中考数学专题复习初三数学第二轮复习练习试卷
2024成都中考数学二轮复习专题 二次函数——阿氏圆、胡不归问题专项训练(含答案)

2024成都中考数学二轮复习专题二次函数——阿氏圆、胡不归问题专项训练(学生版)课中讲解模型来源“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.模型建立如图1所示,⊙O的半径为R,点A、B都在⊙O外,P为⊙O上一动点,已知25R OB =,连接PA、PB,则当“25PA PB+”的值最小时,P点的位置如何确定?解决办法:如图2,在线段OB上截取OC使OC=25R,则可说明△BPO与△PCO相似,则有25PB=PC。
故本题求“PA+25PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。
技巧总结计算PA kPB +的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P 使得PA kPB +的值最小,解决步骤具体如下:1.如图,将系数不为1的线段两端点与圆心相连即OP ,OB2.计算出这两条线段的长度比OP k OB=3.在OB 上取一点C ,使得OC k OP=,即构造△POM ∽△BOP ,则PC k PB=,PC kPB =4.则=PA kPB PA PC AC ++≥,当A 、P 、C 三点共线时可得最小值例1.已知:如图1,抛物线2y x bx c =++与x 轴交于(1,0)A -,(3,0)B 两点,与y 轴交于点C ,点D 为顶点.(1)求抛物线解析式及点D 的坐标;(2)若直线l 过点D ,P 为直线l 上的动点,当以A 、B 、P 为顶点所作的直角三角形有.且只有三个时,求直线l 的解析式;(3)如图2,E 为OB 的中点,将线段OE 绕点O 顺时针旋转得到OE ',旋转角为(090)αα︒<<︒,连接E B '、E C ',当12E B E C '+'取得最小值时,求直线BE '与抛物线的交点坐标.例2.如图,顶点为C 的抛物线2(0)y ax bx a =+>经过点A 和x 轴正半轴上的点B ,连接OC 、OA 、AB ,已知2OA OB ==,120AOB ∠=︒.(1)求这条抛物线的表达式;(2)过点C 作CE OB ⊥,垂足为E ,点P 为y 轴上的动点,若以O 、C 、P 为顶点的三角形与AOE ∆相似,求点P 的坐标;(3)若将(2)的线段OE 绕点O 逆时针旋转得到OE ',旋转角为(0120)αα︒<<︒,连接E A '、E B ',求12E A E B '+'的最小值.过关检测1.如图,直线:33=-+与x轴、y轴分别相交于A、B两点,抛物线l y x224(0)=-++<经过点B,交x轴正半轴于点C.y ax ax a a(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,ABM∆的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;(3)将点A绕原点旋转得点A',连接CA'、BA',在旋转过程中,一动点M从点B出发,沿线段BA'以每秒3个单位的速度运动到A',再沿线段A C'以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?2.如图,抛物线()20,y ax bx a b a a b =+--<、为常数与x 轴交于A 、C 两点,与y 轴交于B 点,直线AB 的函数关系式为81693y x =+.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点M (),0m 是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点,当m 为何值时,△BDE 恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当BDE D 恰好是以DE 为底边的等腰三角形时,动点M 相应位置记为点M′,将OM′绕原点O 顺时针旋转得到ON (旋转角在0°到90°之间);i :探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持不变,若存在,试求出P 点坐标;若不存在,请说明理由;ii :试求出此旋转过程中,34NA NB 骣琪+琪桫的最小值.学习任务1.如图,抛物线2y x bx c =-++与直线AB 交于(4,4)A --,(0,4)B 两点,直线1:62AC y x =--交y 轴于点C .点E 是直线AB 上的动点,过点E 作EF x ⊥轴交AC 于点F ,交抛物线于点G .