DS02_线性表05_一元多项式的表示及相加

合集下载

一元多项式相加 数据结构实验报告

一元多项式相加 数据结构实验报告

南昌航空大学实验报告课程名称:数据结构实验名称:实验二线性表的链式存储结构班级:080611 学生姓名:学号:08指导教师评定:签名:题目:设计并实现以下算法:给出用单链表存储多项式的结构,利用后接法生成多项式的单链表结构,实现两个多项式相加的运算,并就地逆置相加后的多项式链式。

一、需求分析1.用户可以根据自己的需求分别输入两个一元多项式,并且能够实现输入的一元多项式的显示。

2.能够完成两个一元多项式的相加功能,而且还能显示相加后的逆置的一元多项式。

3.程序执行的命令包括:(1)构造链表A (2)构造链表B (3)两个链表的相加(4)求链表的长度(5)打印(显示)已有的链表(6)将已相加的链表进行逆序排列二、概要设计⒈为实现上述算法,需要线性表的抽象数据类型:ADT Polynomial {数据对象:D={a i:|a i∈TermSet,i=1…n,n≥0TermSet 中的每个元素包含一个表示系数的实数和表示指数的整数} 数据关系:R1={<a i-1,a i>|a i-1,a i∈D,且a i-1中的指数值< a i中的指数值i=2,…n≥0}基本操作:initlink(& L)操作结果:构造一个空的链表L。

Creatlink(&L,n)操作结果:输入n项的系数和指数,建立一个非空的一元多项式L。

LinkLength(L)初始条件:链表L已经存在。

操作结果:返回一元多项式L中的项数。

Displaylink(L)初始条件:链表L已经存在。

操作结果:打印输出一元多项式L。

Addpolyn(A,B,&C)初始条件:一元多项式A和B已存在。

操作结果:完成多项式相加运算,即:C=A+B,并且带回C。

subtracypolyn(&La,&Lb,)初始条件:一元多项式La和Lb已存在。

操作结果:完成多项式的相减运算La=La+Lb,并且销毁多项式Lb。

一元多项式的加法数据结构

一元多项式的加法数据结构

一元多项式的加法数据结构一元多项式是数学中常见的一种代数表达式形式,由多个单项式按照一定的规则相加而成。

在计算机科学中,为了方便对一元多项式进行处理,需要定义一种合适的数据结构来表示和操作一元多项式的加法运算。

一元多项式的加法数据结构可以使用链表来实现。

每个节点表示一个单项式,包含两个成员变量:系数和指数。

系数表示单项式的系数,指数表示单项式的指数。

通过将多个单项式的系数和指数组织成一个链表,即可表示一个一元多项式。

在链表中,每个节点按照指数从小到大的顺序排列。

这样可以方便进行多项式的加法运算。

当两个一元多项式相加时,只需按照指数的大小依次比较两个链表中的节点,并根据指数的大小关系进行相应的操作。

具体的加法算法如下:1. 创建一个新的链表作为结果链表。

2. 初始化两个指针分别指向两个原始链表的头节点。

3. 循环比较两个链表中的节点,直到其中一个链表遍历完为止。

4. 比较当前节点的指数大小关系:- 如果两个节点的指数相等,将它们的系数相加,并将结果添加到结果链表中。

- 如果第一个链表中的节点指数较小,将第一个链表的节点添加到结果链表中,并将指针指向下一个节点。

- 如果第二个链表中的节点指数较小,将第二个链表的节点添加到结果链表中,并将指针指向下一个节点。

5. 当其中一个链表遍历完后,将另一个链表中剩余的节点依次添加到结果链表中。

6. 返回结果链表作为两个一元多项式相加的结果。

通过上述算法,可以实现对一元多项式的加法运算。

这种链表结构的一元多项式加法数据结构具有以下优点:- 灵活性:可以表示任意长度的一元多项式,不受固定数组长度的限制。

- 高效性:在添加节点和遍历节点时,时间复杂度为O(n),其中n 为一元多项式的项数。

- 可扩展性:可以方便地扩展其他操作,如乘法、求导等。

除了链表结构,还可以使用数组等数据结构来表示一元多项式的加法。

不同的数据结构适用于不同的应用场景。

链表结构适合于插入和删除操作较多的情况,而数组结构适合于随机访问和内存占用较小的情况。

多项式的加减与乘法运算法则

多项式的加减与乘法运算法则

多项式的加减与乘法运算法则多项式是代数学中的重要概念,它由一系列的项组成,每个项包含一个系数和一个指数。

多项式的运算中,加法、减法和乘法是最基本的操作。

本文将详细介绍多项式的加减与乘法运算法则,帮助读者理解和掌握这些运算规则。

一、多项式的加法运算法则多项式的加法运算法则是将相同次幂的项的系数相加,并保留相同次幂的项。

例如,对于两个多项式P(x)和Q(x),其加法运算法则可以表示为:P(x) + Q(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x^2 + ...其中,a0、a1、a2...为P(x)的系数,b0、b1、b2...为Q(x)的系数。

