向量在生活中应用

合集下载

平面向量的应用(教师版)

平面向量的应用(教师版)

平面向量的应用1 平面几何中的向量方法① 由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何图形的许多性质,如全等、相似、长度、夹角等都可以由向量的线性运算及数量积表示出来,因此平面几何中的许多问题都可用向量运算的方法加以解决.② 用向量方法解决平面几何问题的“三部曲”(1) 建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;(2) 通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;(3) 把运算结果“翻译”成几何关系.Eg 点A 、B 、C 、D 不在同一直线上(1)证明直线平行或共线:AB//CD ⇔AB⃗⃗⃗⃗⃗ //CD ⃗⃗⃗⃗⃗ (2)证明直线垂直:AB ⊥CD ⟺AB⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ =0 (3)求线段比值:AB CD =|λ|且AB//CD ⇔ AB⃗⃗⃗⃗⃗ =λCD ⃗⃗⃗⃗⃗ (4)证明线段相等: AB⃗⃗⃗⃗⃗ 2=CD ⃗⃗⃗⃗⃗ 2⇔AB =CD 2 向量在物理中的应用① 速度、力是向量,都可以转化为向量问题;② 力的合成与分解符合平行四边形法则.【题型一】平面向量在几何中的应用【典题1】证明:对角线互相平分的四边形是平行四边形.【证明】 设四边形ABCD 的对角线AC 、BD 交于点O ,且AO =OC ,BO =OD∵AB ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ +12DB ⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ =12DB ⃗⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ =DC⃗⃗⃗⃗⃗ ,即AB =DC 且AB//DC 所以四边形ABCD 是平行四边形即对角线互相平分的四边形是平行四边形.【点拨】① 证明四边形是平行四边形⇔AB =DC 且AB//DC ⇔AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . ② 证明几何中的平行和长度关系可以转化为向量的倍数关系.【典题2】 已知平行四边形ABCD 的对角线为AC 、BD ,求证AC 2+BD 2=2(AB 2+AD 2) (即对角线的平方和等于邻边平方和的2倍).【证明】由 |AC ⃗⃗⃗⃗⃗ |2=AC ⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗|DB⃗⃗⃗⃗⃗⃗ |2=DB ⃗⃗⃗⃗⃗⃗ 2=(AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ )2=|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2−2AB ⃗⃗⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗ 两式相加得|AC⃗⃗⃗⃗⃗ |2+|DB ⃗⃗⃗⃗⃗⃗ |2=2(|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2) 即AC 2+BD 2=2(AB 2+AD 2)【点拨】利用|AB⃗⃗⃗⃗⃗ |2=|AB |2可证明线段长度关系.【典题3】 用向量方法证明:三角形三条高线交于一点.【证明】(分析 设H 是高线BE 、CF 的交点,再证明AH ⊥BC ,则三条高线就交于一点.)设H 是高线BE 、CF 的交点,则有BH ⃗⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ∵BH ⃗⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,CH ⃗⃗⃗⃗⃗ ⊥AB⃗⃗⃗⃗⃗ ∴(AH⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =(AH ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )⋅AB ⃗⃗⃗⃗⃗ =0 化简得AH⃗⃗⃗⃗⃗⃗ ⋅(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=0C∴AH⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0 则AH ⊥BC (向量中证明AB ⊥CD ,只需要证明AB ⃗⃗⃗⃗⃗⃗ ⋅CD⃗⃗⃗⃗⃗⃗ =0) 所以三角形三条高线交于一点.