命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A ={x |x >1或x <12},綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件, ∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.1.等价转化思想在充要条件中的应用典例 (1)(2016·绍兴柯桥区二模)已知x ,y ∈R ,则“(x -1)2+(y -2)2=0”是“(x -1)(y -2)=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2)已知条件p :x 2+2x -3>0;条件q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是()A.[1,+∞) B.(-∞,1]C.[-1,+∞) D.(-∞,-3]思想方法指导等价转化是将一些复杂的、生疏的问题转化成简单的、熟悉的问题,在解题中经常用到.本题可将题目中条件间的关系和集合间的关系相互转化.解析(1)∵{(x,y)|(x-1)2+(y-2)2=0}={(x,y)|x=1且y=2},{(x,y)|(x-1)(y-2)=0}={(x,y)|x=1或y=2}.∴{(x,y)|(x-1)2+(y-2)2=0}{(x,y)|(x-1)(y-2)=0},故“(x-1)2+(y-2)2=0”是“(x-1)(y-2)=0”的充分不必要条件.(2)由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q 的充分不必要条件,等价于q是p的充分不必要条件.∴{x|x>a}{x|x<-3或x>1},∴a≥1.答案(1)A (2)A1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析依题意,得原命题的逆命题:若一个数的平方是正数,则它是负数.2.命题“如果x≥a2+b2,那么x≥2ab”的逆否命题是()A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab答案 C解析命题“若p,则q”的逆否命题是“若綈q,则綈p”,“≥”的否定是“<”.故答案C正确.3.(2016·浙江重点中学模拟)已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的()A .逆命题B .否命题C .逆否命题D .否定答案 B解析 命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.4.(2017·宁波十校联考)设a ∈R ,则“a <1”是“1a >1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 由1-1a =a -1a<0,得0<a <1,所以“a <1”是“0<a <1”的必要不充分条件,故选B.5.(2016·山东)已知直线a ,b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A.6.已知集合A ={x ∈R |12<2x <8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是( ) A .{m |m ≥2} B .{m |m ≤2} C .{m |m >2} D .{m |-2<m <2}答案 C解析 A ={x ∈R |12<2x <8}={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴A B ,∴m +1>3, 即m >2,故选C.7.设x >0,则“a =1”是“x +ax ≥2恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 因为x +ax ≥2,x >0恒成立⇔a ≥(2x -x 2)max =1,x >0,所以“a =1”是“x +ax≥2恒成立”的充分不必要条件,故选A.8.设U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 由Venn 图易知充分性成立.反之,A ∩B =∅时,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.9.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1答案 A解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1. 观察选项,根据集合间关系得{a |a <0}{a |a ≤0或a >1},故选A.*10.(2016·杭州二模)设函数f (x )=a sin(x +α)+b sin(x +β)+c sin(x +γ),则“p :f (π2)=0”是“q :f (x )为偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 C解析 f (x )可化为f (x )=A sin(x +φ)的形式, 由f (π2)=0可得sin(π2+φ)=0,即cos φ=0.易知cos φ=0⇔f (x )为偶函数, 所以p 是q 成立的充要条件. 11.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题; ③“若x ≤-3,则x 2+x -6>0”的否命题. 其中真命题的序号为____________. 答案 ①解析 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.12.已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充要解析 若当x ∈[0,1]时,f (x )是增函数,又∵y =f (x )是偶函数,∴当x ∈[-1,0]时,f (x )是减函数. 当x ∈[3,4]时,x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4).故x ∈[3,4]时,f (x )是减函数,充分性成立. 反之,若x ∈[3,4]时,f (x )是减函数, 此时x -4∈[-1,0], ∵T =2,∴f (x )=f (x -4), 则当x ∈[-1,0]时,f (x )是减函数. ∵y =f (x )是偶函数,∴当x ∈[0,1]时,f (x )是增函数,必要性也成立.故“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件.13.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________. 答案 [0,2]解析 由已知易得{x |x 2-2x -3>0}{x |x <m -1或x >m +1},又{x |x 2-2x -3>0}={x |x <-1或x >3},∴⎩⎪⎨⎪⎧ -1≤m -1,m +1<3,或⎩⎪⎨⎪⎧-1<m -1,m +1≤3,∴0≤m ≤2. 14.若“数列a n =n 2-2λn (n ∈N *)是递增数列”为假命题,则λ的取值范围是________________.答案 [32,+∞) 解析 若数列a n =n 2-2λn (n ∈N *)为递增数列,则有a n +1-a n >0,即2n +1>2λ对任意的n ∈N *都成立,于是可得3>2λ,即λ<32. 故所求λ的取值范围是[32,+∞). *15.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.正确的是________.(填序号)答案 ①④解析 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确;由AB 2+AC 2=BC 2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确;由a 2+b 2≠0可以推出a ,b 不全为零,反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,③不正确,④正确.*16.已知集合A ={y |y =x 2-32x +1,x ∈[34,2]},B ={x |x +m 2≥1},若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解 y =x 2-32x +1 =(x -34)2+716, ∵x ∈[34,2],∴716≤y ≤2. ∴A ={y |716≤y ≤2}. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34, 故实数m 的取值范围是(-∞,-34]∪[34,+∞).。
2018年秋高中数学 第一章 集合与函数概念 阶段复习课 第1课 集合学案 新人教A版必修1

第一课 集合[核心速填]1.集合的含义与表示(1)集合元素的特征:确定性、互异性、无序性.(2)元素与集合的关系:属于(∈),不属于().(3)自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R.(4)集合的表示方法:列举法、描述法和区间.2.集合的基本关系子集A ⊆B ⎩⎪⎨⎪⎧ 真子集A B 相等A =B (2)子集个数结论: ①含有n 个元素的集合有2n个子集; ②含有n 个元素的集合有2n-1个真子集; ③含有n 个元素的集合有2n -2个非空真子集.3.集合间的三种运算(1)并集:A ∪B ={x |x ∈A 或x ∈B }.(2)交集:A ∩B ={x |x ∈A 且x ∈B }(3)补集:∁U A ={x |x ∈U 且x A }.4.集合的运算性质(1)并集的性质:A ⊆B ⇔A ∪B =B .(2)交集的性质:A ⊆B ⇔A ∩B =A .(3)补集的相关性质:A ∪(∁U A )=U ,A ∩(∁U A )=∅.∁U (∁U A )=A .[体系构建][题型探究]集合的基本概念(1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)已知集合A ={0,m ,m 2-3m +2},且2∈A ,则实数m 为( ) A .2 B .3C .0或3D .0,2,3均可 (1)C (2)B [(1)逐个列举可得x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时x -y =2,1,0.根据集合中元素的互异性可知集合B 中的元素为-2,-1,0,1,2,共5个.(2)由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.] 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么如本例中集合对点集对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性 [跟踪训练]1.下列命题正确的有( )①很小的实数可以构成集合;②集合{}y |y =x 2-1与集合{(x ,y )|y =x 2-1}是同一个集合; ③1,32,64,⎪⎪⎪⎪⎪⎪-12,0.5这些数组成的集合有5个元素; ④集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集.【导学号:37102076】 A .0个B .1个C .2个D .3个A [由题意得,①不满足集合的确定性,故错误;②两个集合,一个是数集,一个是点集,故错误;③中⎪⎪⎪⎪⎪⎪-12=0.5,出现了重复,不满足集合的互异性,故错误;④不仅仅表示的是第二,四象限的点,还可表示原点,故错误,综合没有一个正确,故选A.]集合间的基本关系已知集合A ={x |-2≤x ≤5},若A ⊆B ,且B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.思路探究:A ⊆B ――→结合数轴得到关于m 的不等式―→得m 的取值范围[解] 若A ⊆B ,则由题意可知⎩⎪⎨⎪⎧ m -6≤-22m -1≥5,解得3≤m ≤4.即m 的取值范围是{m |3≤m ≤4}.母题探究:1.把本例条件“A ⊆B ”改为“A =B ”,求实数m 的取值范围.[解] 由A =B 可知⎩⎪⎨⎪⎧ m -6=-22m -1=5,无解,即不存在m 使得A =B .2.把本例条件“A ⊆B ,B ={x |m -6≤x ≤2m -1}”改为“B ⊆A ,B ={m +1≤x ≤2m -1}”,求实数m 的取值范围.[解] ①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5,解得2≤m ≤3.由①②得,m 的取值范围是{m |m ≤3}. ∅:端点值:已知两集合间的关系求参数的取值范围时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的条件,常用数轴解决此类问题提醒:求其中参数的取值范围时,要注意等号是否能取到集合的基本运算设U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1},a 为实数,(1)分别求A ∩B ,A ∪(∁U B ).(2)若B ∩C =C ,求a 的取值范围.【导学号:37102077】[解] (1)因为A ={x |1≤x ≤3},B ={x |2<x <4},所以∁U B ={x |x ≤2或x ≥4},所以A ∩B ={x |2<x ≤3},A ∪(∁U B )={x |x ≤3或x ≥4}.(2)因为B ∩C =C ,所以C ⊆B ,因为B ={x |2<x <4},C ={x |a ≤x ≤a +1},若C =∅,则a +1<a ,无解,所以C ≠∅,所以2<a ,a +1<4,所以2<a <3. 看元素组成提.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和[跟踪训练]2.已知集合A={x|4≤x<8},B={x|5<x<10},C={x|x>a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.[解](1)∵A={x|4≤x<8},B={x|5<x<10}.∴A∪B={x|4≤x<10}.又∁R A={x|x<4或x≥8},∴(∁R A)∩B={x|8≤x<10}.(2)如图要使A∩C≠∅,则a<8.。