二、多项式的减法运算法则多项式的减法运算法则是将相同次幂的项的系数相减,并保留相同次幂的项。

例如,对于两个多项式P(x)和Q(x),其减法运算法则可以表示为:P(x) - Q(x) = (a0 - b0) + (a1 - b1)x + (a2 - b2)x^2 + ...其中,a0、a1、a2...为P(x)的系数,b0、b1、b2...为Q(x)的系数。

三、多项式的乘法运算法则幂的项合并。

例如,对于两个多项式P(x)和Q(x),其乘法运算法则可以表示为:P(x) * Q(x) = (a0 * b0) + (a0 * b1)x + (a0 * b2)x^2 + ... + (a1 * b0)x + (a1 * b1)x^2 + ...其中,a0、a1、a2...为P(x)的系数,b0、b1、b2...为Q(x)的系数。

需要特别注意的是,为了满足乘法运算法则,乘法结果中同次幂的项可能需要合并。

也就是说,如果两个多项式的同次幂的项相乘后得到的结果中存在相同次幂的项,需要将其系数相加并合并为一个项。

四、多项式的加减乘运算综合例题为了更好地理解多项式的加减与乘法运算法则,以下列举了一些例题:例题1:计算多项式 P(x) = 2x^3 + x^2 - 3x + 5 和 Q(x) = 3x^2 - x + 2 的和。

一元多项式相加问题实验报告

一元多项式相加问题实验报告

一元多项式相加问题实验报告一元多项式相加问题一、问题描述通过键盘输入两个形如P 0 +P 1 X 1 +P 2 X 2 +…+P n X 的多项式,经过程序运后在屏幕上输出它们的相加和。

二、数据结构设计一个一元多项式的每一个子项都由“系数-指数”两部分组成,因此可将其抽象为包含系数coef、指数exp、指针域next 构成的链式线性表。

将两个多项式分别存放在两个线性表中,然后经过相加后将所得多项式存放在一个新的线性表中,但是不用再开辟新的存储空间,只依靠结点的移动来构成新的线性表,期间可以将某些不需要的空间回收。

基于这样的分析,可以采用不带头结点的单链表来表示一个一元多项式。

具体数据类型定义为:struct node {float coef;//系数域int exp;//指数域struct node *next; }; 三、功能函数设计1、输入多项式的系数和指数初始化多项式的功能模块具体函数为node *in_fun() 此函数的处理较为全面,要求用户按照指数递增的顺序和一定的输入格式输入各个系数不为0 的子项,输入一个子项建立一个相关结点,当遇到输入结束标志时停止输入。

关键步骤具体如下:⑴控制用户按照指数递增的顺序输入r=a; while(r!=q-next){if(y=r-exp){cout“请按照指数递增顺序输入,请重新输入“;cinxy;break;}r=r-next;} 从头开始遍历,若遇到目前输入的指数不是最大时,就跳出循环,让用户重新输入。

⑵当输入的系数为零时,不为其分配存储空间存储while(x==0) { cinxy; continue;} 即若系数为0,不再进行动态分配并新建结点,而是重新提取用户输入的下一个子项的系数和指数,利用continue 进入下一次循环。

⑶初始化完成后将最后一个结点的指针域置为空,并返回该新建链表的首地址。

if(q!=NULL)q-next=NULL;return a; ⑷动态分配空间新建结点存储系数和指数的代码如下:p=new node;p-coef=x;p-exp=y;if(a==NULL) a=p;else q-next=p;q=p; 2、多项式显示功能函数由于系数有正有负,故采取如下处理:对于正数,输出时在前面加“+”,头指针除外;对于负数,直接将系数输出即可,即:p=a;while(p){if(p==a)coutp-coef"*x^"p-else if(p-coef0)coutp-coef"*x^"p-else if(p-coef0)cout"+"p-coef"*x^"p-p=p-next;} 输出的多项式的形式形如:P 1 X^1+P 2 X^2+…+P n X^n 3、多项式相加的功能函数函数为:node *plus_fun(node *a,node *b) 此函数根据在 1 中初始化的两个多项式进行相加运算,并存放在以c 为头指针的一个新链表中。