【典题4】证明三角形三条中线交于一点.【证明】(分析 设BE 、AF 交于O ,证明C 、O 、D 三点共线便可)AF 、CD 、BE 是三角形ABC 的三条中线设BE 、AF 交于点O ,∵点D 是中点,∴CD ⃗⃗⃗⃗⃗ =12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) 连接EF ,易证明∆AOB~∆FOE,且相似比是2:1,∴BO =23BE,∴CO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23BE ⃗⃗⃗⃗⃗ =CB ⃗⃗⃗⃗⃗ +23(BA ⃗⃗⃗⃗⃗ +AE ⃗⃗⃗⃗⃗ ) =CB ⃗⃗⃗⃗⃗ +23(BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ )=13(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ) ∴CO ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ 即C 、O 、D 三点共线, (向量中证明三点A 、B 、C 共线,只需证明AB⃗⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ) ∴AF 、CD 、BE 交于一点,即三角形三条中线交于一点.巩固练习1(★★) 如图,E ,F 分别是四边形ABCD 的边AD ,BC 的中点,AB =1,CD =2,∠ABC =75°,∠BCD =45°,则线段EF 的长是 .【答案】√72【解析】 由图象,得EF →=EA →+AB →+BF →,EF →=ED →+DC →+CF →.∵E ,F 分别是四边形ABCD 的边AD ,BC 的中点,∴2EF →=(EA →+ED →)+(AB →+DC →)+(BF →+CF →)=AB →+DC →.∵∠ABC =75°,∠BCD =45°,∴<AB →,DC →>=60°,∴|EF|→=12√(AB →+DC →)2=12√AB →2+DC →2+2|AB|→⋅|DC|→cos <AB →,DC →>=12√12+22+2×1×2×12=√72. ∴EF 的长为√72. 故答案为 √72. 2(★★) 证明勾股定理,在Rt∆ABC 中,AC ⊥BC ,AC =b ,BC =a ,AB =c ,则c 2=a 2+b 2.【证明】 由AB⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ ,得AB ⃗⃗⃗⃗⃗ 2=(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )2=AC ⃗⃗⃗⃗⃗ 2+2AC ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ 2 即|AB⃗⃗⃗⃗⃗ |2=|AC ⃗⃗⃗⃗⃗ |2+|CB ⃗⃗⃗⃗⃗ |2 故c 2=a 2+b 2.3(★★) 用向量方法证明 对角线互相垂直的平行四边形是菱形.【证明】如图平行四边形ABCD 对角线AC 、BD 交于点O ,∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ ∴|AB ⃗⃗⃗⃗⃗ |2=(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )2=|AO ⃗⃗⃗⃗⃗ |2+2AO ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ +|OB⃗⃗⃗⃗⃗ |2=|AO ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2|BC⃗⃗⃗⃗⃗ |2=(BO ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )2=|BO ⃗⃗⃗⃗⃗ |2+2BO ⃗⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ +|OC ⃗⃗⃗⃗⃗ |2=|BO ⃗⃗⃗⃗⃗ |2+|OC ⃗⃗⃗⃗⃗ |2 ∴|AB ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ | A BC∴四边形ABCD 是菱形.4(★★)用向量方法证明 设平面上A ,B ,C ,D 四点满足条件AD ⊥BC ,BD ⊥AC ,则AB ⊥CD .