(1)求抛物线2y x bx c =-++的表达式;(2)连接GB ,EO ,当四边形GEOB 是平行四边形时,求点G 的坐标;(3)①在y 轴上存在一点H ,连接EH ,HF ,当点E 运动到什么位置时,以A ,E ,F ,H 为顶点的四边形是矩形?求出此时点E ,H 的坐标;②在①的前提下,以点E 为圆心,EH 长为半径作圆,点M 为E 上一动点,求12AM CM +它的最小值.2.如图1,抛物线2(3)3(0)y ax a x a =+++≠与x 轴交于点(4,0)A ,与y 轴交于点B ,在x 轴上有一动点(E m ,0)(04)m <<,过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求a 的值和直线AB 的函数表达式;(2)设PMN ∆的周长为1C ,AEN ∆的周长为2C ,若1265C C =,求m 的值;(3)如图2,在(2)条件下,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为(090)αα︒<<︒,连接E A '、E B ',求23E A E B '+'的最小值.胡不归问题课中讲解故事介绍从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?模型建立如图,一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BC V V +的值最小.问题分析121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值.问题解决构造射线AD 使得sin ∠DAN =k ,即CH k AC=,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.模型总结在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.而这里的PB 必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB 的等线段.例1.如图,抛物线223y x x =--与x 轴交于A 、B 两点,过B 的直线交抛物线于E ,且4tan 3EBA ∠=,有一只蚂蚁从A 出发,先以1单位/s 的速度爬到线段BE 上的点D 处,再以1.25单位/s 的速度沿着DE 爬到E 点处觅食,则蚂蚁从A 到E 的最短时间是s .过关检测1.如图,已知抛物线(2)(4)(8k y x x k =+-为常数,且0)k >与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线33y x b =-+与抛物线的另一交点为D .(1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与ABC ∆相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?2.如图,在平面直角坐标系中,二次函数2y ax bx c =++的图象经过点(1,0)A -,(0,B ,(2,0)C ,其对称轴与x 轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)若P 为y 轴上的一个动点,连接PD ,则12PB PD +的最小值为;(3)(,)M x t 为抛物线对称轴上一动点①若平面内存在点N ,使得以A ,B ,M ,N 为顶点的四边形为菱形,则这样的点N 共有个;3.直线43y x=与抛物线()2343y x m=--+交于A,B两点(其中点A在点B的左侧),与抛物线的对称轴交于点C,抛物线的顶点为D(点D在点C的下方),设点B的横坐标为t(1)求点C的坐标及线段CD的长(用含m的式子表示);(2)直接用含t的式子表示m与t之间的关系式(不需写出t的取值范围);(3)若CD=CB.①求点B的坐标;②在抛物线的对称轴上找一点F,使35BF CF+的值最小,则满足条件的点F的坐标是.学习任务1.如图,抛物线212y x mx n =++与直线132y x =-+交于A ,B 两点,交x 轴于D ,C 两点,连接AC ,BC ,已知(0,3)A ,(3,0)C .(Ⅰ)求抛物线的解析式和tan BAC ∠的值;(Ⅱ)在(Ⅰ)条件下:(1)P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与ACB ∆相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(2)设E 为线段AC 上一点(不含端点),连接DE ,一动点M 从点D 出发,沿线段DE 以每秒一个单位速度运动到E 点,再沿线段EA 个单位的速度运动到A 后停止,当点E 的坐标是多少时,点M 在整个运动中用时最少?2.