数据结构 线性结 一元多项式的加法乘法实现

数据结构 线性结  一元多项式的加法乘法实现
5x20-4x4-5x2+9x-2
求解思路
1.多项式表示 2. 程序框架 3. 读多项式 4. 加法实现 5. 乘法实现 6. 多项式输出
多项式的表示
仅表示非零项
数组: 编程简单、调试容易
需要事先确定数组大小
一种比较好的实现方法是: 动态数组
链表:
动态性强 编程略为复杂、调试比较困难
while (t1 && t2) {
if (t1->expon == t2->expon) {
…..
}
else if (t1->expon > t2->expon) {
……
}
else {
……
}
}
while (t1) {
return 0; }
如何读入多项式
Polynomial ReadPoly() {
…… scanf("%d", &N); …… while ( N-- ) {
scanf("%d %d", &c, &e); Attach(c, e, &Rear); } ….. return P; }
4 3 4 -5 2 6 1 -2 0
两种处理方法: 1. Rear初值为NULL
在Attach函数中根据Rear是 否为NULL做不同处理
Attach
ce
Rear (当前结果表达式尾项指针)
Rear
如何读入多项式
Polynomial ReadPoly() {
…… scanf("%d", &N); …… while ( N-- ) {
多项式的乘积: (a+b)(c+d) = ac+ad+bc+bd

用线性表实现多项式的加法和乘法

用线性表实现多项式的加法和乘法

用线性表实现多项式的加法和乘法15.用线性表实现多项式的加法和乘法/*用线性表实现多项式的加法和乘法*/#include<iostream>#include<cstdlib>#include<Vector>#include<cmath>using namespace std;/*使用模板创建一个因子的结构*/template<typename T>struct Polynomia{T num; //num表示实系数;char ch; //ch表示未知数;int i; //i表示指数;};/*对加号的重载*/template<typename T>Polynomia<T> operator+(Polynomia<T> const& lhs,Polynomia<T> const& rhs){Polynomia<T> P1;if(lhs.ch==rhs.ch){P1.num=lhs.num+rhs.num;P1.ch=lhs.ch;if(lhs.i==rhs.i||lhs.i!=0){P1.i=lhs.i;}else{P1.i=rhs.i;}}return P1;}/*对乘号的重载*/template<typename T>Polynomia<T> operator*(Polynomia<T> const& lhs,Polynomia<T> const& rhs){Polynomia<T> P2;if(lhs.num==0||rhs.num==0){P2.num=0;P2.ch=lhs.ch;P2.i=0;}else{P2.num=lhs.num*rhs.num;P2.ch=lhs.ch;P2.i=lhs.i+rhs.i;}return P2;}/*找出最大指数*/template<typename T1>T1 max(T1 a,T1 b){if(a>=b) return a;else return b;}typedef Polynomia<double> PP;int main(){double x; //x存储实系数;char ch2,ch1,ch0; //ch0存储未知元,ch1存储括号,ch2存储运算符号;int a,count=0,Max=0; //Max存储最大指数;Polynomia<double> P,P0; //P,P0存储因子;std::vector<PP> vector1,vector2,vector3; //vector1,vector2,vector3分别存储参加运算的多项式//和得出的结果;vector1.reserve(1000);vector2.reserve(1000);vector3.reserve(1000); //给线性表分配空间;P.num=0;P.ch='y';P.i=0;P0.num=0;P0.ch='y';P0.i=0; //结构的初始化;for(count=0;count<100;count++){ //向量的初始化;vector1.push_back(P);vector2.push_back(P);vector3.push_back(P);}cout<<"请输入多项式(形如(5y2+2y1)*(4y4+3y1)=)"<<endl;cout<<"注意括号不可少!"<<endl<<endl;cin>>ch1;while(ch1!='(') {cin>>ch1;} //以括号区分两个多项式,并存入向量;while(ch1!=')'){cin>>x>>ch0>>a;P.num=x;P.ch=ch0;P.i=a;vector1.operator[](a)=P;Max=max(Max,a);cin>>ch1;}cin>>ch2; //第二个多项式;while(ch1!='(') {cin>>ch1;}while(ch1!=')'){cin>>x>>ch0>>a;P.num=x;P.ch=ch0;P.i=a;vector2.operator[](a)=P;Max=max(Max,a);cin>>ch1;}if(ch2=='+'){ //进行加法运算;for(count=0;count<=Max;count++){vector3.operator[](count)=vector1.operator[](count)+vector 2.operator[](count);}}if(ch2=='*'){ //进行乘法运算;for(int count1=0;count1<=2*Max;count1++){for(int count2=0;count2<=count1;count2++){P0=P0+(vector1.operator[](count2)*vector2.operator[](coun t1-count2));}vector3.operator[](count1)=P0;P0.num=0;P0.ch='y';P0.i=0;}}cout<<"结果为:";for(int m=0,n=0;m<=2*Max;m++){ //控制输出;if((vector3.operator[](m)).num!=0){n==0?cout<<" ":cout<<"+";n++;cout<<(vector3.operator[](m)).num<<(vector3.operator[](m )).ch<<(vector3.operator[](m)).i;}}cout<<endl<<endl<<endl;return 0;}。