2018年高考数学理一轮复习教师用书:第一章 集合与常

第1课时 集 合1.元素与集合(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a ∈A ;若b 不属于集合A ,记作b ∉A . (3)集合的表示方法:列举法、描述法、图示法. (4)常见数集及其符号表示A B 或B A ∅B 且B ≠∅(1)三种基本运算的概念及表示①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.②A∩A=A,A∩∅=∅.③A∪A=A,A∪∅=A.④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A.4.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.(×)(2)若a在集合A中,则可用符号表示为a⊆A.(×)(3)若A B,则A⊆B且A≠B.(√)(4)N*N Z.(√)(5)若A∩B=A∩C,则B=C.(×)(6)对于任意两个集合A,B,都有(A∩B)⊆(A∪B)成立.(√)(7)∁U(A∪B)=(∁U A)∩(∁U B),∁U(A∩B)=(∁U A)∪(∁U B).(√)(8)若{x2,1}={0,1},则x=0,1.(×)(9){x|x≤1}={t|t≤1}.(√)(10)若A∪B=A∪C,则B=C.(×)考点一集合的概念第一章集合与常用逻辑用语大一轮复习数学(理)例1](1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A.1B.3C.5 D.9解析:∵A ={0,1,2},∴B ={x -y |x ∈A ,y ∈A }={0,-1,-2,1,2}.故集合B 中有5个元素. 答案:C(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C .0D .0或98解析:当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98. 答案:D方法引航] (1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件.当集合用描述法表示时,注意弄清其元素表示的意义是什么.(2)对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性.1.已知a ∈R ,若{-1,0,1}=⎩⎨⎧⎭⎬⎫1a ,a 2,0,则a =________.解析:由题意1a ≠0,a ≠0,a 2≠-1,所以只有a 2=1. 当a =1时,1a =1,不满足互异性,∴a =-1. 答案:-12.(2017·福建厦门模拟)已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________.解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. 答案:(5,6]考点二 集合间的关系及应用例2] (1)设P ={y |y R },则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R P解析:因为P ={y |y =-x 2+1,x ∈R }={y |y ≤1},Q ={y |y =2x ,x ∈R }={y |y >0},所以∁R P ={y |y >1},所以∁R P ⊆Q ,选C.答案:C(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________. 解析:∵B ⊆A ,∴①若B =∅,则2m -1<m +1,此时m <2.②若B ≠∅,则⎩⎨⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为(-∞,3]. 答案:(-∞,3]方法引航] 1.集合间基本关系的两种判定方法 (1)化简集合,从表达式中寻找两集合的关系(2)用列举法(或图示法等)表示各个集合,从元素(或图形)中寻找关系. 2.根据两集合的关系求参数的方法已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.(1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;(2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.1.在本例(1)中,集合P 变为P ={y |y =x 2+1},Q 不变,如何选答案. 解析:P ={y |y ≥1},Q ={y |y >0},∴P ⊆Q ,选A. 2.①在本例(2)中,若A ⊆B ,如何求m 的取值范围? 解:若A ⊆B ,则⎩⎨⎧ m +1≤-2,2m -1≥5,即⎩⎨⎧m ≤-3,m ≥3. 所以m 的取值范围为∅.②若将本例(2)中的集合A ,B 分别更换为A ={1,2}, B ={x |x 2+mx +1=0,x ∈R },如何求m 的取值范围? 解:(ⅰ)若B =∅,则Δ=m 2-4<0,解得-2<m <2;(ⅱ)若1∈B ,则12+m +1=0, 解得m =-2,此时B ={1},符合题意; (ⅲ)若2∈B ,则22+2m +1=0,解得m =-52,此时B =⎩⎨⎧⎭⎬⎫2,12,不合题意. 综上所述,实数m 的取值范围为-2,2).考点三 集合的运算例3] (1)(2017·山东烟台诊断)若集合A =⎩⎨⎭⎬-1,0,12,1,集合B ={y |y =2x ,x ∈A },则集合A ∩B =( )A.⎩⎨⎧⎭⎬⎫-1,0,12,1 B.⎩⎨⎧⎭⎬⎫0,12,1 C.⎩⎨⎧⎭⎬⎫12,1D .{0,1}解析:B ={y |y =2x,x ∈A }=⎩⎨⎧⎭⎬⎫12,1,2,2,所以A ∩B =⎩⎨⎧⎭⎬⎫12,1,故选C.答案:C(2)(2017·安徽合肥模拟)已知全集U =R ,A ={x |x >1},B ={x |x 2-2x >0},则∁U (A ∪B )=( ) A .{x |x ≤2} B .{x |x ≥1} C .{x |0≤x ≤1}D .{x |0≤x ≤2}解析:由x 2-2x >0得x >2或x <0,即B ={x |x <0,或x >2},∴A ∪B ={x |x <0,或x >1},∴∁U (A ∪B )={x |0≤x ≤1}. 答案:C(3)已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围是( ) A .( -∞,-1] B .1,+∞)C .-1,1]D .(-∞,-1]∪1,+∞]解析:由P ∪M =P ,得M ⊆P .又∵P ={x |x 2≤1}={x |-1≤x ≤1},∴-1≤a ≤1,故选C. 答案:C方法引航] (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(3)对于混合运算,有括号者,先运算括号里面的.1.已知集合A ={x |-1<x <2},B ={x |0<x <3},则A ∪B =( ) A .(-1,3) B .(-1,0) C .(0,2)D .(2,3)解析:选A.将集合A 与B 在数轴上画出(如图).由图可知A ∪B =(-1,3),故选A.2.已知集合A ={-1,0,4},集合B ={x |x 2-2x -3≤0,x ∈N },全集为Z ,则图中阴影部分表示的集合是( )A .{4}B .{4,-1}C .{4,5}D .{-1,0}解析:B ={x |x 2-2x -3≤0,x ∈N }={x |-1≤x ≤3,x ∈N }={0,1,2,3},阴影部分为A ∩(∁Z B )={4,-1}. 答案:B3.(2017·宁夏银川一中模拟)已知集合A ={a ,b,2},B ={2,b 2,2a },且A ∩B =A ∪B ,则a =________解析:因为A ∩B =A ∪B ,所以A =B ,则⎩⎨⎧ a =2a ,b =b 2,或⎩⎨⎧ a =b 2,b =2a .解得⎩⎨⎧a =0,b =1.或⎩⎪⎨⎪⎧a =14,b =12.所以a 的值为0或14.答案:0或14易错警示]空集的呐喊——勿忘我空集是任何集合的子集,即对于任一集合A ,有∅⊆A .空集是任何非空集合的真子集.当遇到“A ⊆B ”时,要注意是否需要讨论A =∅或A ≠∅两种情况,即“∅优先原则”.典例] 若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,则由a 的可取值组成的集合为________.正解] P ={-3,2}.当a =0时,S =∅,满足S ⊆P ; 当a ≠0时,方程ax +1=0的解集为x =-1a , 为满足S ⊆P 可使-1a =-3或-1a =2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12. 答案]⎩⎨⎧⎭⎬⎫0,13,-12易误] 在解答本题时,易出现两个典型错误.一是易忽略对空集的讨论,如S =∅时,a =0;二是易忽略对字母的讨论.如-1a 可以为-3或2.警示] (1)从集合的关系看,S ⊆P ,则S =∅或S ≠∅,勿遗忘S =∅的情况. (2)对含字母的问题,注意分类讨论.高考真题体验]1.(2016·高考全国甲卷)已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( ) A .{-2,-1,0,1,2,3} B .{-2,-1,0,1,2} C .{1,2,3}D .{1,2}解析:选D.∵B ={x |x 2<9}={x |-3<x <3}.又A ={1,2,3},∴A ∩B ={1,2}. 2.(2016·高考全国乙卷)设集合A ={1,3,5,7},B ={x |2≤x ≤5},则A ∩B =( ) A .{1,3} B .{3,5} C .{5,7}D .{1,7}解析:选B.A ={1,3,5,7},B ={2,3,4,5}, ∴A ∩B ={3,5}.3.(2016·高考全国甲卷)已知集合A ={1,2,3},B ={x |(x +1)(x -2)<0,x ∈Z },则A ∪B =( ) A .{1}B .{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选C.B={x|-1<x<2,x∈Z}={0,1}.又A={1,2,3},∴A∪B={0,1,2,3}.4.(2016·高考全国丙卷)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=() A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}解析:选C.∵A={0,2,4,6,8,10},B={4,8},∴∁A B={0,2,6,10}.5.(2016·高考浙江卷)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=()A.2,3]B.(-2,3]C.1,2)D.(-∞,-2]∪1,+∞)解析:选B.根据补集和并集的概念进行运算,也可以借助数轴求解.∵Q={x∈R|x2≥4},∴∁R Q={x∈R|x2<4}={x|-2<x<2}.∵P={x∈R|1≤x≤3},∴P∪(∁R Q)={x|-2<x≤3}=(-2,3].6.(2016·高考山东卷)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=() A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)解析:选C.先化简集合A,B,再利用并集的定义求解.