如图1,二次函数21212y x x =-+的图象与一次函数(0)y kx b k =+≠的图象交于A ,B 两点,点A 的坐标为(0,1),点B 在第一象限内,点C 是二次函数图象的顶点,点M 是一次函数(0)y kx b k =+≠的图象与x 轴的交点,过点B 作x 轴的垂线,垂足为N ,且:1:48AMO AONB S S ∆=四边形.(1)求直线AB 和直线BC 的解析式;(2)点P 是线段AB 上一点,点D 是线段BC 上一点,//PD x 轴,射线PD 与抛物线交于点G ,过点P 作PE x ⊥轴于点E ,PF BC ⊥于点F .当PF 与PE 的乘积最大时,在线段AB 上找一点H (不与点A ,点B 重合),使GH 的值最小,求点H 的坐标和22GH BH +的最小值;3.已知抛物线)0)(1)(3(≠-+=a x x a y ,与x 轴从左至右依次相交于A 、B 两点,与y 轴交于点C ,经过点A 的直线b x y +-=3与抛物线的另一个交点为D 。
课标版数学中考第二轮专题复习-动态型试题(含答案)

动态型试题动态几何问题是近几年各地中考试题常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。
例1(2005年杭州)在三角形ABC 中, 60,24,16B BA cm BC cm ∠=== . 现有动点P 从点A 出发, 沿射线AB 向点B 方向运动; 动点Q 从点C 出发, 沿射线CB 也向点B 方向运动. 如果点P 的速度是4cm /秒, 点Q 的速度是2cm /秒, 它们同时出发, 求:(1)几秒钟以后, PBQ ∆的面积是ABC ∆的面积的一半?(2)这时, ,P Q 两点之间的距离是多少?分析:本题是动态几何知识问题,此类题型一般利用几何关系关系式列出方程求解。
解:(1) 设t 秒后, PBQ ∆的面积是ABC ∆的面积的一半, 则2,4CQ t AP t ==, 根据题意, 列出方程11222(162)(244)sin601624sin60t t ⨯--⋅=⨯⨯⨯,化简, 得214240t t -+=,解得122,12t t ==. 所以2秒和12秒均符合题意; (2) 当2t =时, 12,16,BQ BP ==在PBQ ∆中,作/QQ BP ⊥于/Q ,在/Rt QQ B ∆和/Rt QQ P ∆中, //6QQ BQ ==,所以/10,PQ PQ ==;当12t =时, 18,24,BQ BP ==同理可求得11PQ = 1P1QB/Q PQ A C说明:本题考查了用一元二次方程、三角函数等有关知识进行几何图形的面积计算方法。
练习一1、(2005年南京)如图,形如量角器的半圆O的直径DE=12cm,形如三角板的⊿ABC中,∠ACB=90°,∠ABC=30°,BC=12cm。
半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上。
设运动时间为t (s),当t=0s时,半圆O在⊿ABC的左侧,OC=8cm。
(1)当t为何值时,⊿ABC的一边所在直线与半圆O所在的圆相切?(2)当⊿ABC的一边所在直线与半圆O所在的圆相切时,如果半圆O与直线DE围成的区域与⊿ABC三边围成的区域有重叠部分,求重叠部分的面积。
2023年中考数学二轮复习专题训练——蚂蚁爬行问题(含答案)

2023年九年级中考数学专题训练:蚂蚁爬行问题一.选择题1.如图,长方体的高为,底面是边长为的正方形一只蚂蚁从顶点开始爬向顶点,那么它爬行的最短路程为()A.B.C.D.2.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离是()A.15cm B.16cm C.17cm D.18cm3.如图所示,圆柱的高AB=3,底面直径BC=6,现在有一只蚂蚁想要从A处沿圆柱侧面爬到对角C处捕食,则它爬行的最短距离是( )A.3B.6C.9D.64.如图是一个三级台阶,它的每一级的长,宽,高分别是,A和B是这个台阶相对的端点,点A处有一只蚂蚁,想到B处去吃食物,则这只蚂蚁爬行的最短距离为()A.B.C.D.5.图,长方体的长为8,宽为10,高为6,点B离点C的距离为2,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.B.C.D.6.如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为( )A.10B.12C.14D.207.一只蚂蚁趴在如图所示的数轴上,它从点A沿数轴向右爬行2个单位长度到达点B,设点A表示,那么点B所表示的数为()A.B.C.D.8.