【证明】 因AD ⊥BC ,所以AD →⋅BC →=AD →⋅(AC →−AB →)=0,因BD ⊥AC ,所以AC →⋅BD →=AC →⋅(AD →−AB →)=0,于是AD →⋅AC →=AD →⋅AB →,AC →⋅AD →=AC →⋅AB →,所以AD →⋅AB →=AC →⋅AB →,(AD →−AC →)⋅AB →=0,即CD →⋅AB →=0,所以CD →⊥AB →,即AB ⊥CD .5(★★)用向量方法证明 对角线相等的平行四边形是矩形.【证明】如图,平行四边形ABCD 对角线AC 、BD 交于点O,设OA =a ,∵对角线相等 ∴OB =OD =a∵AB⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ ∴AB ⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ =(AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )(AO ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ )=AO ⃗⃗⃗⃗⃗ 2+AO ⃗⃗⃗⃗⃗ ∙OD ⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅AO ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ ⋅OD⃗⃗⃗⃗⃗⃗ =a 2+AO ⃗⃗⃗⃗⃗ (OD⃗⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ )−a 2=0 ∴AB ⃗⃗⃗⃗⃗ ⊥AD ⃗⃗⃗⃗⃗ 即AB ⊥AD∴四边形ABCD 是矩形.6(★★★) 已知向量OP 1→、OP 2→、OP 3→满足OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1.求证 △P 1P 2P 3是正三角形.【证明】法一 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=−OP 3→.∴|OP 1→+OP 2→|=|−OP 3→|.∴|OP 1→|2+|OP 2→|2+2OP1→•OP 2→=|OP 3→|2. 又∵|OP 1→|=|OP 2→|=|OP 3→|=1,∴OP 1→•OP 2→=−12.∴|OP 1→||OP 2→|cos∠P 1OP 2=−12,即∠P 1OP 2=120°.B C同理∠P 1OP 3=∠P 2OP 3=120°.∴△P 1P 2P 3为等边三角形.法二 以O 点为坐标原点建立直角坐标系,设P 1(x 1,y 1),P 2(x 2,y 2),P 3(x 3,y 3),则OP 1→=(x 1,y 1),OP 2→=(x 2,y 2),OP 3→=(x 3,y 3).由OP 1→+OP 2→+OP 3→=0,得{x 1+x 2+x 3=0y 1+y 2+y 3=0.∴{x 1+x 2=−x 3y 1+y 2=−y 3., 由|OP 1→|=|OP 2→|=|OP 3→|=1,得x 12+y 12=x 22+y 22=x 32+y 32=1∴2+2(x 1x 2+y 1y 2)=1∴|P 1P 2→|=√(x 1−x 2)2+(y 1−y 2)2=√x 12+x 22+y 12+y 22−2x 1x 2−2y 1y 2=√2(1−x 1x 2−y 1y 2)=√3同理|P 1P 3→|=√3,|P 2P 3→|=√3∴△P 1P 2P 3为正三角形【题型二】平面向量在物理中的应用【典题1】 如图,已知河水自西向东流速为|v 0|=1m/s ,设某人在静水中游泳的速度为v 1,在流水中实际速度为v 2.(1)若此人朝正南方向游去,且|v 1|=√3m/s ,求他实际前进方向与水流方向的夹角α和v 2的大小;(2)若此人实际前进方向与水流垂直,且|v 2|=√3m/s ,求他游泳的方向与水流方向的夹角β和v 1的大小.【解析】如图,设OA ⃗⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =v 1⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =v 2⃗⃗⃗⃗ ,则由题意知v 2⃗⃗⃗⃗ =v 0⃗⃗⃗⃗ +v 1⃗⃗⃗⃗ ,|OA ⃗⃗⃗⃗⃗ |=1,根据向量加法的平行四边形法则得四边形OACB 为平行四边形.