由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.故选C.课时规范训练A组基础演练1.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=() A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}解析:选A.由于B={x|-2<x<1},所以A∩B={-1,0}.故选A.2.设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.0,1] B.(0,1]C.0,1) D.(-∞,1]解析:选A.∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N={x|0≤x≤1},故选A.3.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=()A.-2,-1] B.-1,2)C.-1,1] D.1,2)解析:选A.由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.4.设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是()A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析:选A.由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以选A.5.设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=()A.{1} B.{2}C.{0,1} D.{1,2}解析:选D.由已知得N={x|1≤x≤2},∵M={0,1,2},∴M∩N={1,2},故选D. 6.集合U={0,1,2,3,4},A={1,2},B={x∈Z|x2-5x+4<0},则∁U(A∪B)=() A.{0,1,3,4} B.{1,2,3}C.{0,4} D.{0}解析:选C.因为集合B={x∈Z|x2-5x+4<0}={2,3},所以A∪B={1,2,3},又全集U={0,1,2,3,4},所以∁U(A∪B)={0,4}.所以选C.7.已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是() A.(2,+∞) B.2,+∞)C.(-∞,-1) D.(-∞,-1]解析:选B.依题意,由M⊆N得a≥2,即所求的实数a的取值范围是2,+∞),选B.8.已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B中元素的个数为() A.2 B.3C.4 D.5解析:选C.依题意得,A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.9.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B =________.解析:A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.答案:{(0,1),(-1,2)}10.已知集合A={1,3,a},B={1,a2-a+1},且B⊆A,则a=________.解析:由a2-a+1=3,得a=-1或a=2,经检验符合.由a2-a+1=a,得a=1,由于集合中不能有相同元素,所以舍去.故a=-1或2.答案:-1或2B组能力突破1.已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分表示的集合是()A.-1,1)B.(-3,1]C.(-∞,-3)∪-1,+∞) D.(-3,-1)解析:选D.由题意可知,M={x|-3<x<1},N={x|-1≤x≤1},∴阴影部分表示的集合为M∩(∁U N)={x|-3<x<-1}.2.已知全集U={1,2,3,4,5},集合M={3,4,5},N={1,2,5},则集合{1,2}可以表示()A.M∩N B.(∁U M)∩NC.M∩(∁U N) D.(∁U M)∩(∁U N)解析:选B.M∩N={5},A错误;∁U M={1,2},(∁U M)∩N={1,2},B正确;∁U N={3,4},M∩(∁U N)={3,4},C错误;(∁U M)∩(∁U N)=∅,D错误.故选B.3.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4C.3 D.2解析:选D.集合A={x|x=3n+2,n∈N},当n=0时,3n+2=2,当n=1时,3n +2=5,当n=2时,3n+2=8,当n=3时,3n+2=11,当n=4时,3n+2=14,∵B={6,8,10,12,14},∴A∩B中元素的个数为2.4.设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7 B.10C.25D.52解析:选B.A ∩B ={2,3},A ∪B ={1,2,3,4,5},由列举法可知A ⊙B ={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.5.已知函数f (x )=2-x -1,集合A 为函数f (x )的定义域,集合B 为函数f (x )的值域,则如图所示的阴影部分表示的集合为________.解析:本题考查函数的定义域、值域以及集合的表示.要使函数f (x )=2-x -1有意义,则2-x -1≥0,解得x ≤0,所以A =(-∞,0].又函数f (x )=2-x -1的值域B =0,+∞).所以阴影部分用集合表示为∁A ∪B (A ∩B )=(-∞,0)∪(0,+∞).答案:(-∞,0)∪(0,+∞)6.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围是________.解析:因为C ∩A =C ,所以C ⊆A .①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32;②当C ≠∅时,要使C ⊆A ,则⎩⎨⎧ -a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.答案:(-∞,-1] 第2课时 命题及其关系、充分条件与必要条件1.命题(1)命题的概念 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.(2)四种命题及相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件、必要条件与充要条件的概念3.(1)“x2+2x-3<0”是命题.(×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√)(4)当q是p的必要条件时,p是q的充分条件.(√)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(6)q不是p的必要条件时,“p q”成立.(√)(7)若一个命题是真命题,则其逆否命题是真命题.(√)(8)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)(9)命题“若x2-1=0,则x=1或x=-1”的否命题为:若x2-1≠0,则x≠1或x≠-1.(×)(10)“(2x-1)x=0”是“x=0”的必要不充分条件.(√)考点一四种命题及其关系例1](1)命题“若a>b则a-1>b-1”的否命题是()A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1 D.若a<b,则a-1<b-1解析:根据否命题的定义可知,命题“若a>b,则a-1>b-1”的否命题应为“若a≤b,则a-1≤b-1”.答案:C(2)(2017·宁夏银川模拟)命题“若x2+y2=0,x,y∈R,则x=y=0”的逆否命题是()A.若x≠y≠0,x,y∈R,则x2+y2=0B.若x=y≠0,x,y∈R,则x2+y2≠0C.若x≠0且y≠0,x,y∈R,则x2+y2≠0D.若x≠0或y≠0(x,y∈R),则x2+y2≠0解析:将原命题的条件和结论否定,并互换位置即可.由x=y=0知x=0且y=0,其否定为x≠0或y≠0.答案:D(3)(2017·山东菏泽模拟)有以下命题:①“若xy=1,则x,y互为倒数”的逆命题;②“面积相等的两个三角形全等”的否命题;③“若m≤1,则x2-2x+m=0有实数解”的逆否命题;④“若A∩B=B,则A⊆B”的逆否命题.其中正确的命题为()A.①②B.②③C.④D.①②③解析:①“若x,y互为倒数,则xy=1”是真命题;②“面积不相等的三角形一定不全等”是真命题;③若m≤1,Δ=4-4m≥0,所以原命题为真命题,故其逆否命题也是真命题;④由A∩B=B,得B⊆A,所以原命题为假命题,故其逆否命题也是假命题.故选D.答案:D方法引航](1)在根据给出的命题构造其逆命题、否命题、逆否命题时,首先要把原命题的条件和结论弄清楚,这样逆命题就是把原命题的条件和结论交换了的命题,否命题就是把原命题中否定了的条件作条件、否定了的结论作结论的命题,逆否命题就是把原命题中否定了的结论作条件、否定了的条件作结论的命题.(2)当一个命题有大前提而需写出其他三种命题时,必须保留大前提不变.判定命题为真,必须进行推理证明;若说明为假,只需举出一个反例.互为逆否命题的两个命题是等价命题.1.原命题是“当c >0时,若a >b ,则ac >bc ”,其逆否命题是________. 解析:“当c >0时”为大前提,其逆否命题为:当c >0时,若ac ≤bc ,则a ≤b .答案:当c >0时,若ac ≤bc ,则a ≤b2.下面是关于复数z =2-1+i的四个命题: p 1:|z |=2,p 2:z 2=2i ,p 3:z 的共轭复数为1+i ,p 4:z 的虚部为-1.其中的真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 4 解析:选C.z =2-1+i =2(-1-i )(-1+i )(-1-i )=-1-i , 所以|z |=2,p 1为假命题;z 2=(-1-i)2=(1+i)2=2i ,p 2为真命题,z =-1+i ,p 3为假命题;p 4为真命题.故选C.考点二 充分条件与必要辄条件的判断例2] (1)“x >1”是“ (x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:∵x >1⇒(x +2)<0, (x +2)<0⇒x +2>1⇒x >-1, ∴“x >1”是“(x +2)<0”的充分而不必要条件.答案:B(2)(2017·天津调研)“x≠1且x≠2”是“x2-3x+2≠0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解析:x2-3x+2=0,即(x-2)(x-1)=0,∴x=1或x=2.∴当x=1或x=2时,x2-3x+2=0,∴“x2-3x+2=0”是“x=1或x=2”的充要条件,那么“x≠1且x≠2”是“x2-3x+2≠0”的充要条件.答案:C(3)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:P集合为(1,2),q集合为(0,+∞),p q,故选A.答案:A方法引航](1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据p,q成立的对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,常用的是逆否等价法.,①綈q是綈p的充分不必要条件⇔p是q的充分不必要条件;,②綈q是綈p的必要不充分条件⇔p是q的必要不充分条件;,③綈q是綈p的充要条件⇔p是q的充要条件.1.设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选A.y=log2x(x>0)为增函数,当a>b>1时,log2a>log2b>0;反之,若log2a >log2b>0,结合对数函数的图象易知a>b>1成立,故“a>b>1”是“log2a>log2b>0”的充要条件.2.若p是q的必要条件,s是q的充分条件,那么下列推理一定正确的是() A.綈p⇔綈s B.p⇔sC.綈p⇒綈s D.綈s⇒綈p解析:选C.由已知得:q ⇒p ,s ⇒q ,则s ⇒p ,由于原命题与逆否命题等价,所以s ⇒p 等价于綈p ⇒綈s ,故选C.3.“x <0”是“ln(x +1)<0”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.由ln(x +1)<0得0<x +1<1,∴-1<x <0即(-1,0)(-∞,0), ∴“x <0”是“ln(x +1)<0”的必要不充分条件.考点三 根据充分、必要条件求参数例3] (1)(2017·:(x -1)2-m 2≤0(m >0),若p 是q 的充分不必要条件,则m 的取值范围是( )A .21,+∞)B .9,+∞)C .19,+∞)D .