如图,圆柱形容器高为,底面周长为,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为( )A.B.C.D.二.填空题9.一只蚂蚁先向上爬4个单位长度,再向右爬5个单位长度后,到达,则它最开始所在位置的坐标是___________.10.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是______.11.如图,一只蚂蚁从点A沿数轴向右沿直线爬行2个单位长度到达点B,点A表示的数为,设点B所表示的数为m,则__________.12.如图,透明的圆柱形容器(容器厚度忽略不计)的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿的点A处,则蚂蚁吃到饭粒需爬行的最短路径是_____.13.如图,正方体的棱长为3 cm,已知点B与点C间的距离为1 cm,一只蚂蚁沿着正方体的表面从点A爬到点C,需要爬行的最短距离为_________.14.已知圆锥的底面半径是,母线长为,C为母线的中点,蚂蚁在圆锥侧面上从A爬到C的最短距离是_____________.15.如图在直线AB上有一点C,,有两只蚂蚁分别以2cm/s、1cm/s 从A、C两点同时出发向右运动,经过__________秒,两只蚂蚁到C点的距离相等.16.在一个长米,宽为4米的长方形草地上,如图推放着一根三棱柱的木块,它的侧棱长平行且大于场地宽,木块的主视图的高是米的等腰直角三角形,一只蚂蚁从点A处到C处需要走的最短路程是___________.三.解答题17.如图,一个无盖的长方体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,,,,求这只蚂蚁爬行的最短距离.18.如图是长、宽、高的长方体容器.(1)求底面矩形的对角线的长;(2)长方体容器内可完全放入的棍子最长是多少?(3)一只蚂蚁从D点爬到E点最短路径是多少?19.如图,已知圆锥底面半径为,母线长为,求一只蚂蚁从A处出发绕圆锥侧面一周(回到原来的位置A处)所爬行的最短距离.20.如图,已知A、B分别为数轴上的两点,A点对应的数为,B点对应的数为,现有一只蚂蚁P从B点出发,以5个单位的速度沿数轴向左运动;同时另一只蚂蚁Q恰好从A点出发,以3个单位的速度沿数轴向右运动,请解决以下问题:(1)设两只蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少?(2)经过多少秒,之间的距离恰好是之间的距离的一半?参考答案:1.C2.A3.A4.A5.A6.A7.B8.C9.10.11./12./13厘米13.14.15.或2016.17.18.(1)底面矩形的对角线的长为(2)长方体容器内可完全放入的棍子最长是(3)蚂蚁从D点爬到E点最短路径19.20.(1)(2)秒或秒。
初三数学第二轮复习练习试卷27

初三数学第二轮复习练习试卷(二十七)1、已知△ABC 是边长为4的等边三角形,BC 在x 轴上,点D 为BC 的中点,点A 在第一象限内,AB 与y 轴的正半轴相交于点E ,点B (-1,0),P 是AC 上的一个动点(P 与点A 、C 不重合)(1)求点A 、E 的坐标;(2)若y=c bx x 7362++-过点A 、E ,求抛物线的解析式。
(3)连结PB 、PD ,设L 为△PBD 的周长,当L 取最小值时,求点P 的坐标及L 的最小值,并判断此时点P 是否在(2)中所求的抛物线上,请充分说明你的判断理由。
2、四边形OABC 是等腰梯形,OA ∥BC 。
在建立如图的平面直角坐标系中,A (4,0),B (3,2),点M 从O 点以每秒3个单位的速度向终点A 运动;同时点N 从B 点出发以每秒1个单位的速度向终点C 运动,过点N 作NP 垂直于x 轴于P 点连结AC 交NP 于Q ,连结MQ 。
(1)写出C 点的坐标;(2)若动点N 运动t 秒,求Q 点的坐标(用含t 的式子表示(3)其△AMQ 的面积S 与时间t 的函数关系式,并写出自变量t 的取值范围。
(4)当t 取何值时,△AMQ 的面积最大; (5)当t 为何值时,△AMQ 为等腰三角形。
3、如图,抛物线E:y=x2+4x+3交x轴于A、B两点,交y轴于M点,抛物线E关于y轴对称的抛物线F交x轴于C、D两点。
(1)求F的解析式;(2)在x轴上方的抛物线F或E上是否存在一点N,使以A、C、N、M为顶点的四边形是平行四边形。
若存在,求点N的坐标;若不存在,请说明理由;(3)若将抛物线E的解析式改为y=ax2+bx+c ,试探索问题(2)。
4、如图,已知二次函数y=ax2+bx+c的象经过A(-1,0)、B(3,0)、N(2,3)三点,且与y轴交于点C。
