高科技物理在生活中的应用
高中物理研究性学习课题

《高科技物理在生活中的应用》的研究性课题一、与电学知识有关的现象自法拉发现电磁感应现象以来,人类进入了电气化时代。
从生活用电到交通运输、工厂企业用电,都来源于发电机,电已成为人类必不可少的主要能源。
在我们的生活中,随处可见电的应用。
电灯是根据电流的热效应的原理工作的。
当电流通过灯丝时,灯丝热到白炽状态就发出明亮的光,将电能转化为光能和热能为我们服务;电灯的灯丝是用熔点高的钨丝做的,这是因为灯泡发光时灯丝的温度在2000摄氏度以上,用钨丝比较耐用;灯丝做成螺旋状是为了减少散热,因为灯泡发光时灯丝的温度在2000摄氏度以上,提高灯丝的温度,以便更好的发光;为了防止钨丝在高温下氧化,小功率的灯泡都抽成真空,而60瓦以上的灯泡要冲入惰性气体,这些气体可以阻碍灯丝在高温下的升华;灯丝较粗的灯泡额定功率较大,灯丝较细的灯泡额定功率较小。
因为灯泡中灯丝的材料、长度相同,根据电阻的性质,导体横截面积大,则电阻较小;电灯的亮度由电灯消耗的实际功率决定,实际功率大的灯泡比较亮。
例如“220V,25W”和“220V,100W”的两个灯泡,由R=U2/P可知,25W的灯泡电阻较大,100W的灯泡电阻较小。
如果将两灯串联,通过他们的电流相等,由P=I2R可知,25W 的灯泡较亮。
如果亮灯并联,它们两端的电压相等,由P=U2/R可知,此时25W的灯泡较暗;灯泡使用时,钨丝在高温下升华为钨蒸气。
关灯后,温度降低,钨蒸气凝华附着在灯泡壁上。
时间长了,灯泡壁就会变黑;灯泡的灯丝断了以后,如果搭接上再用,会更亮一些。
因为灯丝断了后,长度变短,灯丝的电阻变小,根据P=U2/R,则R变小,P变大,所以显得更亮一些,但由于消耗的电功率变大了,容易使温度升高而再次烧断灯丝;同一个灯泡,深夜使用时比傍晚亮,因为实际的输电线路都存在一定的电阻,当傍晚进入用电高峰时,接入电路的用电器增多,致使干路中的电流增大,输电线分到的电压也变大,用电器两端的电压变小。
科技馆里的物理现象与原理

科技馆里的物理现象与原理1. 引言大家好,今天我们来聊聊科技馆那些神奇的物理现象和原理,别担心,不会让你觉得像在上课。
科技馆就像一座宝库,里面藏着各种各样的奇迹,简直是个大玩具箱,谁不想去碰碰那些高科技的玩意儿呢?每次我走进科技馆,都有种如梦似幻的感觉,仿佛自己置身于科学的海洋中,真的让人目不暇接。
不过,别看这些展品高大上,其实它们背后隐藏的物理原理可简单得很,今天就来给大家揭开这些秘密!2. 常见的物理现象2.1. 磁悬浮列车首先,我们先聊聊磁悬浮列车。
这个东西可不是科幻电影里的情节,而是科技馆里实实在在的展品。
想象一下,列车在轨道上飞快地滑过,没有一丝噪音,也没有任何摩擦。
听起来是不是很酷?其实,这就是物理中的“电磁力”在作怪。
磁悬浮列车利用强大的磁力让列车“悬浮”在空中,减少了与轨道的摩擦,车速自然就飙起来了。
就像打篮球,球离开了地面,反弹的高度能高得多,这就是我们常说的“轻装上阵”。
2.2. 倒立的水杯接着,我们来看看那个经典的倒立水杯实验。
你一定见过,一个水杯倒过来,水却不流出来,这可是个小把戏!其实这背后是表面张力在“撑腰”。
水的分子之间紧紧相连,形成了一种膜,把水牢牢地锁在杯子里。
你想象一下,就像一群小伙伴手拉手,紧紧围成一圈,谁也不想掉出去,这种紧密的团结力量让水不愿意“出走”。
所以,别小看这杯水,它可是有“气势”的,哈哈!3. 物理原理的日常应用3.1. 自行车的平衡说到物理原理,很多人会想到自行车。
学骑自行车的时候,总是摔得东倒西歪,但一旦掌握了重心的平衡,骑起来就如鱼得水。
这其实就是“动量守恒”的体现。
当你在骑行时,车子在运动,身体也在不断调整重心,这就像是在跳舞,车子和你之间有种默契的配合。
只要你保持一定的速度,就能轻松保持平衡,真是“骑而不摔”的秘诀。
3.2. 弹跳的运动会再来聊聊运动会上的跳高。