(0,+∞)解析:条件p :-2≤x ≤10,条件q :1-m ≤x ≤m +1,又因为p 是q 的充分不必要条件,所以有⎩⎨⎧1-m ≤-2,1+m ≥10.解得m ≥9.答案:B(2)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.解析:由x 2-8x -20≤0得-2≤x ≤10,∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎨⎧ 1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3. 所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是0,3].答案:0,3]方法引航] 由充分条件、必要条件求参数.解决此类问题常将充分、必要条件问题转化为集合间的子集关系求解.但是,在求解参数的取值范围时,一定要注意区间端点值的验证,不等式中的等号是否能够取得,决定着端点的取值.1.本例(2)条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎨⎧ 1-m =-2,1+m =10,∴⎩⎨⎧m =3,m =9.即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.本例(2)条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围.解:由例(2)知P ={x |-2≤x ≤10},∵綈P 是綈S 的必要不充分条件,∴P ⇒S 且S ⇒/P .∴P S∴⎩⎨⎧ 1+m ≥101-m ≤-2∴⎩⎨⎧m ≥9,m ≥3.∴m ≥9.思想方法]集合的关系与充分、必要条件“再牵手”集合的运算常与充分、必要条件交汇,判断充分、必要条件时,可利用集合的包含关系.如果是根据充分、必要条件求参数问题,也可以转化为集合的包含关系求解. 典例] (2017·河南省实验中学模拟)设条件p :|x -2|<3,条件q :0<x <a ,其中a 为正常数.若p 是q 的必要不充分条件,则a 的取值范围是( )A .(0,5]B .(0,5)C .5,+∞)D .(5,+∞)解析] p :|x -2|<3,∴-3<x -2<3,即-1<x <5,设p =(-1,5),q =(0,a ),∵p 是q 的必要不充分条件,∴(0,a )(-1,5),∴0<a ≤5.答案] A高考真题体验]1.(2015·高考山东卷)设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D.命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”,故选D.2.(2016·高考天津卷)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:选C.令x =1,y =-2,满足x >y ,但不满足x >|y |;又x >|y |≥y ,∴x >y 成立,故“x >y ”是“x >|y |”的必要而不充分条件.3.(2016·高考四川卷)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.当x >1且y >1时,x +y >2,即p ⇒q 所以充分性成立;令x =-1,y =4,则x +y >2,但x <1,即q p 所以必要性不成立,所以p 是q 的充分不必要条件.故选A.4.(2016·高考天津卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:选C.a 2n -1+a 2n =a 2n -1(1+q )=a 1q 2n -2(1+q )<0⇔q <-1⇒q <0,故必要性成立;而q <0⇒/ q <-1,故充分性不成立.故选C.5.(2016·高考四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧ y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选A.如图,命题p表示圆心为(1,1),半径为2的圆及其内部,命题q表示的是图中的阴影区域,所以p q,q⇒p.故选A.6.(2016·高考山东卷)已知直线a,b分别在两个不同的平面α,β内.则“直线a 和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P ∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.课时规范训练A组基础演练1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”解析:选B.依题意得,原命题的逆命题:若一个数的平方是正数,则它是负数.2.与命题“若a,b,c成等比数列,则b2=ac”等价的命题是()A.若a,b,c成等比数列,则b2≠acB.若a,b,c不成等比数列,则b2≠acC.若b2=ac,则a,b,c成等比数列D.若b2≠ac,则a,b,c不成等比数列解析:选D.因为原命题与其逆否命题是等价的,所以与命题“若a,b,c成等比数列,则b2=ac”等价的命题是“若b2≠ac,则a,b,c不成等比数列”.3.若集合A={x|2<x<3},B={x|(x+2)(x-a)<0},则“a=1”是“A∩B=∅”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.当a=1时,B={x|-2<x<1},满足A∩B=∅;反之,若A∩B=∅,只需a≤2即可,故“a=1”是“A∩B=∅”的充分不必要条件.4.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题解析:选A.A中逆命题为“若x>|y|,则x>y”是真命题;B中否命题为“若x≤1,则x2≤1”是假命题;C中否命题为“若x≠1,则x2+x-2≠0”是假命题;D中原命题是假命题,从而其逆否命题也为假命题.5.已知条件p:x≤1,条件q:1x<1,则綈p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由x>1得1x<1;反过来,由1x<1不能得知x>1,即綈p是q的充分不必要条件,选A.6.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是()A.3 B.2C.1 D.0解析:选C.原命题是真命题,故它的逆否命题是真命题;它的逆命题为“若函数y=f(x)的图象不过第四象限,则函数y=f(x)是幂函数”,显然逆命题为假命题,故原命题的否命题也为假命题.因此在它的逆命题、否命题、逆否命题3个命题中真命题只有1个.7.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是()A.m=-2 B.m=2C.m=-1 D.m=1解析:选A.已知函数f (x )=x 2-2x +1的图象关于直线x =1对称,则m =-2;反之也成立.所以函数f (x )=x 2+mx +1的图象关于直线x =1对称的充要条件是m =-2. 8.有四个关于三角函数的命题: p 1:sin x =sin y ⇒x +y =π或x =y ; p 2:∀x ∈R ,sin 2x 2+cos 2x2=1; p 3:x ,y ∈R ,cos(x -y )=cos x -cos y ; p 4:∀x ∈⎣⎢⎡⎦⎥⎤0,π2,1+cos 2x2=cos x . 其中真命题是( ) A .p 1,p 3 B .p 2,p 3 C .p 1,p 4D .p 2,p 4解析:选D.对于命题p 1,若sin x =sin y ,则x +y =π+2k π,k ∈Z 或者x =y +2k π,k ∈Z ,所以命题p 1是假命题.对于命题p 2,由同角三角函数基本关系知命题p 2是真命题.对于命题p 3,由两角差的余弦公式可知cos(x -y )=cos x cos y +sin x sin y ,所以命题p 3是假命题.对于命题p 4,由余弦的倍角公式cos 2x =2cos 2x -1得 1+cos 2x2=1+2cos 2x -12=cos 2x ,又因为x ∈⎣⎢⎡⎦⎥⎤0,π2, 所以cos x ≥0,所以cos 2x =cos x ,所以命题p 4是真命题.综上,选D. 9.设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是________. 解析:找出命题的条件和结论,将命题的条件与结论互换,“若p ,则q ”的逆命题是“若q ,则p ”,故命题“若a =-b ,则|a |=|b |”的逆命题是“若|a |=|b |,则a =-b ”.答案:若|a |=|b |,则a =-b 10.给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题; ④若ab 是正整数,则a ,b 都是正整数. 其中真命题是________.(写出所有真命题的序号)解析:①命题“若x +y =0,则x ,y 互为相反数”的逆命题为“若x ,y 互为相反数,则x +y =0”,显然①为真命题;②不全等的三角形的面积不相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,则a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③B组能力突破1.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则() A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件解析:选A.两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A.2.已知向量a=(m2,-9),b=(1,-1),则“m=-3”是“a∥b”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.当m=-3时,a=(9,-9),b=(1,-1),则a=9b,所以a∥b,即“m =-3”⇒“a∥b”;当a∥b时,m2=9,得m=±3,所以不能推得m=-3,即“m=-3”“a∥b”.故“m=-3”是“a∥b”的充分不必要条件.3.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则() A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C.由于q⇒p,则p是q的必要条件;而p⇒/q,如f(x)=x3在x=0处f′(0)=0,而x=0不是极值点,故选C.4.已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是()A.1,+∞) B.(-∞,1]C.-3,+∞) D.(-∞,-3]解析:选A.法一:设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1,故选A.法二:令a =-3,则q :x >-3,则由命题q 推不出命题p ,此时q 不是p 的充分条件,排除B ,C ,D ,选A.5.设条件p :实数x 满足x 2-4ax +3a 2<0,其中a <0;条件q :实数x 满足x 2+2x -8>0,且q 是p 的必要不充分条件,则实数a 的取值范围是________. 解析:本题考查必要不充分条件的应用与一元二次不等式的解法.由x 2-4ax +3a 2<0得3a <x <a ,由x 2+2x -8>0得x <-4或x >2,因为q 是p 的必要不充分条件,则⎩⎨⎧a <0,a ≤-4,所以a ≤-4.答案:(-∞,-4]6.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________. 解析:由x 2>1,得x <-1,或x >1.又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1. 答案:-1第3课时 简单的逻辑联结词、全称量词与存在量词1.命题p ∧q ,p ∨q ,綈p 的真假判断2.全称量词和存在量词3.全称命题和特称命题5.(1)命题p ∧q 为假命题,则命题p 、q 都是假命题.(×) (2)命题p 和綈p 不可能都是真命题.(√)(3)若命题p 、q 至少有一个是真命题,则p ∨q 是真命题.(√) (4)全称命题一定含有全称量词,特称命题一定含有存在量词.(×) (5)写特称命题的否定时,存在量词变为全称量词.(√) (6)∃x 0∈M ,p (x 0)与∀x ∈M ,綈p (x )的真假性相反.(√) (7)已知命题p :∀x ∈R ,x 2≠x ,则綈p :∀x ∈/ R ,x 2=x .(×) (8)命题“存在实数x ,使x >1”的否定是:∃x 0∈R ,使x ≤1.(×) (9)“∀x ∈R,2x -1>0”是真命题.(√)(10)“全等三角形的面积相等”是全称命题.