c语言数据结构实现——一元多项式的基本运算

文章标题:深入理解C语言中的数据结构实现——一元多项式的基本运算在C语言中,数据结构是非常重要的一个概念,它为我们处理各种复杂的数据提供了便利。

其中,一元多项式的基本运算是数据结构中的一个重要内容,它涉及到多种数据结构的操作和算法,是我们学习C 语言中数据结构的一个重要入口。

在本文中,我们将深入探讨C语言中一元多项式的基本运算,帮助读者更深入地理解这一重要的概念。

一、一元多项式的表示方式在C语言中,一元多项式可以使用数组来表示。

每个数组元素对应一个项,数组的下标对应每一项的次数,数组的值对应该项的系数。

一个一元多项式可以表示为:```cfloat polynomial[10] = {0, 1, 2, 0, 4}; // 表示多项式 1 + 2x + 4x^4 ```二、一元多项式的基本运算1. 一元多项式的加法有两个多项式 A 和 B,它们分别表示为 `float polynomialA[10]` 和`float polynomialB[10]`,那么它们的加法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] + polynomialB[i];}```2. 一元多项式的减法一元多项式的减法是指将两个多项式相减得到一个新的多项式。

与加法类似,多项式 A 和 B 的减法运算可以表示为:```cfor (int i = 0; i < 10; i++) {polynomialC[i] = polynomialA[i] - polynomialB[i];}```3. 一元多项式的乘法式 A 和 B 的乘法运算可以表示为:```cfor (int i = 0; i < 10; i++) {for (int j = 0; j < 10; j++) {polynomialC[i+j] += polynomialA[i] * polynomialB[j];}}```4. 一元多项式的除法一元多项式的除法涉及到较为复杂的算法,需要考虑余数和商的处理。

数据结构一元多项式的运算

数据结构一元多项式的运算正文:1. 引言本文档旨在介绍数据结构中一元多项式的运算方法。

一元多项式是指在一个变量上的多项式,其中每一项由一个系数和一个指数组成。

我们将会讨论一元多项式的表示、存储和基本运算,包括多项式的加法、减法、乘法和求导等操作。

2. 一元多项式的表示和存储2.1 一元多项式的定义一元多项式是指在一个变量x上的多项式,每一项由一个系数和一个指数组成,例如:2x^3 - 5x^2 + 3x + 1.其中,2、-5、3和1分别是系数,3、2、1和0分别是指数。