你有没有注意到,运动员起跳的时候,那个瞬间真是美得像一只飞翔的小鸟。
这可不是运气,而是“势能转化”为“动能”的过程。
同步卫星和静止卫星的区别高中物理

同步卫星和静止卫星的区别高中物理同步卫星和静止卫星这两个名字,听起来是不是有点像科幻片里的角色?它们在太空中各有各的精彩。
同步卫星,听名字就知道,它们在轨道上转得跟地球的自转速度一模一样。
这样一来,无论地球怎样转,它们始终可以“盯着”同一个地方,像个忠实的守望者。
这可是极其重要哦,尤其是在通讯和天气预报上,像是个全天候的快递员,无论刮风下雨,信息总是及时送到你面前。
而静止卫星呢,简单说,它们就像是在太空中“打了个盹”,整天懒洋洋地待在赤道上方的某个固定点。
要是你站在地球上仰望天空,正好看到了这颗卫星,它就永远在那儿,根本不用担心会失踪。
这就像是在门口守夜的狗狗,哪怕你出去转转,它也始终待在那儿,给你一种安全感。
想象一下,如果我们没有这些卫星,通讯、电视信号可真是乱成一锅粥。
再说说它们的轨道。
同步卫星的轨道高度大约在三万六千公里,真的是高得让人瞠目结舌。
而静止卫星的高度也是差不多,都是为了能在特定区域上空保持静止。
嘿,这可不是说说而已,要精确计算出卫星的速度和高度,就像是个数学天才,得考虑地球的引力、空气阻力什么的,真是让人头疼。
但是,一旦弄明白了,卫星就能轻松“悬挂”在空中,给我们提供服务。
用通俗的话说,同步卫星就像是你的好朋友,总是随叫随到;而静止卫星呢,就像是那种从不迟到的老朋友,稳稳当当,一直在你身边。
你会发现,在日常生活中,信息的传播、气象的预测全靠这些“天上的卫士”来帮忙。
想想每天都能看电视、上网,背后都有它们的辛勤付出。
这两种卫星还真有点“心机”,它们能有效地配合起来。
比如说,静止卫星提供稳定的信号,而同步卫星则负责更远距离的通信,简直是黄金搭档!就像打游戏时,两个角色默契配合,才会取得胜利。
有了它们,我们的生活质量大大提高,想想要是没有卫星,我们是不是就只能回到那种电话亭里打电话的时代了?那画面简直太搞笑了。
再来聊聊它们的应用。
同步卫星主要用于通讯,比如手机信号、网络连接,甚至是GPS导航,生活中离不开。
光学成像的原理与应用

光学成像的原理与应用光学成像是一种通过光线的反射或折射来获取物体的形象的技术。
它是人类在探索世界的过程中发明出来的一项高科技,被广泛应用于医学、航空航天、军事、通信、机器人等领域。
一、光学成像的原理1. 光的物理特性光是一种电磁波,其传播的速度为常数,通常用光速的大小来表示。
当光通过不同介质的物质界面时,会发生反射、折射和漫反射等现象。
2. 成像原理成像是将物体的形状、大小、位置等信息转换成图像的过程。
通过将一束光线聚焦在物体上,光线经过反射或折射,进入成像系统,形成倒立、缩小的虚像。
因此,成像系统的核心是聚焦光线,使其在物体上交汇并形成一个清晰的图像。
3. 成像系统的组成成像系统通常由光源、透镜、物体和成像传感器四个基本部分组成。
光源:可产生光束,提供照明光源。
透镜:是成像系统的核心组成部分,能够扭曲和聚焦光线,使其在物体上的点交汇,并形成一个清晰的图像。
物体:即需要成像的对象。
成像传感器:能够将光线转换成电信号,从而捕捉到物体的图像。
二、光学成像的应用1. 医疗领域光学成像技术被广泛应用于医学领域中,如内窥镜检查、眼科检查、超声波成像等。
内窥镜检查是一种通过将一根细长的光导纤维插入体内来观察内部疾病、发现病变部位的方法。
它可以用来检查内脏器官、鼻喉、肛门、膀胱等部位。
眼科检查是通过用光管产生的光线照射眼球,并接收一定方向上的反射光来观察眼球内部的病变情况和找出眼球内部意外的异物。
超声波成像是一种利用声波对物体内部进行成像的技术。
医学上常用的超声波成像有超声心动图、超声结肠镜等。
2. 检测领域光学成像技术也被应用于检测领域中,如机械工业、电子行业中的焊接质量检测、金属材料的缺陷检测、瓶装水的去除铁过程等。