(√)考点一 含逻辑联结词命题的真假判断及应用例1] (1)给定命题p :函数y =sin ⎝ ⎭⎪⎫2x +4和函数y =cos ⎝ ⎭⎪⎫2x -4的图象关于原点对称;命题q :当x =k π+π2(k ∈Z )时,函数y =2(sin 2x +cos 2x )取得极小值.下列说法正确的是( )A .p ∨q 是假命题B .(綈p )∧q 是假命题C .p ∧q 是真命题D .(綈p )∨q 是真命题解析:命题p 中y =cos ⎝ ⎛⎭⎪⎫2x -3π4=cos ⎝ ⎛⎭⎪⎫2x -π4-π2= cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x -π4=sin ⎝ ⎛⎭⎪⎫2x -π4与y =sin ⎝ ⎛⎭⎪⎫2x +π4关于原点对称,故p 为真命题;命题q 中y =2(sin 2x +cos 2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4取极小值时,2x +π4=2k π-π2,则x =k π-3π8,k ∈Z ,故q 为假命题,则綈p ∧q 为假命题,故选B. 答案:B(2)已知命题p :函数f (x )=2ax 2-x -1在(0,1)内恰有一个零点;命题q :函数 y =x 2-a 在(0,+∞)上是减函数.若p ∧(綈q )为真命题,则实数a 的取值范围是( ) A .(1,+∞) B .(-∞,2] C .(1,2] D .(-∞,1]解析:由题意可得,对命题p ,令f (0)·f (1)<0,即-1·(2a -2)<0,得a >1;对命题q ,令2-a <0,即a >2,则綈q 对应的a 的取值范围是a ≤2.∵p ∧(綈q )为真命题,∴实数a 的取值范围是(1,2]. 答案:C方法引航] (1)要判断p ∧q ,p ∨q ,綈p 的真假.首先确定,每个简单命题p ,q 的真假,然后再判断复合命题的真假.(2)含逻辑联结词的命题的真假要转化为简单命题的真假,解题时要首先考虑简单命题为真时参数的范围.1.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .(綈p )∨qB .p ∧qC .(綈p )∧(綈q )D .(綈p )∨(綈q )解析:选D.不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有綈p ∨綈q 为真命题.2.已知命题p :“∀x ∈1,2],x 2-a ≥0”,命题q :“∃x ∈R ,使x 2+2ax +2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是( ) A .{a |a ≤-2或a =1} B .{a |a ≥1} C .{a |a ≤-2或1≤a ≤2}D .{a |-2≤a ≤1}解析:选A.由题意知,p:a≤1,q:a≤-2或a≥1,∵“p且q”为真命题,∴p、q均为真命题,∴a≤-2或a=1.考点二全称命题、特称命题的否定例2](1)已知命题p:1221210,则綈p是() A.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0B.∀x1,x2∈R,(f(x2)-f(x1)(x2-x1)≤0C.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0D.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0解析:由否命题的定义可得,綈p:∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0.答案:C(2)命题“存在实数x,使x>1”的否定是()A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1 D. 存在实数x,使x≤1解析:利用特称命题的否定是全称命题求解.“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.故选C.答案:C[方法引航]对全(特)称命题进行否定的方法(1)找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定.(2)对原命题的结论进行否定.1.设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则() A.綈p:∀x∈A,2x∈B B.綈p:∀x∉A,2x∉BC.綈p:∃x∉A,2x∈B D.綈p:∃x∈A,2x∉B解析:选D.命题p:∀x∈A,2x∈B是一个全称命题,其命题的否定綈p应为∃x∈A,2x∉B,选D.2.设命题p:∃n∈N,n2>2n,则綈p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n解析:选C.命题p是一个特称命题,其否定是全称命题,故选C.考点三全称命题、特称命题真假的判断及应用例3](1)下列命题中的假命题是()A.∀x∈R,2x-1>0 B.∀x∈N*,(x-1)2>0C.∃x0∈R,ln x0<1 D.∃x0∈R,tan x0=2解析:因为2x-1>0,对∀x∈R恒成立,所以A是真命题;当x=1时,(x-1)2=0,所以B是假命题;存在0<x0<e,使得ln x0<1,所以C是真命题;因为正切函数y=tan x的值域是R,所以D是真命题.答案:B(2)已知命题p:∀x>0,x+4x≥4;命题q:∃x0∈(0,+∞),2x0=12,则下列判断正确的是()A.p是假命题B.q是真命题C.p∧(綈q)是真命题D.(綈p)∧q是真命题解析:当x>0时,x+4x≥2x·4x=4,p是真命题;当x>0时,2x>1,q是假命题,所以p∧(綈q)是真命题,(綈p)∧q是假命题.答案:C(3)由命题“存在x0∈R,使x20+2x0+m≤0”是假命题,求得m的取值范围是(a,+∞),则实数a的值是________.解析:∵命题“存在x0∈R使x20+2x0+m≤0”是假命题,∴命题“∀x∈R,x2+2x+m>0”是真命题,故Δ=22-4m<0,即m>1,故a=1.答案:1方法引航] 1.全称命题真假的判断方法(1)要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立.(2)要判断一个全称命题是假命题,只要能举出集合M中的一个特殊值x=x0,使p(x0)不成立即可.2.特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题.1.在本例(3)中,命题改为:“∀x∈R,x2+2x+m≥0”,求m的范围.解析:设y=x2+2x+m,要使y≥0恒成立.∴Δ=22-4m≤0,∴m≥12.在本例(3)中,命题改为“∃x0≤0,使x20+2x0+m≤0”,求m的范围.解析:由x20+2x0+m≤0,可得m≤-x20-2x0.设y=-x20-2x0,由题意可知,m≤y max.y=-(x0+1)2+1,当x≤0时,y max=f(-1)=1,∴m≤1.易错警示]量词的“烦恼”——对量词的否定不当致误含量词的命题的否定方法是“改量词,否结论”,即把全称量词与存在量词互换,然后否定原命题的结论.典例](2017·山东济南检测)已知命题p:“∀x∈1,2],x2-a≥0”,命题q:“∃x ∈R,x2+2ax+2-a=0”.若命题“(綈p)∧q”是真命题,则实数a的取值范围是()A.a≤-2或a=1B.a≤2或1≤a≤2C.a>1 D.-2≤a≤1正解]由题意得綈p:∃x0∈1,2],x20-a<0.∴a>x20∈1,4],∴a>1.q为真,即x2+2ax+2-a=0有根,∴Δ=(2a)2-4(2-a)≥0,∴a≥1或a≤-2.∵(綈p)∧q是真命题,∴a>1.答案] C易误]写綈p时,命题写错:①∃x∈1,2],x2-a≤0,导致a≥1.②∀x∈1,2],x2-a>0,导致a<1.。
2018版高考数学(理)一轮复习文档:第一章集合与常用逻辑用语1.2含解析

1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,同时q是p的必要条件;(2)如果p⇒q,但q⇏p,则p是q的充分不必要条件;(3)如果p⇒q,且q⇒p,则p是q的充要条件;(4)如果q⇒p,且p⇏q,则p是q的必要不充分条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分也不必要条件.【知识拓展】从集合角度理解充分条件与必要条件若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则关于充分条件、必要条件又可以叙述为(1)若A⊆B,则p是q的充分条件;(2)若A⊇B,则p是q的必要条件;(3)若A=B,则p是q的充要条件;(4)若A B,则p是q的充分不必要条件;(5)若A B,则p是q的必要不充分条件;(6)若A B且A⊉B,则p是q的既不充分也不必要条件.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3〈0”是命题.( ×)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)若一个命题是真命题,则其逆否命题也是真命题.(√)(4)当q是p的必要条件时,p是q的充分条件.(√)(5)当p是q的充要条件时,也可说成q成立当且仅当p成立.(√)(6)若p是q的充分不必要条件,则綈p是綈q的必要不充分条件.(√)1.下列命题中为真命题的是()A.命题“若x>y,则x>|y|"的逆命题B.命题“若x>1,则x2>1"的否命题C.命题“若x=1,则x2+x-2=0"的否命题D.命题“若x2〉0,则x>1”的逆否命题答案A解析对于A,其逆命题是若x〉|y|,则x>y,是真命题,这是因为x>|y|≥y,必有x〉y。
2018届高考文科数学第1章集合与常用逻辑用语1-3 (2)

)
(4)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立. ( ) ) ) (5)× (6)× (5)若A∩B=A∩C,则B=C.(
(6)含有n个元素的集合有2n个真子集.( 【答案】 (1)× (2)× (3)√ (4)√
高考总复习· 数学文科(RJ)
第一章 集合与常用逻辑用语
1.(2016· 四川)设集合A={x|1≤x≤5},Z为整数集,则集合
P中恰有3个元素,则k的取值范围为________.
高考总复习· 数学文科(RJ)
第一章 集合与常用逻辑用语
【解析】 (1)∵a∈A,b∈B,∴x=a+b为1+4=5,1+
5=2+4=6,2+5=3+4=7,3+5=8.共4个元素. (2)因为P中恰有3个元素,所以P={3,4,5},故k的取值 范围为5<k≤6. 【答案】 (1)B (2)(5,6]
高考总复习· 数学文科(RJ)
第一章 集合与常用逻辑用语
(4)常见数集的记法
集合 自然数集
正整数集
整数集
有理数集
实数集
符号
N ___
N*(或N+) ________
Z ____
Q ____
R ____
高考总复习· 数学文科(RJ)
第一章 集合与常用逻辑用语 2.集合间的基本关系
高考总复习· 数学文科(RJ)
A⊆A . (2)集合A是其本身的子集,即_______ A⊆C . (3)子集关系的传递性,即A⊆B,B⊆C⇒_________
A,A∪∅=__ A ,A∩∅=__ (4)A∪A=A∩A=__ ∅,∁UU= U. ∅ ,∁U∅=___ __ A ⇔A∪B=___ (5)A⊆B⇔A∩B=___ B.
2018高考一轮数学(课件)第1章 第1节 集 合
上一页
返回首页
下一页
第三页,编辑于星期六:二十二点 三十一分。
高三一轮总复习
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)任何集合都有两个子集.( ) (2)已知集合 A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则 A=B= C.( ) (3)若{x2,1}={0,1},则 x=0,1.( ) (4)若 A∩B=A∩C,则 B=C.( )
A.{x|x≤0} B.{x|2≤x≤4} C.{x|0<x≤2 或 x≥4} D.{x|0≤x<2 或 x>4}
上一页
图 1-1-1
返回首页
下一页
第二十二页,编辑于星期六:二十二点 三十一 分。
高三一轮总复习
(1)B (2)D [(1)(1)∵Q={x∈R|x2≥4}, ∴∁RQ={x∈R|x2<4}={x|-2<x<2}. ∵P={x∈R|1≤x≤3}, ∴P∪(∁RQ)={x|-2<x≤3}=(-2,3]. (2)因为 A={x|x≥0},B={x|2≤x≤4},则阴影部分表示的集合∁A(A∩B)= {x|0≤x<2 或 x>4},故选 D.]
高三一轮总复习
抓
基
础
·
自
主 学
第一章 集合与常用逻辑用语 课
习
时
分
第一节 集 合
层
明 考
训 练
向
·
题
型
突
破
上一页
返回首页
下一页
第一页,编辑于星期六:二十二点 三十一分。
高三一轮总复习
1.元素与集合
(1)集合中元素的三个特性:确定性、__互_异__性___、_无__序__性___.