(1)由此人朝正南方向游去得四边形OACB 为矩形,且|OB⃗⃗⃗⃗⃗ |=AC =√3,如下图所示,则在直角△OAC中,|v2⃗⃗⃗⃗ |=OC=√OA2+AC2=2,tan∠AOC=√31=√3,又α=∠AOC∈(0 ,π2),所以α=π3;(2)由题意知α=∠OCB=π2,且|v2⃗⃗⃗⃗ |=|OC|=√3,BC=1,如下图所示,则在直角△OBC中,|v1⃗⃗⃗⃗ |=OB=√OC2+BC2=2,tan∠BOC=√3=√33,又∠AOC∈(0 ,π2),所以∠BOC=π6,则β=π2+π6=2π3,答(1)他实际前进方向与水流方向的夹角α为π3,v2的大小为2m/s;(2)他游泳的方向与水流方向的夹角β为2π3,v1的大小为2m/s.【点拨】注意平行四边形法则的使用!【典题2】在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为F1⃗⃗⃗ ,F2⃗⃗⃗⃗ ,且|F1⃗⃗⃗ |=|F2⃗⃗⃗⃗ |,F1⃗⃗⃗ 与F2⃗⃗⃗⃗ 的夹角为θ.给出以下结论①θ越大越费力,θ越小越省力;②θ的范围为[0 ,π];③当θ=π2时,|F1⃗⃗⃗ |=|G|;④当θ=2π3时,|F1⃗⃗⃗ |=|G|.其中正确结论的序号是.【解析】对于①,由|G|=|F1⃗⃗⃗ +F2⃗⃗⃗⃗ |为定值,所以G2=|F1⃗⃗⃗ |2+|F2⃗⃗⃗⃗ |2+2|F1⃗⃗⃗ |×|F2⃗⃗⃗⃗ |×cosθ=2|F1⃗⃗⃗ |2(1+cosθ),解得|F1⃗⃗⃗ |2=|G|22(1+cosθ);由题意知θ∈(0 ,π)时,y=cosθ单调递减,所以|F1⃗⃗⃗ |2单调递增,即θ越大越费力,θ越小越省力;①正确.对于②,由题意知,θ的取值范围是(0 ,π),所以②错误.对于③,当θ=π2时,|F1⃗⃗⃗ |2=G22,所以|F1⃗⃗⃗ |=√22|G|,③错误.对于④,当θ=2π3时,|F1⃗⃗⃗ |2=|G|2,所以|F1⃗⃗⃗ |=|G|,④正确.综上知,正确结论的序号是①④.故答案为①④.【典题3】如图,重为10N的匀质球,半径R为6cm,放在墙与均匀的AB木板之间,A端锁定并能转动,B端用水平绳索BC拉住,板长AB=20cm,与墙夹角为α,如果不计木板的重量,则α为何值时,绳子拉力最小?最小值是多少?【解析】如图,设木板对球的支持力为N⃗,则N⃗=10sinα,设绳子的拉力为f.又AC=20cosα,AD=6tanα2,由动力矩等于阻力矩得|f|×20cosα=|N⃗|×6tanα2=60sinα⋅tanα2,∴|f|=6020cosα⋅sinα⋅tanα2=3cosα(1−cosα)≥3(cosα+1−cosα2)2=314=12,∴当且仅当 cosα=1−cosα 即cosα=12,亦即α=60°时,|f|有最小值12N.巩固练习1(★★) 一条渔船以6km/ℎ的速度向垂直于对岸的方向行驶,同时河水的流速为2km/ℎ,则这条渔船实际航行的速度大小为 .【答案】2√10km/ℎ【解析】如图所示,渔船实际航行的速度为v AC →=v 船→+v 水→;大小为|v AC →|=|v 船→+v 水→|=√62+22 =2√10km/ℎ.2(★★) 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1 ,F 2,且F 1 ,F 2与水平夹角均为45°,|F 1⃗⃗⃗ |=|F 2⃗⃗⃗⃗ |=10√2N ,则物体的重力大小为 .【答案】20【解析】如图,∵|F 1→|=|F 2→|=10√2N ,∴|F 1→+F 2→|=10√2×√2N =20N ,∴物体的重力大小为20.故答案为 20.3(★★) 已知一艘船以5km/ℎ的速度向垂直于对岸方向行驶,航船实际航行方向与水流方向成30°角,求水流速度和船实际速度.【答案】5√3km/ℎ【解析】如图,设AD →表示船垂直于对岸的速度,AB →表示水流的速度,以AD ,AB 为邻边作平行四边形ABCD ,则AC →就是船实际航行的速度.在Rt△ABC 中,∠CAB =30°,|AD →|=|BC →|=5,∴|AC →|=|BC →|sin30°=10,|AB →|=|BC →|tan30°=5√3.故船实际航行速度的大小为10km/ℎ,水流速度5√3km/ℎ.4 (★★)一个物体受到同一平面内三个力F 1、F 2、F 3的作用,沿北偏东45°的方向移动了8m .已知|F 1|=2N ,方向为北偏东30°;|F 2|=4N ,方向为东偏北30°;|F 3|=6N ,方向为西偏北60°,求这三个力的合力F 所做的功.【答案】24√6 J【解析】 以三个力的作用点为原点,正东方向为x 轴正半轴,建立直角坐标系. 则由已知可得OF 1→=(1,√3),OF 2→=(2√3,2),OF 3→=(﹣3,3√3).∴OF →=OF 1→+OF 2→+OF 3→=(2√3−2,4√3+2).又位移OS →=(4√2,4√2).∴OF →•OS →=(2√3−2)×4√2+(4√3+2)×4√2=24√6(J).。