焊接质量检测是一个非常重要的过程,它确保焊接的可靠性,并防止导致事故的潜在故障。
通过利用红外光学成像技术,可以轻松检测出焊接过程中的瑕疵、裂缝和其他缺陷。
金属材料的缺陷检测可以通过精确测量金属材料表面的反射率、吸收率和透射率,来判断材料表面上是否存在缺陷。
物理科技论文

物理科技论文1今天,人类所有的令人惊叹不已的技术成就,无不是建立早年科学家们对身边锁事进行观察并研究的基础之上,在学习中,我们要树立科学意识,大处着眼,小处着手。
在物理学方面不断进步。
我最喜欢看其中的《来到了跳跳国》、《咔嗒,咔嗒,粘住了》和《大象也可以被举起来》,它以讲故事的方式向我们讲述科学知识,语句充满童真,讲的是发生在我们日常生活中的物理知识,很生动,将我们牢牢吸引。
文中的主人公是与我们一般大的孩子,读完以后,我们会发现原来文中的“她”也会问这个问题呀?这个问题一点也不傻?原来答案是这样的!太神奇了!飞机是怎么飞起来的?天空中为什么有彩虹?船为什么能在水中浮起来?……这些问题的答案就在这套丛书里,快翻开这套丛书找一找答案,看一看里面的内容吧!物理科技论文2畅游物理之海,体味物理之爱。
——题记初识你时,便一见倾心,为你的神奇、灵魂、调皮所迷恋。
爱你的神奇初入物理之海,首先入眼的便是你——透镜。
你是顽皮的精灵,挺起肚子,便是凸透镜,聚光于镜;当你一弯腰,又成了凹透镜,散光于镜,化光成一道道光纤;当你身处模型之中,你是一位安静又神秘的魔术师,当物像徘徊在二倍焦距左右,你更是将其像放倒,随意把人家等大、放大或缩小;当它不小心走进一倍焦距时,你便灭其像,吓得它连忙跳过,才使得其像放大于其后,它便再不敢造次了。
神奇如你,我已不能自拔地爱上了你的神奇。
爱你的灵动你是灵魂舞者——光。
当你射向玻璃时,你便会灵巧一跃,弹起一束光。
你总把两角调节的那样完美,使不搭的法线也生机勃勃。
当你跳起折射舞时,还总是献殷勤似的让空气当老大,却不管同为介质的水,那仿佛是被你设计的。
入空气角总比入水角度数大许多,在你灵魂的躯体下,连介质也被分了层。
灵魂如你,我已不能自拔地爱上了你的灵动。
爱你的调皮你学习了自然魔法,化身自然使者,将固、液、气转换得轻松自如。
是谁让水变冰,冰变水呢?这便是你的魔法——熔化和凝固吧,这个调皮鬼还用升华让雪人化时无水;用凝华为灯壁蒙上一层灰炭。
光学技术的应用与发展前景

光学技术的应用与发展前景随着科技的进步和人类对自然规律的认知不断提高,光学技术作为一种重要的物理学分支,也在不断地发展和应用。
它的应用领域非常广泛,从人类日常生活,到高科技领域的军事、航空、太空探索等,都离不开光学技术的应用。
本文将主要探讨光学技术的应用和未来发展前景。
一、光学技术的应用1. 光学仪器显微镜、望远镜、照相机、投影仪等光学仪器是人类利用光学技术创造出来的重要工具。
这些仪器的应用范围非常广泛,例如显微镜可以用于生物学研究、材料科学、药物研发等领域,望远镜则可以用于天文学研究和太空探索。
精密的照相机可以捕捉到再复杂不过的景象,投影仪可以把图像和细节放大到适合大众观看的规模。
2. 光电子技术光电子技术是将光信号转换为电信号的技术。
其应用范围非常广泛,例如在照相技术中,利用光电子技术可以将光信号转换为数字信号,从而实现高速、高清晰度的照片;在通讯技术中,光纤通讯采用的就是光电技术,大大提高了数据传输速度;在安防领域,利用光电子技术可以实现高清晰度的监控摄像,从而增强了保安措施。
3. 激光技术激光技术是目前最为先进的光学技术之一,其应用领域也非常广泛。
激光切割、激光打印、激光测距器、激光医疗器械等,都是典型的激光技术应用案例。
激光技术在医疗领域中的应用特别值得关注。
例如,利用激光可以实现非接触性的手术,光纤激光可以实现更安全的眼科手术,从而大大改善了患者手术的体验和治疗的效果。