【推荐精选】2018年秋高中数学 第一章 集合与函数概念 阶段复习课 第1课 集合学案 新人教A版必修1
第一课 集合[核心速填]1.集合的含义与表示(1)集合元素的特征:确定性、互异性、无序性.(2)元素与集合的关系:属于(∈),不属于().(3)自然数集:N ;正整数集:N *或N +;整数集:Z ;有理数集:Q ;实数集:R.(4)集合的表示方法:列举法、描述法和区间.2.集合的基本关系子集A ⊆B ⎩⎪⎨⎪⎧ 真子集A B 相等A =B (2)子集个数结论: ①含有n 个元素的集合有2n个子集; ②含有n 个元素的集合有2n-1个真子集; ③含有n 个元素的集合有2n -2个非空真子集.3.集合间的三种运算(1)并集:A ∪B ={x |x ∈A 或x ∈B }.(2)交集:A ∩B ={x |x ∈A 且x ∈B }(3)补集:∁U A ={x |x ∈U 且x A }.4.集合的运算性质(1)并集的性质:A ⊆B ⇔A ∪B =B .(2)交集的性质:A ⊆B ⇔A ∩B =A .(3)补集的相关性质:A ∪(∁U A )=U ,A ∩(∁U A )=∅.∁U (∁U A )=A .[体系构建][题型探究]集合的基本概念(1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .5D .9(2)已知集合A ={0,m ,m 2-3m +2},且2∈A ,则实数m 为( ) A .2 B .3C .0或3D .0,2,3均可 (1)C (2)B [(1)逐个列举可得x =0,y =0,1,2时,x -y =0,-1,-2;x =1,y =0,1,2时,x -y =1,0,-1;x =2,y =0,1,2时x -y =2,1,0.根据集合中元素的互异性可知集合B 中的元素为-2,-1,0,1,2,共5个.(2)由2∈A 可知:若m =2,则m 2-3m +2=0,这与m 2-3m +2≠0相矛盾;若m 2-3m +2=2,则m =0或m =3,当m =0时,与m ≠0相矛盾,当m =3时,此时集合A ={0,3,2},符合题意.] 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么如本例中集合对点集对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性 [跟踪训练]1.下列命题正确的有( )①很小的实数可以构成集合;②集合{}y |y =x 2-1与集合{(x ,y )|y =x 2-1}是同一个集合; ③1,32,64,⎪⎪⎪⎪⎪⎪-12,0.5这些数组成的集合有5个元素; ④集合{(x ,y )|xy ≤0,x ,y ∈R }是指第二和第四象限内的点集.【导学号:37102076】 A .0个B .1个C .2个D .3个A [由题意得,①不满足集合的确定性,故错误;②两个集合,一个是数集,一个是点集,故错误;③中⎪⎪⎪⎪⎪⎪-12=0.5,出现了重复,不满足集合的互异性,故错误;④不仅仅表示的是第二,四象限的点,还可表示原点,故错误,综合没有一个正确,故选A.]集合间的基本关系已知集合A ={x |-2≤x ≤5},若A ⊆B ,且B ={x |m -6≤x ≤2m -1},求实数m 的取值范围.思路探究:A ⊆B ――→结合数轴得到关于m 的不等式―→得m 的取值范围[解] 若A ⊆B ,则由题意可知⎩⎪⎨⎪⎧ m -6≤-22m -1≥5,解得3≤m ≤4.即m 的取值范围是{m |3≤m ≤4}.母题探究:1.把本例条件“A ⊆B ”改为“A =B ”,求实数m 的取值范围.[解] 由A =B 可知⎩⎪⎨⎪⎧ m -6=-22m -1=5,无解,即不存在m 使得A =B .2.把本例条件“A ⊆B ,B ={x |m -6≤x ≤2m -1}”改为“B ⊆A ,B ={m +1≤x ≤2m -1}”,求实数m 的取值范围.[解] ①若B =∅,则m +1>2m -1,即m <2,此时满足B ⊆A .②若B ≠∅,则⎩⎪⎨⎪⎧ m +1≤2m -1,-2≤m +1,2m -1≤5,解得2≤m ≤3.由①②得,m 的取值范围是{m |m ≤3}. ∅:端点值:已知两集合间的关系求参数的取值范围时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的条件,常用数轴解决此类问题提醒:求其中参数的取值范围时,要注意等号是否能取到集合的基本运算设U =R ,A ={x |1≤x ≤3},B ={x |2<x <4},C ={x |a ≤x ≤a +1},a 为实数,(1)分别求A ∩B ,A ∪(∁U B ).(2)若B ∩C =C ,求a 的取值范围.【导学号:37102077】[解] (1)因为A ={x |1≤x ≤3},B ={x |2<x <4},所以∁U B ={x |x ≤2或x ≥4},所以A ∩B ={x |2<x ≤3},A ∪(∁U B )={x |x ≤3或x ≥4}.(2)因为B ∩C =C ,所以C ⊆B ,因为B ={x |2<x <4},C ={x |a ≤x ≤a +1},若C =∅,则a +1<a ,无解,所以C ≠∅,所以2<a ,a +1<4,所以2<a <3. 看元素组成提.有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和[跟踪训练]2.已知集合A={x|4≤x<8},B={x|5<x<10},C={x|x>a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠∅,求a的取值范围.[解](1)∵A={x|4≤x<8},B={x|5<x<10}.∴A∪B={x|4≤x<10}.又∁R A={x|x<4或x≥8},∴(∁R A)∩B={x|8≤x<10}.(2)如图要使A∩C≠∅,则a<8.。
2018年高考数学文一轮复习文档:第一章 集合与常用逻
第1讲 集合及其运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法AB 或B A1.辨明三个易误点(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.(3)防范空集.在解决有关A ∩B =∅,A ⊆B 等集合问题时,往往忽略空集的情况,一定要先考虑∅是否成立,以防漏解.2.活用几组结论(1)A ∪B =A ⇔B ⊆A ,A ∩B =A ⇔A ⊆B . (2)A ∩A =A ,A ∩∅=∅. (3)A ∪A =A ,A ∪∅=A .(4)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A .(5)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅.(6)若集合A 中含有n 个元素,则它的子集个数为2n ,真子集个数为2n-1,非空真子集个数为2n-2.1.教材习题改编 已知集合A ={x |x 是平行四边形},B ={x |x 是矩形},C ={x |x 是正方形},D ={x |x 是菱形},则( )A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆DB2.已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .3C 集合A 表示的是圆心在原点的单位圆,集合B 表示的是直线y =x ,据此画出图象,可得图象有两个交点,即A ∩B 的元素个数为2.3.教材习题改编 已知集合A ={1,2},集合B 满足A ∪B ={1,2},则满足条件的集合B 的个数为( )A .1B .2C .3D .4D 因为A ={1,2},B ∪A ={1,2},所以B ⊆A ,故满足条件的集合B 的个数为22=4个.4.教材习题改编 已知全集U ={1,2,3,4,5,6,7,8},集合A ={2,3,5,6},集合B ={1,3,4,6,7},则集合A ∩∁U B =________.由题意得∁U B ={2,5,8},所以A ∩∁U B ={2,3,5,6}∩{2,5,8}={2,5}. {2,5}5.教材习题改编 已知集合A ={x |x 2-4x +3<0},B ={x |2<x <4},则(∁R A )∪B =________.由已知可得集合A ={x |1<x <3},又因为B ={x |2<x <4},∁R A ={x |x ≤1或x ≥3}, 所以(∁R A )∪B ={x |x ≤1或x >2}. {x |x ≤1或x >2}集合的含义(1)已知集合A ={0,1,2},则集合B ={(x ,y )|x ≥y ,x ∈A ,y ∈A }中元素的个数是( )A .1B .3C .6D .9(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.(3)已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________. 【解析】 (1)当x =0时,y =0;当x =1时,y =0或y =1;当x =2时,y =0,1,2. 故集合B ={(0,0),(1,0),(1,1),(2,0),(2,1),(2,2)},即集合B 中有6个元素.(2)由题意得m +2=3或2m 2+m =3, 则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.(3)因为P 中恰有3个元素, 所以P ={3,4,5}, 故k 的取值范围为5<k ≤6.【答案】 (1)C (2)-32(3)(5,6]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.1.已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5D .9C 因为A ={0,1,2},所以B ={x -y |x ∈A ,y ∈A }={0,-1,-2,1,2}.故集合B 中有5个元素.2.若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A .92 B .98 C .0D .0或98D 当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98.3.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,则b -a =______.因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a,b ,a ≠0,所以a +b =0,则b a=-1,所以a =-1,b =1.所以b -a =2.2集合的基本关系(1)(2017·郑州模拟)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( )A .AB B .B AC .A ⊆BD .B =A(2)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(3)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为________.【解析】 (1)由题意知A ={x |y =1-x 2,x ∈R }, 所以A ={x |-1≤x ≤1}.所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 所以BA ,故选B.(2)由x 2-3x +2=0得x =1或x =2, 所以A ={1,2}.由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(3)因为B ⊆A , 所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. 【答案】 (1)B (2)D (3)(-∞,3]1.在本例(3)中,若A ⊆B ,如何求解? 若A ⊆B ,则⎩⎪⎨⎪⎧m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m ≤-3,m ≥3. 所以m 的取值范围为∅.2.若将本例(3)中的集合A 改为A ={x |x <-2或x >5},如何求解? 因为B ⊆A , 所以①当B =∅时,即2m -1<m +1时,m <2,符合题意.②当B ≠∅时,⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2, 解得⎩⎪⎨⎪⎧m ≥2,m >4或⎩⎪⎨⎪⎧m ≥2,m <-12.即m >4.