向量的应用生活实例

向量的应用生活实例

向量的应用生活实例
一、医学检查
在医学检查中,影像诊断技术使用的是向量技术。

CT扫描和核磁共振成像技术可以把患者的器官分解成一个一个的三维向量,经过计算机模拟、分析和增强后,以清晰的图像形式展示给医生,以此来帮助医生仔细分析患者的病情,确定诊断并进行治疗。

二、物流配送
物流配送中大量使用向量运算,例如使用向量来表示不同路径上两个点之间的距离,可以根据配送任务,比较每条路线的长度,从而为物流车辆规划最优的路径,从而节省时间和资源。

三、地图导航
地图导航需要使用向量,比如用户定位后,可以把用户位置和目的地分别表示为不同的向量,然后通过计算向量之间的距离和方向,来为用户规划出最优的路线。

这样可以大大缩短用户出行的时间和路程。

- 1 -。

向量法的基本概念

向量法的基本概念

向量法的基本概念在数学中,向量是用来描述有大小和方向的量的概念。

向量在生活中应用广泛,例如在物理学中描述速度、力等物理量,也可以用来表示图形、音频和视频等信息。

向量法是一种数学工具,可以用来计算向量的运算和性质。

向量是带有大小和方向的量。

表示向量的常用符号为 a 或 A。

向量 a 可以表示为一个箭头或一个带箭头的字母。

箭头的长度代表向量的大小,箭头的方向代表向量的方向。

在二维空间中,向量可以表示为一个有序对 (x, y)。

向量 a 的大小称为模,用||a|| 表示。

模为零的向量称为零向量。

向量的方向可以用角度来度量。

向量 a 的方向角度θ 可以表示为tan θ = y/x,其中 x 和 y 是向量的坐标。

2. 向量的基本运算向量的基本运算包括向量的加法和数乘。

向量的加法:向量 a 和向量 b 的加法为 c = a + b。

向量 c 的大小为 ||c|| = ||a|| + ||b||,方向与向量 a 和 b 的夹角相同。

向量的数乘:向量 a 与标量 k 的数乘为 ka。

数乘后向量的大小变为原来的 |k| 倍,方向不变(当 k > 0 时与 a 方向相同,k < 0 时与 a 方向相反,k = 0 时结果为零向量)。

3. 向量的性质向量具有以下基本性质:(1)向量的加法满足交换律、结合律和分配律。

(2)向量的数乘满足结合律、分配律和单位元素的存在性质(即 1a=a)。

(3)向量的加法和数乘满足线性运算法则。

(4)两个向量的点积等于它们的模相乘后乘以它们之间夹角的余弦。

即a•b = ||a|| ||b|| cosθ。

(5)如果向量 a 和 b 的点积为零,则它们垂直。

(6)向量的模小于等于两个向量之和的模,即||a+b|| ≤ ||a||+||b||。

4. 向量的坐标形式向量也可以用坐标形式表示。

在二维坐标系中,向量 a 可以表示为一个有序对 (x, y)。

在三维坐标系中,向量 a 可以表示为三个有序数 (x, y, z)。

初中数学知识归纳平面向量的应用

初中数学知识归纳平面向量的应用

初中数学知识归纳平面向量的应用初中数学知识归纳:平面向量的应用平面向量是初中数学中重要的概念之一,其应用领域非常广泛。

在本文中,我们将归纳总结平面向量的应用,并且探讨其在几何、物理和经济等领域中的具体应用。

一、平面向量在几何中的应用1. 平移变换:平面向量的加法运算可以用于描述平移变换。

假设有一个向量a表示某个点的位置,通过向量b可以将该点平移至另一个位置,新的位置可以表示为a+b。

平移变换在几何图形的移动和构造中有着重要的应用,例如平行四边形的构造、图形的镜像等。

2. 向量共线与线性组合:通过向量的共线性来判断线段的相似性和平面的共面性。

如果两个向量a和b共线,则可以表示为a=kb,其中k 为一个实数。

此外,通过向量的线性组合可以方便地表示平面内的任意一点。

这种方法在平面几何证明和计算中经常被使用。

3. 矢量运算:平面向量的乘法运算包括数量积和向量积。

数量积可以用于计算两个向量的夹角,通过计算a·b=|a||b|cosθ来得到。

而向量积则用于计算两个向量的面积,通过计算a×b=|a||b|sinθ来得到。

这些矢量运算在几何中常常用于求解角度、判断垂直、计算面积等问题。

二、平面向量在物理中的应用1. 力的合成与分解:平面向量可以用于描述物体所受到的力的合成与分解。

当一个物体受到多个力的作用时,可以将这些力的大小和方向表示为向量,并利用向量的运算求得它们的合力。

相反地,可以将一个力向量分解为多个力向量的和,以便更好地分析物体所受到的力的效果。

2. 平衡力与力的平衡:平面向量的概念在力的平衡问题中有着重要的应用。

当物体所受到的合力为零时,物体处于平衡状态。

利用平面向量,我们可以方便地求解力的平衡条件,并解决各种力的平衡问题。

3. 速度与加速度:平面向量可以用于描述物体的速度和加速度。

速度可以表示为物体位置矢量随时间的变化率,即v=d/dt[r(t)],其中r(t)为位置矢量。

利用平面向量的运算可以方便地计算物体的速度和加速度,并解决相关的运动学问题。

第二章平面向量在几何物理中的应用举例【新教材】北师大版高中数学必修第二册课件

第二章平面向量在几何物理中的应用举例【新教材】北师大版高中数学必修第二册课件

当堂检测
角度2 垂直问题
例2如图,在正方形ABCD中,P是对角线BD上的一点,四边形PECF是
矩形,用向量证明:PA⊥EF.
探究一
探究二
当堂检测
证明设正方形边长为 a,由于 P 是对角线 BD 上的一点,可设
=λ(0≤λ≤1).
则 = − = -λ = -λ( + )=(1-λ)-λ.
激趣诱思
知识点拨
(3)要证 A,B,C 三点共线,只要证明存在唯一一个实数 λ≠0,使=λ,
或若=a,=b,=c,存在一个实数 t,使 c=ta+(1-t)b.
(4)证明线段的垂直问题,如证明四边形是矩形、正方形,判断直线
(线段)是否垂直等,常运用向量垂直的条件:a⊥b⇔a·
b=0
| || |
π
=
2