二、光学技术的发展前景光学技术的发展前景非常广阔,其中以下几方面尤为值得期待。
1. 量子光学量子光学是研究光与物质相互作用的量子效应的学科,是光学和量子力学的交叉领域。
量子光学涉及的内容涉及到光的非经典特性、光子的相干性、光子的不确定性等,目前已经在量子通信、其它量子器件、量子计算机等多个领域得到了广泛应用。
2. 全息技术全息技术是一种利用光的干涉原理,将物体全部信息记录下来,形成有完整三维信息的图像的技术。
全息技术的应用非常广泛,常用于模拟三维场景的展示、3D成像等领域。
等离子体技术的基本原理和应用
等离子体技术的基本原理和应用等离子体技术是一种高科技的技术,具有广泛的应用场景。
等离子体技术,简单地说,就是将物质中的电子从原子核中剥离,形成一个电离态的气体,即等离子体。
等离子体呈现出电子、离子、自由基等多种状态,具有很强的化学、物理性能,在许多领域有广泛的应用。
等离子体技术的基本原理
首先,等离子体技术的产生需要一定的能量。
比如,可以通过高温、高压、强电场、强磁场等方式提供能量,使原子中的电子逐步离开原子核形成一个高度电离的气体状态,即等离子体。
等离子体技术主要是利用等离子体的化学、物理特性进行一系列的加工和改性,因为电离状态下的气体各种物理、化学等特性与普通气体不同。
等离子体技术的应用
等离子体技术已经应用于工业、医学和环保等多个领域,是当今世界的热门技术之一。
大家常见的离子发动机就是利用等离子体产生推力,驱动飞行器的发动机。
等离子体在航天、核聚变等领域有着广泛的应用。
比如,在环保领域,等离子体已经被运用于大规模废水、工业废气的净化处理,通过突破传统污水、污气处理方式,达到了非常好的净化效果。
等离子体在医学领域也有着重要的应用,现在许多先进的医疗设备和手术器械,比如射频等都用到了等离子体技术,这使得医学的诊断和治疗更为有效和方便。
此外,等离子体的应用还可以扩展到电子产业、纺织、家电、食品等各个领域,预计在未来还会有更广泛的应用。
结论
等离子体技术的开发和应用受到许多学科的支持,其中包含了物理学、化学、电子学等许多领域的知识与技术。
随着科学技术
的不断发展,等离子体技术在各个领域有着广阔的应用前景,将会为人们的生活、工作、环保和医疗等领域带来越来越多的福利和便利。
纳米技术的新发展与应用
纳米技术的新发展与应用纳米技术是一种高科技技术,它能够改变人们生活的方方面面。
纳米技术是一种用生物、化学、物理等科学原理研究和制造纳米级的物质、器件和系统的技术。
在纳米尺度下,物质的性质和行为与宏观世界的都有所不同,因此纳米技术有着许多其他材料和技术无法替代的优势。
随着纳米技术的研究不断深入,其应用范围也在不断扩大,呈现出了许多新的发展和应用。
一、新发展纳米材料纳米材料是纳米技术的核心组成部分之一,在多种领域拥有广泛的应用。
以金属为例,由于纳米金属颗粒的大小仅为数纳米级别,其表面积与体积之比大大增加,材料的强度和反应性也得到了明显提升。
推广纳米技术和制造纳米材料,将有助于提高能源转换效率、改善材料性能、缩小装置尺寸、降低成本等。
纳米药物纳米技术已被广泛应用于医疗领域,研发出了许多新型的纳米材料、纳米药物等。
纳米药物与传统药物相比,具有更好的稳定性、更大的药效和更小的毒副作用等优势。
纳米药物不仅可以治疗传统药物难以治疗的疾病,而且还可以用于精准诊断和治疗多种疾病,如癌症、糖尿病等。
纳米电子学纳米电子学是将纳米技术应用于电子产品中的一种技术,可以大大提高电子元器件的性能和功效。
纳米电子学原件的设计和制作都是在纳米级别进行的,在这种尺度上,电流流动的程度比普通电子元器件更加精确和快速。
纳米电子学能够为人类提供更快、更稳定、更高效的电子产品,如智能手机、电脑等。
二、应用精确医疗以量身定制的纳米药物,能够大大提高药物治疗的效率和准确度。
通过纳米技术,可以对癌症等疾病进行更加精确的诊断和治疗,避免了传统治疗方法产生的毒副作用带来的负面影响。