综上可知,实数m 的取值范围为(-∞,2)∪(4,+∞).1.设P ={y |y =-x 2+1,x ∈R },Q ={y |y =2x,x ∈R },则( ) A .P ⊆Q B .Q ⊆P C .∁R P ⊆QD .Q ⊆∁R PC 因为P={y|y=-x2+1,x∈R}={y|y≤1},Q={y|y=2x,x∈R}={y|y>0},所以∁R P={y|y>1},所以∁R P⊆Q,选C.2.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.4集合的基本运算(高频考点)集合的基本运算是历年高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题多为低档题.高考对集合运算的考查主要有以下三个命题角度:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求集合;(3)已知集合的运算结果求参数的值(范围).(1)(2016·高考全国卷甲)已知集合A={1,2,3},B={x|x2<9},则A∩B=( )A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2}C.{1,2,3} D.{1,2}(2)(2015·高考全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2(3)已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q =( )A.{1} B.{3,5}C.{1,2,4,6} D.{1,2,3,4,5}【解析】(1)易知B={x|-3<x<3},又A={1,2,3},所以A∩B={1,2}.(2)集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.故选D.(3)因为U={1,2,3,4,5,6},P={1,3,5},所以∁U P={2,4,6},因为Q={1,2,4},所以(∁U P)∪Q={1,2,4,6}.【答案】(1)D (2)D (3)C集合运算问题的常见类型及解题策略(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解;(3)已知集合的运算结果求集合,常借助数轴或Venn图求解;(4)根据集合运算结果求参数,先把符号语言译成文字语言,然后适时应用数形结合求解.角度一求集合间的交、并、补运算1.(2016·高考全国卷丙)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )A.B.(-∞,2]∪∪ 集合S=(-∞,2]∪∪ 因为M∪N={1,2,3,4},排除A;M∩N=∅,排除B;(∁U M)∪(∁U N)=∁U(M∩N)={1,2,3,4,5,6},排除C;(∁U M)∩(∁U N)=∁U(M∪N)={5,6},D正确,故选D.角度三已知集合的运算结果求参数的值(范围)3.设全集S={1,2,3,4},且A={x∈S|x2-5x+m=0},若∁S A={2,3},则m=________.因为S={1,2,3,4},∁S A={2,3},所以A={1,4},即1,4是方程x2-5x+m=0的两根,由根与系数的关系可得m=1×4=4.4,)——集合中的创新问题与集合有关的创新题是近几年高考命题的一个新趋势,试题通过给出新的数学概念或新的运算法则,在新的情境下完成关于集合的相关问题,考查学生的知识迁移能力.题型多为选择题或填空题,属于能力题.(1)对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么k 是A 的一个“孤立元”,给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.(2)设数集M ={x |m ≤x ≤m +34},N ={x |n -13≤x ≤n },且M ,N 都是集合U ={x |0≤x ≤1}的子集,定义b -a 为集合{x |a ≤x ≤b }的“长度”,则集合M ∩N 的长度的最小值为________.【解析】 (1)依题意可知,“孤立元”必须是没有与k 相邻的元素,因而无“孤立元”是指在集合中有与k 相邻的元素.因此,符合题意的集合是{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8}共6个.(2)在数轴上表示出集合M 与N ,可知当m =0且n =1或n -13=0且m +34=1时,M ∩N 的“长度”最小.当m =0且n =1时,M ∩N ={x |23≤x ≤34},长度为34-23=112;当n =13且m =14时,M ∩N ={x |14≤x ≤13},长度为13-14=112.综上,M ∩N 的长度的最小值为112.【答案】 (1)6 (2)112解决集合创新型问题的方法(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在.(2)用好集合的性质.集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.1.设U ={1,2,3},M ,N 是U 的子集,若M ∩N ={1,3},则称(M ,N )为一个“理想配集”,则符合此条件的“理想配集”的个数(规定(M ,N )与(N ,M )不同)为________.符合条件的理想配集有①M={1,3},N={1,3};②M={1,3},N={1,2,3};③M ={1,2,3},N={1,3}.共3个.32.如果集合A满足若x∈A,则-x∈A,那么就称集合A为“对称集合”.已知集合A ={2x,0,x2+x},且A是对称集合,集合B是自然数集,则A∩B=________.由题意可知-2x=x2+x,所以x=0或x=-3.而当x=0时不符合元素的互异性,所以舍去.当x=-3时,A={-6,0,6},所以A∩B={0,6}.{0,6},)1.设集合P={x|x2-2x≤0},m=30.5,则下列关系正确的是( )A.m P B.m∈PC.m∉P D.m⊆PC 易知P={x|0≤x≤2},而m=30.5=3>2,所以m∉P,故选C.2.已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( ) A.{-1,0} B.{0,1}C.{-1,0,1} D.{0,1,2}A 由题意知B={x|-2<x<1},所以A∩B={-1,0}.故选A.3.已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a=( )A.1 B.0C.-2 D.-3C 因为A⊆B,所以a+3=1,解得a=-2.故选C.4.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.B.D.由不等式x2-2x-3≥0解得x≥3或x≤-1,因此集合A={x|x≤-1或x≥3},又集合B={x|-2≤x<2},所以A∩B={x|-2≤x≤-1},故选A.5.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}D 因为A∪B={x|x≤0}∪{x|x≥1}={x|x≤0或x≥1},所以∁U(A∪B)={x|0<x<1}.6.已知全集为整数集Z .若集合A ={x |y =1-x ,x ∈Z },B ={x |x 2+2x >0,x ∈Z },则A ∩(∁Z B )=( )A .{-2}B .{-1}C .D .{-2,-1,0}D 由题可知,集合A ={x |x ≤1,x ∈Z },B ={x |x >0或x <-2,x ∈Z },故A ∩(∁Z B )={-2,-1,0},故选D.7.设集合A =⎩⎨⎧⎭⎬⎫5,ba,a -b ,B ={b ,a +b ,-1},若A ∩B ={2,-1},则A ∪B =( )A .{2,3}B .{-1,2,5}C .{2,3,5}D .{-1,2,3,5}D 由A ∩B ={2,-1},可得⎩⎪⎨⎪⎧b a =2,a -b =-1或⎩⎪⎨⎪⎧b a =-1,a -b =2.当⎩⎪⎨⎪⎧b a =2,a -b =-1时,⎩⎪⎨⎪⎧a =1,b =2.此时B ={2,3,-1},所以A ∪B ={-1,2,3,5};当⎩⎪⎨⎪⎧b a =-1,a -b =2时,⎩⎪⎨⎪⎧a =1,b =-1,此时不符合题意,舍去.8.设全集U =R ,A ={x |0<x <2},B ={x |x <1},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}B 法一:题图中阴影部分表示集合(∁U B )∩A ,所以(∁U B )∩A ={x |x ≥1}∩{x |0<x <2}={x |1≤x <2}.选B.法二:图中空白表示集合B ∪∁U A ={x |x <1}∪{x |x ≤0或x ≥2}={x |x <1或x ≥2},所以图中阴影部分表示的集合为{x |1≤x <2}.9.(2017·贵州省七校第一次联考)已知集合A ={0,1,2,3,4},B ={x |x =n ,n ∈A },则A ∩B 的真子集个数为( )A .5B .6C .7D .8C 由题意,得B ={0,1,2,3,2},所以A ∩B ={0,1,2},所以A ∩B 的真子集个数为23-1=7,故选C.10.已知全集U ={x ∈Z |0<x <8},集合M ={2,3,5},N ={x |x 2-8x +12=0},则集合{1,4,7}为( )A .M ∩(∁U N )B .∁U (M ∩N )C .∁U (M ∪N )D .(∁U M )∩NC 由已知得U ={1,2,3,4,5,6,7},N ={2,6},M ∩(∁U N )={2,3,5}∩{1,3,4,5,7}={3,5},M ∩N ={2},∁U (M ∩N )={1,3,4,5,6,7},M ∪N ={2,3,5,6},∁U (M ∪N )={1,4,7},(∁U M )∩N ={1,4,6,7}∩{2,6}={6},选C.11.设集合A ={x |y =lg(-x 2+x +2)},B ={x |x -a >0},若A ⊆B ,则实数a 的取值范围是( )A .(-∞,-1)B .(-∞,-1]C .(-∞,-2)D .(-∞,-2]B 因为集合A ={x |y =lg(-x 2+x +2)}={x |-1<x <2},B ={x |x >a },因为A ⊆B ,所以a ≤-1.12.(2017·沈阳模拟)已知集合A ={x ∈N |x 2-2x -3≤0},B ={1,3},定义集合A ,B 之间的运算“*”:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中的所有元素数字之和为( )A .15B .16C .20D .21D 由x 2-2x -3≤0,得(x +1)(x -3)≤0,得A ={0,1,2,3}.因为A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },所以A *B 中的元素有:0+1=1,0+3=3,1+1=2,1+3=4,2+1=3(舍去),2+3=5,3+1=4(舍去),3+3=6,所以A *B ={1,2,3,4,5,6},所以A *B 中的所有元素数字之和为21.13.已知集合A ={x |x 2-2x +a >0},且1∉A ,则实数a 的取值范围是________. 因为1∉{x |x 2-2x +a >0},所以1∈{x |x 2-2x +a ≤0},即1-2+a ≤0,所以a ≤1. (-∞,1]14.设集合I ={x |-3<x <3,x ∈Z },A ={1,2},B ={-2,-1,2},则A ∩(∁I B )=________. 因为集合I ={x |-3<x <3,x ∈Z }={-2,-1,0,1,2},A ={1,2},B ={-2,-1,2},所以∁I B ={0,1},则A ∩(∁I B )={1}.{1}15.设集合P ={a 2,log 2a },Q ={2a,b },若P ∩Q ={0},则P ∪Q =________. 因为P ∩Q ={0},所以0∈P ,只能log 2a =0,所以a =1,a 2=1,又0∈Q ,因为2a=21=2≠0,所以b =0,所以,P ={0,1},Q ={2,0},所以P ∪Q ={0,1,2}.{0,1,2}16.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.表示不大于x 的最大整数,集合A ={x |x 2-2=3},B =⎩⎨⎧⎭⎬⎫x |18<2x <8,则A ∩B =________.由集合A 中的等式x 2-2=3变形得x 2=2+3,由题意可知x 2为整数,而x 2-2x -3=0的解为x =-1或x =3,则=-1,=3,所以x 2=2+3=-2+3=1或x 2=2×3+3=9,解得x =±1或x =±3,经检验x =1,x =-3不合题意舍去,所以x =-1或x =3,所以A ={-1,3},由B 中不等式变形得2-3<2x <23,即-3<x <3, 所以B ={x |-3<x <3},则A ∩B ={-1}. {-1}18.已知非空集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22}. (1)当a =10时,求A ∩B ,A ∪B ;(2)求能使A ⊆(A ∩B )成立的a 的取值范围.(1)当a =10时,A ={x |21≤x ≤25}.又B ={x |3≤x ≤22}, 所以A ∩B ={x |21≤x ≤22},A ∪B ={x |3≤x ≤25}. (2)由A ⊆(A ∩B ),可知A ⊆B , 又因为A 为非空集合,所以⎩⎪⎨⎪⎧2a +1≥3,3a -5≤22,2a +1≤3a -5,解得6≤a ≤9.19.若集合A ={x |x 2+ax +1=0,x ∈R },集合B ={1,2},且A ⊆B ,求实数a 的取值范围.①若A =∅,则Δ=a 2-4<0,解得-2<a <2; ②若1∈A ,则a =-2,此时A ={1},符合题意;③若2∈A ,则a =-52,此时A =⎩⎨⎧⎭⎬⎫2,12,不合题意;④若A =B ={1,2},此时不存在满足题意的a 的值. 综上所述,实数a 的取值范围为[-2,2).。