2.2 一元多项式的表示方法一元多项式可以使用数组、链表或其他数据结构来表示。

在本文中,我们选择使用数组来表示一元多项式。

数组的索引代表指数,数组的元素代表系数。

例如,多项式 2x^3 - 5x^2 + 3x + 1 可以表示为 [1, 3, -5, 2]。

2.3 一元多项式的存储结构为了表示一元多项式,我们可以使用一个数组来存储多项式的系数。

数组的长度应该比多项式的最高指数大1.数组的索引代表指数,数组的元素代表系数。

例如,数组 [1, 3, -5, 2] 表示的多项式 2x^3 - 5x^2 + 3x + 1 中,索引0对应指数为3的项,索引1对应指数为2的项,以此类推。

3. 一元多项式的基本运算3.1 一元多项式的加法一元多项式的加法是指将两个多项式相加,并合并同类项。

具体操作如下:- 将两个多项式的系数相加,并将结果存储在一个新的多项式中。

- 遍历新的多项式,将相邻的相同指数的项合并。

3.2 一元多项式的减法一元多项式的减法是指将一个多项式减去另一个多项式,并合并同类项。

具体操作如下:- 将两个多项式的系数相减,并将结果存储在一个新的多项式中。

- 遍历新的多项式,将相邻的相同指数的项合并。

3.3 一元多项式的乘法一元多项式的乘法是指将两个多项式相乘,并合并同类项。

具体操作如下:- 遍历一个多项式的每一项,与另一个多项式的每一项相乘。

一元多项式的加法.docx

问题描述:在数学上,一个一元n次多项式样(兀)可按降序写成:P…(X)= P”X〃+ P w_1x w-,+...+p]x+p0它是由n+1个系数唯一确定。

因此,在计算机里它可以用一个线性表P来表示:一元多项式的运算包括加法、减法和乘法,而多项式的减法和乘法都可以用加法来实现。

设Pn(x)和Qm(x)分别为两个一元多项式。

试编写程序实现一元多项式的加法运算。

一、需求分析1、本程序要求用基于线性表的基本操作来实现一元多项式的加法运算,并且需要利用有序链表来实现线性表2、输入输出的的形式:输入输入多项式的项数:4 //表示第一个多项式的项数输入多项式的各项(系数在前幕次在后):9, 15 (回车)//表示9x157, 8 (回车)5, 3 (回车)3, 1 (回车)输岀(按降無输出)输入的多项式是:+9x 15+ 7x 8+5x 3+3x 1输入多项式的项数:3 //表示第二个多项式的项数输入多项式的各项(系数在前幕次在后):6, 3 (回车)-7, 8 (回车)2, 0 (回车)输出输入的多项式是:-7x 8+ 6x 3+2x 0他们求和后的多项式是:9x15+11x3+3x1+ 2x03、输入值得范围:项数为短整型,每一项的系数和幕次为double类型,不对非法输入进行处理,即假定所有的输入都是合法的4、测试数据:输入多项式的项数5输入多项式的各项(系数在前幕次在后)9 158 9-7 65 43 2输入的多项式是+9x 15+8x 9~7x 6+5x 4+3x 2输入多项式的项数4输入多项式的各项(系数在前幕次在后)712897 62 1输入的多项式是+7x12+8x9+7x6+2x1他们求和后的多项式是+9x^15+7x 12+16x 9+5x 4+3x 2+2x 1二、概要设计1、抽象数据类型:为实现以上功能,根据题目要求,采用单链表来存储多项式,并声明一个节点类Node,其公有数据类型为两个int 型变量用来保存多项式每一项的系数和無次,以及一个next指针用以指向多项式的下一项。

一元稀疏多项式的表示及加法运算

一元稀疏多项式的表示及加法运算一、需求分析1.程序的功能(1).按照指数升序顺序,输入并建立多项式M与N。

(2).计算多项式M与N的和(3).输出多项式M、N、M+N。

2.输入输出的要求多项式按指数递增顺序输入;设计的数据结构应有利于表示任意一元稀释多项式;多项式的输出采用数学多项式的表示形式。

3.测试数据(1)7+3x+9x8+5x17, 8x+22x7-9x8(2) 0, 8x+22x7-9x8(3)8x10+22x7-9x8 , -1二、概要设计1.通过建立链表来实现多项式的输入在多项式输入之前,要先定义一个带有头结点的单链表,紧接着以指数递增的顺序输入多项式中系数不为零的项,其中每一项对应一个结点,每项对应的结点依次插入直至遇到结束标志,这样结完成了多项式的输入。

2. 两个多项式相加两个多项式中如果指数相同则系数相加,构成和多项式的一项;如果指数不同,则直接构成和多项式的一项。

3. 多项式的输出采用数学多项式的表达方式三、详细设计1.定义数据类型:typedef struct pnode{float coef; //系数int exp; //指数struct pnode *next; //指针,指向下一个系数不为的子项}PNode, *PLink;PLink M,N,P; //多项式M、N、P2.通过建立链表来实现多项式的输入在多项式输入之前,要先定义一个带有头结点的单链表,先输入多项式项数,紧接着以指数递增的顺序输入多项式中系数不为零的项,其中每一项对应一个结点,每项对应的结点依次插入,当项数达到时结束,这样完成了多项式的输入。

PNode *createList(PNode *p) //建立多项式链表{float a;int b;int c;int d;p=new PNode;PNode *nNode;PNode *kNode=p;if(p==NULL){return NULL;}else{p->next=NULL;cout<<"请输入多项式项数"<<endl;cin>>d;cout<<"请输入系数和指数"<<endl;for(c=0;c<d;c++){cin>>a>>b;nNode=new PNode;if(nNode==NULL){return p;}nNode->coef=a;nNode->exp=b;kNode->next=nNode;kNode=nNode;}nNode->next=NULL;}return p;}3. 两个多项式相加两个多项式中如果指数相同则系数相加,构成和多项式的一项;如果指数不同,则直接构成和多项式的一项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档