同时,纳米技术还可以用于制备人工纳米细胞,具有医学上的重要应用前景。
环境保护纳米技术能够在吸收和转换能源、适用于防污染、污水处理与废气净化等各方面的环保工程中发挥着重要的作用。
在应用上,除纳米材料可以制备高性能催化剂之外,还被引入到废水处理、清洁能源转换等实际的环保项目中。
安培力在航天航空领域的作用是什么
安培力在航天航空领域的作用是什么在航天航空领域,各种物理原理和规律都发挥着至关重要的作用,其中安培力就是一个不容忽视的重要因素。
那么,安培力在这个充满高科技和挑战的领域中究竟有着怎样的作用呢?首先,我们要明白什么是安培力。
安培力是指通电导线在磁场中受到的力。
当电流通过导线时,如果处于磁场中,就会受到安培力的作用。
这个力的大小与电流大小、导线长度、磁感应强度以及电流方向与磁场方向的夹角有关。
在航天航空领域,安培力被广泛应用于卫星姿态控制。
卫星在太空中需要保持特定的姿态,以确保其各种仪器和设备能够正常工作,实现与地面的有效通信和数据传输。
通过在卫星上布置通电导线,并利用地球磁场产生的安培力,可以对卫星的姿态进行微调。
这种控制方式相对简单且可靠,不需要消耗大量的燃料,能够有效地延长卫星的使用寿命。
例如,当卫星的姿态出现偏差时,控制系统可以调整通过导线的电流大小和方向,从而改变安培力的大小和方向,使卫星回到正确的姿态。
这就好像我们用手轻轻地推动一个物体,让它回到原本的位置一样。
安培力在航天发动机中也有着重要的应用。
传统的化学燃料发动机在提供动力时存在着燃料消耗大、效率有限等问题。
而基于安培力原理的电推进发动机则为航天飞行带来了新的可能。
电推进发动机通过让带电粒子在磁场中加速,产生推力。
这个过程中,安培力起到了关键的作用,它推动带电粒子向后运动,从而产生向前的推力。
虽然电推进发动机产生的推力相对较小,但它具有高效、燃料消耗少等优点,特别适合用于长时间的太空任务,如卫星的轨道维持、深空探测器的航行等。
在航天器的电磁制动方面,安培力同样发挥着重要作用。
当航天器需要减速或者改变轨道时,可以利用磁场产生安培力来实现制动。
例如,当航天器进入行星的磁场范围时,通过控制航天器上的电流和磁场方向,产生的安培力可以帮助航天器降低速度,实现安全的轨道插入或者着陆。
此外,安培力在航天航空领域的材料研发和制造中也有一定的影响。
在某些特殊材料的制备过程中,需要利用磁场来控制材料的微观结构和性能。
为什么物理学是科技创新的源泉
为什么物理学是科技创新的源泉关键信息项:1、物理学对科技创新的核心作用2、物理学原理在不同科技领域的应用实例3、物理学研究方法对创新思维的启发4、物理学推动科技发展的历史进程5、未来物理学可能带来的科技创新突破11 物理学对科技创新的核心作用物理学作为一门基础科学,其研究成果和理论体系为科技创新提供了坚实的基础。
物理学所揭示的自然界的基本规律和原理,是许多新技术、新发明的基石。
例如,牛顿力学的建立为机械工程的发展奠定了基础,使得人们能够设计和制造出更加复杂和高效的机械装置;电磁学的发展催生了电力工业和通信技术的革命,让人类进入了电气时代和信息时代。
111 物理学的精确性和普适性物理学的定律和公式具有高度的精确性和普适性,能够在广泛的条件下准确描述自然现象。
这种精确性和普适性使得物理学家能够对未来的现象和结果进行准确的预测和计算,为科技创新提供了可靠的理论依据。
112 物理学对新材料的发现和研发物理学的研究推动了对材料性质的深入理解,从而促进了新材料的发现和研发。
例如,量子力学的发展为半导体材料的研究提供了理论基础,使得集成电路和计算机技术得以实现。
12 物理学原理在不同科技领域的应用实例在现代科技的各个领域,都能看到物理学原理的广泛应用。
在能源领域,核物理学的研究使得核能的利用成为可能,为解决全球能源问题提供了一种潜在的解决方案;在医疗领域,物理学中的 X 射线、核磁共振等技术被广泛应用于疾病的诊断和治疗;在航空航天领域,空气动力学和天体物理学的知识帮助设计出更高效的飞行器和航天器。