=
3
2
3
3
2
.
π
因为 0<∠EAC<2 ,所以∠EAC=6 .
反思感悟 利用平面向量解决几何中的夹角问题,本质是将平面图
形中的角视为两个向量的夹角,借助夹角公式进行求解.这类问题
也有两种方向,一是利用向量的基求解,二是利用坐标运算.在求解
过程中,务必注意向量的方向.
探究一
因为实际速度=游速+水速,所以游速为
− = ,
在 Rt△AOB 中,由已知||=4 3,||=4,
因此 ∥ ,
又因为 , 有公共点 F,所以 A,E,F 三点共线.
探究一
探究二
当堂检测
反思感悟 证明A,B,C三点共线的步骤
(1)证明其中两点组成的向量与另外两点组成的向量共线.
(2)说明两向量有公共点.

向量积在物理中的应用

向量积在物理中的应用

向量积在物理中的应用聊起向量积,可能很多小伙伴第一时间想到的是数学课本里的复杂公式和抽象概念。

但其实,向量积这家伙在物理世界里那可是大放异彩,作用杠杠的!咱们不妨放下那些枯燥的理论,一起来看看向量积是如何在物理世界里大显身手的。

想象一下,你正在玩一个超级炫酷的飞行模拟器游戏。

这时候,你的飞机要做一个漂亮的翻转动作,飞得那叫一个惊险刺激。

在这个过程中,飞机的速度和角速度就像是一对亲密无间的兄弟,它们携手合作,共同决定了飞机的飞行姿态。

而这个“携手合作”的过程,其实就暗含了向量积的奥秘。

速度向量和角速度向量的乘积,能够告诉我们飞机在空间中是如何旋转的,是不是感觉特别神奇?再来说说咱们生活中的一个常见现象——电磁感应。

当你拿着一个磁铁在线圈中快速移动时,线圈里就会产生电流。

这个过程,其实就是磁场和导体运动方向之间的向量积在发挥作用。

磁场就像一个无形的向导,它用向量积这个“魔法棒”,指引着电流在导体中流淌。

每次看到电磁感应实验中的小灯泡亮起,我都会不由自主地感叹:向量积,你可真是个隐藏的物理大师啊!还有在力学里,向量积也是功不可没。

咱们都知道,力是一个向量,有大小和方向。

当你对一个物体施加一个力,并且这个力与物体的某个运动方向存在夹角时,就会产生一个力矩。

这个力矩的大小,就是由力和力臂(也就是从物体某点到力的作用线的垂直距离)这两个向量的乘积决定的。

力矩就像是物体旋转的“动力源泉”,它推动着物体在空间中旋转、翻滚,展现出各种美妙的姿态。

向量积在物理中的应用,还有一个不得不提的就是刚体动力学。

想象一下,一个复杂的机械装置,比如一个精密的机器人,它在工作时各个部件之间会相互转动、相互影响。

这时候,向量积就派上了大用场。

它能够帮助我们计算出各个部件之间的相互作用力,以及它们对整个系统的运动状态产生的影响。

正是因为有了向量积的帮助,我们才能设计出如此复杂而又精确的机械装置,让它们在各种环境中都能够稳定工作。

还有啊,向量积在光学里也是个大明星。

向量在生活中的应用159661[整理版]

向量在生活中的应用159661[整理版]

向量在生活中的应用159661在生活中向量也有一些具体表现形式,有关的问题也可以充分利用向量求解.应用问题的解决主要是建立数学模型.用向量、三角、解析几何之间的特殊关系,将生活与数学知识之间进行沟通,使动静转换充实到解题过程之中。