2018年高考数学一轮复习集合 精品
集合穿针转化引线(最新)一、集合与常用逻辑用语3.若,则是的().(A)充分条件(B)必要条件(C)充要条件(D)既不充分又不必要条件解析:∵,即或,∴.∵,即或,∴.由集合关系知:,而.∴是的充分条件,但不是必要条件.故选(A).4. 若,则“”是“方程表示双曲线”的().(A)充分条件(B)必要条件(C)充要条件(D)既不充分又不必要条件解析:方程表示双曲线或.故选(A).二、集合与函数5.已知集合,那么等于().(A)(0,2),(一,一)(B){(0,2),(一,一)}(C){一,2}(D)解析:由代表元素可知两集合均为数集,又P集合是函数中的y的取值范围,故P集合的实质是函数的值域.而Q集合则为函数的定义域,从而易知,选(D).评注:认识一个集合,首先要看其代表元素,再看该元素的属性,本题易因误看代表元素而错选(B)或(C).三、集合与方程6.已知,且,求实数p的取值范围.解析:集合A是方程的解集,则由,可得两种情况:①,则由,得;②方程无正实根,因为,则有于是.综上,实数p的取值范围为.四、集合与不等式7. 已知集合,若,求实数m的取值范围.解析:由不等式恒成立,可得,(※)(一)当,即时,(※)式可化为,显然不符合题意.(2)当时,欲使(※)式对任意x均成立,必需满足即解得.集合B是不等式的解集,可求得,结合数轴,只要即可,解得.五、集合与解析几何例6 已知集合和,如果,求实数m的取值范围.解析:从代表元素看,这两个集合均为点集,又及是两个曲线方程,故的实质为两个曲线有交点的问题,我们将其译成数学语言即为:“抛物线与线段有公共点,求实数m 的取值范围.”由,得,①∵,∴方程①在区间[0,2]上至少有一个实数解.首先,由,得或.当m≥3时,由及知,方程①只有负根,不符合要求;当时,由及知,方程①有两个互为倒数的正根,故必有一根在区间内,从而方程①至少有一个根在区间[0,2]内.综上,所求m的取值范围是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节集__合 [知识能否忆起] 一、元素与集合 1.集合中元素的三个特性:确定性、互异性、无序性. 2.集合中元素与集合的关系: 元素与集合之间的关系有属于和不属于两种,表示符号为∈和∉. 3.常见集合的符号表示: 集合 自然数集 正整数集 整数集 有理数集 实数集 表示 N N*或N+ Z Q R
4.集合的表示法:列举法、描述法、韦恩图. 二、集合间的基本关系 描述关系 文字语言 符号语言 集合间的基本关系 相等 集合A与集合B中的所有元素都相同 A=B 子集 A中任意一元素均为B中的元素 A⊆B或B⊇A
真子集 A中任意一元素均为B中的元素,且B中至少有一个元素A中没有 AB或BA
空集 空集是任何集合的子集 ∅⊆B 空集是任何非空集合的真子集 ∅B(B≠∅)
三、集合的基本运算 集合的并集 集合的交集 集合的补集
符号表示 A∪B A∩B 若全集为U,则集合A的补集为∁UA
图形表示 意义 {x|x∈A,或x∈B} {x|x∈A,且x∈B} {x|x∈U,且x∉A} [小题能否全取] 1.(·大纲全国卷)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( ) A.A⊆B B.C⊆B C.D⊆C D.A⊆D 解析:选B 选项A错,应当是B⊆A.选项B对,正方形一定是矩形,但矩形不一定是正方形.选项C错,正方形一定是菱形,但菱形不一定是正方形.选项D错,应当是D⊆A. 2.(·浙江高考)设集合A={x|1<x<4},集合B={x|x2-2x-3≤0},则A∩(∁RB)=( ) A.(1,4) B.(3,4) C.(1,3) D.(1,2)∪(3,4) 解析:选B 因为∁RB={x|x>3,或x<-1},所以A∩(∁RB)={x|3<x<4}. 3.(教材习题改编)A={1,2,3},B={x∈R|x2-ax+1=0,a∈A},则A∩B=B时a的值是( ) A.2 B.2或3 C.1或3 D.1或2 解析:选D 验证a=1时B=∅满足条件;验证a=2时B={1}也满足条件. 4.(·盐城模拟)如图,已知U={1,2,3,4,5,6,7,8,9,10},集合A={2,3,4,5,6,8},B={1,3,4,5,7},C={2,4,5,7,8,9},用列举法写出图中阴影部分表示的集合为________. 解析:阴影部分表示的集合为A∩C∩(∁UB)={2,8}. 答案:{2,8}
5.(教材习题改编)已知全集U={-2,-1,0,1,2},集合A= xx=2n-1,x,n∈Z,则∁UA=________. 解析:因为A= xx=2n-1,x,n∈Z, 当n=0时,x=-2;n=1时不合题意; n=2时,x=2;n=3时,x=1; n≥4时,x∉Z;n=-1时,x=-1; n≤-2时,x∉Z. 故A={-2,2,1,-1}, 又U={-2,-1,0,1,2},所以∁UA={0}. 答案:{0}
1.正确理解集合的概念 研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用 描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y=f(x)}、{y|y=f(x)}、{(x,y)|y=f(x)}三者的不同. 2.注意空集的特殊性 空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A⊆B,则需考虑A=∅和A≠∅两种可能的情况.
元素与集合 典题导入 [例1] (1)(·新课标全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( ) A.3 B.6 C.8 D.10 (2)已知集合M={1,m},N={n,log2n},若M=N,则(m-n)=________. [自主解答] (1)∵B={(x,y)|x∈A,y∈A,x-y∈A},A={1,2,3,4,5}, ∴x=2,y=1;x=3,y=1,2;x=4,y=1,2,3;x=5,y=1,2,3,4. ∴B={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4)}, ∴B中所含元素的个数为10. (2)由M=N知
n=1,log2n=m或 n=m,log2n=1,
∴ m=0,n=1或 m=2,n=2, 故(m-n)2 013=-1或0. [答案] (1)D (2)-1或0 由题悟法 1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性. 2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性. 以题试法 1.(1)(·北京东城区模拟)设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为( ) A.9 B.8 C.7 D.6 (2)已知集合A={a-2,2a2+5a,12},且-3∈A,则a=________. 解析:(1)∵P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11, ∴P+Q={1,2,3,4,6,7,8,11},∴P+Q中有8个元素. (2)∵-3∈A, ∴-3=a-2或-3=2a2+5a.
∴a=-1或a=-32. 当a=-1时,a-2=-3,2a2+5a=-3, 与元素互异性矛盾,应舍去.
当a=-32时,a-2=-72,2a2+5a=-3.
∴a=-32满足条件. 答案:(1)B (2)-32
集合间的基本关系 典题导入 [例2] (1)(·湖北高考)已知集合A={x|x2-3x+2=0,x∈R},B={x|0满足条件A⊆C⊆B的集合C的个数为( ) A.1 B.2 C.3 D.4 (2)已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________. [自主解答] (1)由x2-3x+2=0得x=1或x=2, ∴A={1,2}. 由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)由log2x≤2,得0即A={x|0由于A⊆B,如图所示,则a>4,即c=4. [答案] (1)D (2)4 由题悟法 1.判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系. 2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn图帮助分析.
以题试法 2.(文)(·郑州模拟)已知集合A={2,3},B={x|mx-6=0},若B⊆A,则实数m的值为( ) A.3 B.2 C.2或3 D.0或2或3 解析:选D 当m=0时,B=∅⊆A;
当m≠0时,由B=6m⊆{2,3}可得 6m=2或6m=3,
解得m=3或m=2, 综上可得实数m=0或2或3. (理)已知集合A={y|y=-x2+2x},B={x||x-m|<2 013},若A∩B=A,则m的取值范围是( ) A.[-2 012,2 013] B.(-2 012,2 013) C.[-2 013,2 011] D.(-2 013,2 011) 解析:选B 集合A表示函数y=-x2+2x的值域,由t=-x2+2x=-(x-1)2+1≤1,可得0≤y≤1,故A=[0,1]. 集合B是不等式|x-m|<2 013的解集,解之得m-2 013m+2 013). 因为A∩B=A,所以A⊆B.
如图,由数轴可得 m-2 013<0,m+2 013>1,
解得-2 012集合的基本运算 典题导入 [例3] (1)(2011·江西高考)若全集U={1,2,3,4,5,6},M={2,3},N={1,4},则集合{5,6}等于( ) A.M∪N B.M∩N C.(∁UM)∪(∁UN) D.(∁UM)∩(∁UN) (2)(·安徽合肥质检)设集合A={x|x2+2x-8<0},B={x|x<1},则图中阴影部分表示的集合为( ) A.{x|x≥1} B.{x|-4C.{x|-8[自主解答] (1)∵M∪N={1,2,3,4}, ∴(∁UM)∩(∁UN)=∁U(M∪N)={5,6}. (2)∵x2+2x-8<0, ∴-4∴A={x|-4又∵B={x|x<1}, ∴图中阴影部分表示的集合为A∩(∁UB)={x|1≤x<2}. [答案] (1)D (2)D
将例3(1)中的条件“M={2,3}”改为“M∩N=N”,试求满足条件的集合M的个数. 解:由M∩N=N得M⊇N. 含有2个元素的集合M有1个,含有3个元素的集合M有4个, 含有4个元素的集合M有6个,含有5个元素的集合M有4个, 含有6个元素的集合M有1个. 因此,满足条件的集合M有1+4+6+4+1=16个.
由题悟法 1.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时注意端点值的取舍. 2.在解决有关A∩B=∅,A⊆B等集合问题时,一定先考虑A或B是否为空集,以防漏解.另外要注意分类讨论和数形结合思想的应用. 以题试法