121 物理学在信息技术中的关键作用信息技术的飞速发展离不开物理学的支持。
从微观的晶体管制造到宏观的通信网络构建,物理学原理贯穿其中。
例如,量子隧穿效应是现代半导体器件的基础,而光的波动性和粒子性则是光纤通信和激光技术的核心原理。
122 物理学在交通运输领域的贡献物理学在交通运输领域的应用极大地提高了交通的效率和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高科技物理在生活中的应用 一、与电学知识有关的现象 自法拉发现电磁感应现象以来,人类进入了电气化时代。从生活用电到交通运输、工厂企业用电,都来源于发电机,电已成为人类必不可少的主要能源。在我们的生活中,随处可见电的应用。 电灯是根据电流的热效应的原理工作的。当电流通过灯丝时,灯丝热到白炽状态就发出明亮的光,将电能转化为光能和热能为我们服务;电灯的灯丝是用熔点高的钨丝做的,这是因为灯泡发光时灯丝的温度在2000摄氏度以上,用钨丝比较耐用;灯丝做成螺旋状是为了减少散热,因为灯泡发光时灯丝的温度在2000摄氏度以上,提高灯丝的温度,以便更好的发光;为了防止钨丝在高温下氧化,小功率的灯泡都抽成真空,而60瓦以上的灯泡要冲入惰性气体,这些气体可以阻碍灯丝在高温下的升华;灯丝较粗的灯泡额定功率较大,灯丝较细的灯泡额定功率较小。因为灯泡中灯丝的材料、长度相同,根据电阻的性质,导体横截面积大,则电阻较小;电灯的亮度由电灯消耗的实际功率决定,实际功率大的灯泡比较亮。例如“220V,25W”和“220V,100W”的两个灯泡,由R=U2/P可知,25W的灯泡电阻较大,100W的灯泡电阻较小。如果将两灯串联,通过他们的电流相等,由P=I2R可知,25W的灯泡较亮。如果亮灯并联,它们两端的电压相等,由P=U2/R可知,此时25W的灯泡较暗;灯泡使用时,钨丝在高温下升华为钨蒸气。关灯后,温度降低,钨蒸气凝华附着在灯泡壁上。时间长了,灯泡壁就会变黑;灯泡的灯丝断了以后,如果搭接上再用,会更亮一些。因为灯丝断了后,长度变短,灯丝的电阻变小,根据P=U2/R,则R变小,P变大,所以显得更亮一些,但由于消耗的电功率变大了,容易使温度升高而再次烧断灯丝;同一个灯泡,深夜使用时比傍晚亮,因为实际的输电线路都存在一定的电阻,当傍晚进入用电高峰时,接入电路的用电器增多,致使干路中的电流增大,输电线分到的电压也变大,用电器两端的电压变小。根据P=U2/R可知,此时灯泡比较暗;灯泡的灯丝在开灯的瞬间容易烧断,这是因为灯丝的电阻跟温度有关,会随温度的升高而增大,在开灯的瞬间灯丝温度较低,电阻较小,根据I=U/R,U不变,R小,则I大,所以容易烧断;如果电源的电压为220V,要使“PZ200-40”的灯泡正常发光,应串联一个电阻;灯泡使用时,灯泡和电线中流过相同的电流,灯泡和电线都要发热,可实际上灯泡热得发光,电线的发热却觉察不出来,这是因为灯丝的电阻远大于导线的电阻,根据焦耳定律Q=I2Rt,在I和t都相同时,电阻R小,则Q较小,所以电流通过导线产生的热量较小,这就是灯泡热得发光,而电线的发热却觉察不出来的原因。 电磁炉作为厨具市场的一种新型灶具。它打破了传统的明火烹调方式采用磁场感应电流(又称为涡流)的加热原理,电磁炉是通过电子线路板组成部分产生交变磁场、当用含铁质锅具底部放置炉面时,锅具即切割交变磁力线而在锅具底部金属部分产生交变的电流(即涡流),涡流使锅具铁分子高速无规则运动,分子互相碰撞、摩擦而产生热能(故:电磁炉煮食的热源来自于锅具底部而不是电磁炉本身发热传导给锅具,所以热效率要比所有炊具的效率均高出近1倍)使器具本身自行高速发热,用来加热和烹饪食物,从而达到煮食的目的。具有升温快、热效率高、无明火、无烟尘、无有害气体、对周围环境不产生热辐射、体积小巧、安全性好和外观美观等优点,能完成家庭的绝大多数烹饪任务。