一、平面向量在位移与速度上的应用例1 以某市人民广场的中心为原点建立直角坐标系,x轴指向东,y轴指向北一个单位表示实际路程100米,一人步行从广场入口处A(2,0)出发,始终沿一个方向均速前进,6分钟时路过少年宫C,10分钟后到达科技馆B(-3,5).求:此人的位移向量(说明此人位移的距离和方向);此人行走的速度向量(用坐标表示);少年宫C点相对于广场中心所处的位置.(下列数据供选用:tan18°24?=0.3327,tan18°26?= 13 ,tan2?=0.0006)分析:⑴AB的坐标等于它终点的坐标减去起点的坐标,代入A,B坐标可求;⑵习惯上单位取百米/小时,故需先将时间换成小时。

而速度等于位移除以时间,由三角知识可求出坐标表示的速度向量。

⑶通过向量的坐标运算及三角函数公式求解。

解:⑴ AB=(-3,5)-(2,0)=(-5,5),|AB|=(-5)2+52=52,∠xOB=135°⑵t=10分= 16 小时,|V|= |AB|t =302∴Vx=|V|cos135°=-30,Vy=|V|sin135°=30,∴V=(-30,30)⑶∵AC= 610 AB,∴OC=OA+ 35 AB=(2,0)+ 35 (-5,5)=(-1,3)∴|OC|=10,又tan(18°24?+2?)=0.3327+0.00061-0.3327×0.0006 = 13而tan∠COy= 13 ,∴∠COy=arctan 13 =18°26?。