因此,在电磁炉较普及的一些国家里,人们誉之为"烹饪之神"和"绿色炉具"。 二、与力学知识有关的现象 1.重力的应用 我们生活在地球上,重力无处不在。如工人师傅在砌墙时,常常利用重锤线来检验墙身是否竖直,这是充分利用重力的方向是竖直向下这一原理;羽毛球的下端做得重一些,这是利用降低重心使球在下落过程中保护羽毛;汽车驾驶员在下坡时关闭发动机还能继续滑行,这是利用重力的作用而节省能源;在农业生产中的抛秧技术也是利用重力的方向竖直向下。假如没有重力,世界不可想象,水不能倒进嘴里,人们起跳后无法落回地面,飞舞的尘土会永远漂浮在空中,整个自然界将是一片混浊。在讲授重力时,要让学生展开热烈的讨论,充分挖掘学生的想象力,知道重力与我们的生产生活实际密切相关。 2.摩擦力的应用 摩擦力是一个重要的力,它在社会生产生活实际中应用非常广泛。如人们行走时,在光滑的地面上行走十分困难,这是因为接触面摩擦太小的缘故;汽车上坡打滑时,在路面上撒些粗石子或垫上稻草,汽车就能顺利前进,这是*增大粗糙程度而增大摩擦力;鞋底做成各种花纹也是增大接触面的粗糙程度而增大摩擦;滑冰运动员穿的滑冰鞋安装滚珠是变滑动摩擦为滚动摩擦,从而减少摩擦而增大滑行速度;各类机器中加润滑油是为了减小齿轮间的摩擦,保证机器的良好运行。可见,人类的生产生活实际都与摩擦力有关,有益的摩擦要充分利用,有害的摩擦要尽量减少。 3.弹力的应用 利用弹力可进行一系列社会生产生活活动,力有大小、方向、作用点。如高大的建筑需要打牢基础,桥梁设计需要精确计算各部分的受力大小;拔河需要用粗大一些绳子,防止拉力过大导致断裂;高压线的中心要加一根较粗的钢丝,才能支撑较大的架设跨度;运动员在瞬间产生的爆发力等等。 三、与热学知识有关的现象 1.与热学中的热膨胀和热传递有关的现象:使用炉灶烧水或炒菜,要使锅底放在火苗的外焰,不要让锅底压住火头,可使锅的温度升高快,因为火苗的外焰温度高;锅铲、汤勺、漏勺、铝锅等炊具的柄用木料制成,是因为木料是热的不良导体,以便在烹任过程中不烫手;炉灶上方安装排风扇,是为了加快空气对流,使厨房油烟及时排出去,避免污染空间;滚烫的砂锅放在湿地上易破裂。这是因为砂锅是热的不良导体,烫砂锅放在湿地上时,砂锅外壁迅速放热收缩而内壁温度降低慢,砂锅内外收缩不均匀,故易破裂;往保温瓶灌开水时,不灌满能更好地保温。因为未灌满时,瓶口有一层空气,是热的不良导体,能更好地防止热量散失;炒菜主要是利用热传导方式传热,煮饭、烧水等主要是利用对流方式传热的;冬季从保温瓶里倒出一些开水,盖紧瓶塞时,常会看到瓶塞马上跳一下。这是因为随着开水倒出,进入一些冷空气,瓶塞塞紧后,进入的冷空气受热很快膨胀,压强增大,从而推开瓶塞;冬季刚出锅的热汤,看到汤面没有热气,好像汤不烫,但喝起来却很烫,是因为汤面上有一层油阻碍了汤内热量散失(水分蒸发);冬天或气温很低时,往玻璃杯中倒入沸水,应当先用少量的沸水预热一下杯子,以防止玻璃杯内外温差过大,内壁热膨胀受到外壁阻碍产生力,致使杯破裂;煮熟后滚烫的鸡蛋放入冷水中浸一会儿,容易剥壳。因为滚烫的鸡蛋壳与蛋白遇冷会收缩,但它们收缩的程度不一样,从而使两者脱离。 2.与物体状态变化有关的现象:液化气是在常温下用压缩体积的方法使气体液化再装入钢罐中的,使用时,通过减压阀,液化气的压强降低,由液态变为气态,进入灶中燃烧;用焊锡的铁壶烧水,壶烧不坏。这是因为水的沸点在1标准大气压下是100℃,锡的熔点是232℃,装水烧时,只要水不干,壶的温度不会明显超过100℃,达不到锡的熔点;烧水或煮食物时,喷出的水蒸气比热水、热汤烫伤更严重。因为水蒸气变成同温度的热水、热汤时要放出大量的热量;用砂锅煮食物,食物煮好后,让砂锅离开火炉,食物将在锅内继续沸腾一会儿。这是因为砂锅离开火炉时,砂锅底的温度高于100℃,而锅内食物为100℃,离开火炉后,锅内食物能从锅底吸收热量,继续沸腾,直到锅底的温度降为100℃为止;用高压锅煮食物熟得快些。主要是增大了锅内气压,提高了水的沸点,即提高了煮食物的温度;夏天自来水管壁大量“出汗”,常是下雨的征兆。自来水管“出汗”并不是管内的水渗漏,而是自来水管大都埋在地下,水的温度较低,空气中的水蒸气接触水管,就会放出热量液化成小水滴附在外壁上。同时也说明空气中水蒸气含量较高,湿度较大,是下雨的前兆;煮食物并不是火越旺越快。因为水沸腾后温度不变,即使再加大火力,也不能提高水温,结果只能加快水的汽化,使锅内水蒸发变干,浪费燃料;冬天水壶里的水烧开后,在离壶嘴一定距离才能看见“白气”,而紧*壶嘴的地方看不见“白气”。这是因为紧*壶嘴的地方温度高,壶嘴出来的水蒸气不能液化,而距壶嘴一定距离的地方温度低,壶嘴出来的水蒸气放热液化成小水滴,即“白气”;油炸食物时,溅入水滴会听到“叭、叭”的响声,并溅出油来。这是因为水的沸点比油低,水的密度比油大,溅到油中的水滴沉到油底迅速升温沸腾,产生的气泡上升到油面破裂而发出响声;冬天在卫生间洗澡时所见的“白气”并不是气,是悬浮在空中的小水滴,它是水蒸气液化形成的,而夏天温度较高,水蒸气不易液化,所以看不见。 3.与热学中的分子热运动有关的现象:腌菜往往要半月才会变咸,而炒菜时加盐几分钟就变咸了,这是因为温度越高,盐的离子运动越快的缘故;长期堆煤的墙角处,若用小刀从墙上刮去一薄层,可看见里面呈黑色,这是因为分子永不停息地做无规则的运动,在长期堆煤的墙角处,由于煤分子扩散到墙内,所以刮去一层,仍可看到里面呈黑色。 四、与光学知识有关的现象 汽车驾驶室外面的观后镜是一个凸镜。它利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全; 汽车头灯里的反射镜是一个凹镜。它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的;汽车头灯总要装有横竖条纹的玻璃灯罩。是因为在夜晚行车时,司机不仅要看清前方路面的情况,还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全;轿车上装有茶色玻璃后,行人很难看清车中人的面孔。是因为茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔;除大型客车外,绝大多数汽车的前窗都是倾斜的。是因为当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。 五、与声学知识有关的现象 声音是人类获取信息的主要途径之一,声音传递给我们的不仅仅是语言信息,下面所介绍的是声在其它方面的一些应用及其原理。 和您朝夕相处的人在室外说话时,我们通过听声音就知道是哪位在说话。这是不同的人发出的声音音调、响度都有可能相同,但音色绝不会相同,因为不同的发声体发出的声音的音色一般不相同,由于非常熟悉,我们通过辩别音色就能分辩出哪位在说话;向暖水瓶中倒水时,听声音就能了解水是不是满了。不同长度的空气柱,振动发声时发声频率不同,空气柱越长,发出的音调越低;暖水瓶中水越多,空气柱就越短,发出的声音频率越高,音调也就越高,特别是水刚好倒满瞬间,音调会陡然升高,通过听声音的高低,我们就能判断出水已经倒满了;我们去商店买碗、瓷器时,我们用手或其它物品轻敲瓷器,通过声音就能判断瓷器的好环。有裂缝的碗、盆发出的声音的音色远比正常的瓷器差,通过音色这一点就能把坏的碗、盆挑选出来,当然实际还用辩别音调,观察形态等方法,但主要还是通过音色来辨别的;前面如果有一建筑物或高山,对着高山大喊一声,用表测量发出声音到听到声音的时间,利用声速就可以测出我们与高山或高大建筑物理的距离。因为声音在传播过程中遇到障碍物被反射回来就产生了回声;人的体内有些器官发出的声音,如:心肺、气管、胃等发生病变时,器官发出的声音在某些特征上有所变化,医生通过听诊器能听出来,依此来诊断病情;