∴少年宫C点相对于广场中心所处的位置为“北偏西18°26?,10百米”处。

空间向量的实际应用

空间向量的实际应用

向量在计算机游戏中的应用
角色控制
在游戏中,玩家可以通过向量输 入来控制角色的移动、跳跃和攻 击等动作,提供更加直观和灵活
的游戏体验。
物理引擎
游戏中的物理引擎可以通过向量运 算来模拟物体的运动和碰撞,如物 体的位移、速度和加速度等。
动画和特效
向量可以用于实现游戏中的各种动 画和特效,如火、水、电等自然现 象的模拟,增加游戏的视觉效果。
VS
详细描述
在建筑结构设计中,空间向量的分析可以 帮助我们理解结构的受力状态,如压力、 拉力和剪切力等。这对于确保结构的稳定 性和安全性至关重要。通过使用空间向量 ,工程师可以预测结构的变形、位移和振 动等行为,从而优化设计并提高结构的性 能。
04
数学领域中的应用
向量在解析几何中的应用
总结词
详细描述
空间Байду номын сангаас量的实际应用
• 引言 • 物理领域中的应用 • 工程领域中的应用 • 数学领域中的应用 • 计算机图形学中的应用 • 总结与展望
01
引言
空间向量的基本概念
空间向量
具有大小和方向的量,可以用几何图 形表示。
向量运算
包括加法、减法、数乘、向量的模等 基本运算。
空间向量在现实生活中的应用价值
解析几何是研究空间向量、点、线、面等几 何对象在坐标系中的表示和性质。向量在解 析几何中有着广泛的应用,包括向量的表示、 向量的运算、向量的模、向量的数量积、向 量的向量积、向量的混合积等。
在解析几何中,向量被用来表示空间中的点、 线、面等几何对象。通过向量的坐标表示, 我们可以方便地计算向量的长度、夹角、投 影等几何量。此外,向量还可以用来解决一 些几何问题,如求点到直线的距离、求两条 直线的夹角等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
5
大约公元前350年前,
古希腊著名学者亚里士
多德就知道了力可以表示成向量,
两个力的组合作用可用著名的平行四边形法则
来得到.
“向量”一词来自力学、解析几何中的有向线
段.
最先使用有向线段表示向量的是英国大科学家
牛顿。
a
6
从数学发展史来看,历史上很长一段时间,空间的向量结构并未 被数学家们所认识,直到19世纪末20世纪初,人们才把空间的 性质与向量运算联系起来,使向量成为具有一套优良运算通性的 数学体系.向量能够进入数学并得到发展,首先应从复数的几何 表示谈起.18世纪末期,挪威测量学家威塞尔首次利用坐标平 面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定 义向量的运算.把坐标平面上的点用向量表示出来,并把向量的 几何表示用于研究几何问题与三角问题.人们逐步接受了复数, 也学会了利用复数来表示和研究平面中的向量,向量就这样平静 地进入了数学.
识更深刻。
a
8
向量在机器人设计与操控、
卫星定位、飞船设计等现代
技术中也有着广泛的应用。
因此,在向量的教学中,应
注意体现向量在物理、数学、
现代科学技术中的广泛应用
性。特别应注意不能把向量
的应用只局限在解决几何问
题中。向量是解决几何问题
的一种有效工具,但高中数
学新课程中设置向量内容有
着更为广泛的目的,而不仅
向量的坐标表示是向量的代数表示,在引入向量的坐 标表示以后,即可使向量运算代数化,将数与形紧密地结 合起来,很多几何问题的证明可以转化为数量的运算,向 量是数学中解决几何问题的有效工具之一 .
a
15
向量在物理中应用
a
16
在日常生活中,你是否有这样的经验:两个人共提一 个旅行包,夹角越大越费力;在单杠上做引体向上运 动,两臂的夹角越小越省力。
a
4
在数学中,通常用点表示位置,用 射线表示方向。在平面内,从任一 点出发的所有射线,可以分别用来 表示平面内的各个方向。向量常用 一条有向线段来表示,有向线段的 长度表示向量的大小,箭头所指的 方向表示向量的方向。向量也可用 字母a、b、c等表示,或用表示向量 的有向线段的起点和终点字母表示。
向量的大小,也就是向量的长度 (或称模),记作|a|。长度为0的 向量叫做零向量,记作0.长度等于 1个单位长度的向量,叫做单位向量。
仅是为了解决几何问题、简
化几何证明
a
9
a
10
向量在数学中应用
a
11
一个基本几何量代数化,就得到向 量的概念,然后运用欧氏空间特有 的平移、相似与勾股定理等基本性 质引起向量的加法、倍积与内积这 三种向量运算。这样就把窨的结构 转化为向量和向量运算。这样就把 空间的结构转化为向量和向量运算 这种代数体系,因而空间的基本性 质也就转化成向量运算的运算律。 换句话说,向量的运算律也就是代 数化的几何公理。这样就实现定性 几何到定量几何的转折。向量是这 个转折的枢纽.
a
12
a
13
a
Hale Waihona Puke 14向量由于具有几何形式和代数形式的“双重身份”,使它 成为中学数学知识的一个交汇点,成为联系多项内容的媒 介。由于平面向量作为一种有向线段本身就是直线上的一 段,其向量 的坐标可用其起点、终点的坐标表示,因此向 量与平面解析几何,特别是其中直线部分保持着天然的联 系。而空间向量是处理空间问题的重要方法,通过将空间 元素间的位置关系转化 为数量关系,将过去的形式逻辑证 明转化为数值计算,化繁难为简易,化复杂为简单,是一 种重要的解决问题的手段和方法。
向量在生活中的应用
a
1
a
2
向量是高中数学新课程中的重要 内容。向量早在19世纪就已成为 数学家和物理学家研究的对象, 20世纪初被引入中学数学。我国
在1996年高中数学教学大纲中 引入了向量。
a
3
向量具有丰富的物理背景,向量 既是几何的研究对象,又是代数 的研究对象,是沟通代数、几何
的桥梁,是重要的数学模型。
a
17
向量在物理中的应用 向量是既有大小、又有方向 的量,它与物理学中的力学、运动学等有着天然 的联系,将向量这一工具应用到物理中,可以使 物理题解答更简捷、更清晰.并且向量知识不仅 是解决物理许多问题的有利工具,而且用数学的 思想方法去审视相关物理现象,研究相关物理问 题,可使我们对物理问题认识更深刻。
a
18
如图,一条河的两岸平行,河的宽度d=500m 一膄船从A处出发到河对岸。已知船的速度v1 =10km/h ,水流速度v2 =2km/h,问行驶航程最短时,所用时间是
多少(精确到0.1 min)?
a
19
a
20
y
o
x
a
7
在计算机图片中, 处理图像会有一种向量格式。 在物理中,向量就是矢量,是物理学中最重要的物理量。 物理中的矢量是向量的原型,向量及其运算是物理中矢量 及其运算的抽象。因此,向量在物理中有广泛应用是不言 而喻的。向量与物理学中的力学、运动学等有着天然的联 系。很多物理量如力、速度、位移以及电场强度、磁感应 强度等都是向量.将向量这一工具应用到物理中,可以使 物理题解答更简捷、更清晰.并且向量知识不仅是解决物 理许多问题的有利工具,而且用数学的思想方法去审视相 关物理现象,研究相关物理问题,可使我们对物理问题认
相关文档
最新文档