(1)求这个二次函数的解析式,并写出顶点M及点C的坐标;(2)若直线y=kx+d经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形;(3)点P是这个二次函数的对称轴上一动点,请探索:是否存在这样的点P,使以点P为圆心的圆经过A、B两点,并且与直线CD相切,如果存在,请求出点P的坐标;如果不存在,请说明理由。
数学中考二轮专题复习练习题-5创新作图题专题(含答案)

中考二轮专题复习练习题-5创新作图专题一、用三角形的有关性质作图1.如图,在△ABE中,AE=BE,请你仅用无刻度的直尺按要求作图.(不写作法,保留作图痕迹)(1)如图1,点C,D分别为AE,BE的中点,作出AB的垂线;(2)如图2,EF⊥AB于点F,点C为AE上任意一点,在BE上找出一点D,使ED=EC.2.如图,在△ABC中,已知AB=AC,AD⊥BC于点D.(1)如图①,点P为AB上任意一点,请你用无刻度的直尺在AC上找出一点P′,使AP=AP′.(2)如图②,点P为BD上任意一点,请你用无刻度的直尺在CD上找出一点P′,使BP=CP′.3.如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AD的中点,请仅用无刻度的直尺分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AC上的中线DM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.4.在Rt△ABC中,∠ACB=90°,AC=2BC,将△ABC绕点O按逆时针方向旋转90°得到△DEF,点A,B,C的对应点分别是点D,E,F.请仅用无刻度直尺分别在下面图中按要求画出相应的点(保留画图痕迹).(1)如图1,当点O为AC的中点时,画出BC的中点N;(2)如图2,旋转后点E恰好落在点C,点F落在AC上,点N是BC的中点,画出旋转中心O.5.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O,限用无刻度直尺完成以下作图:(1)在图1中作线段BC的中点P;(2)在图2中,在OB、OC上分别取点E、F,使EF∥BC.6.已知Rt△ABC中,∠ACB=90°,点E为BC的中点,以BC为底边的等腰△BCD按如图所示位置摆放,且∠DBC=∠ABC.请仅用无刻度的直尺分别按下列要求作图(保留作图痕迹):(1)如图①,在AB上求作一点F,使四边形BDCF为菱形;(2)如图②,过点C作线段CP,使得线段CP将△BCD的面积平分.二、用特殊四边形的性质作图7.如图,四边形ABCD是平行四边形,点E在AD上,请仅用无刻度直尺按要求作图(保留作图痕迹,不写作法)(1)在图1中,过点E作直线EF将四边形ABCD的面积平分;(2)在图2中,DE=DC,作∠A的平分线AM;8.如图,在矩形ABCD中,请仅用无刻度的直尺按要求作图.(1)如图①,当E为AD的中点,在BC上找一点F,使得F是BC的中点;(2)如图②,当E为AD上任意一点,在BC上找一点F,使得BF=DE.9.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.10.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.11.如图,四边形ABCD是菱形,BE是AD边上的高,请仅用无刻度的直尺作图(保留作图痕迹)(1)在图①中,BD=AB,作△BCD的边BC上的中线DF;(2)在图②中,BD≠AB作△ABD的边AB上的高DF.12.分别在图①,图②中按要求作图(保留作图痕迹,不写作法)(1)如图①,已知四边形ABCD为平行四边形,BD为对角线,点P为AB 上任意一点,请你用无刻度的直尺在CD上找出另一点Q,使AP=CQ;(2)如图②,已知四边形ABCD为平行四边形,BD为对角线,点P为BD 上任意一点,请你用无刻度的直尺在BD上找出一点Q,使BP=DQ.13.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在图(1)中,在AB边上求作一点N,连接CN,使CN=AM;(2)在图(2)中,在AD边上求作一点Q,连接CQ,使CQ∥AM.14.请你按照下列要求用无刻度的直尺作图:(不写作法,保留作图痕迹)(1)如图1,请你作一条直线(但不过A、B、C、D四点)将平行四边形的面积平分;(2)如图2,在平行四边形ABCD中挖去一个矩形,准确作出一条直线将剩下图形的面积平分.15.如图,在▱ABCD中,点E为边BC上的中点,请仅用无刻度的直尺,按要求画图(保留画图痕迹,不写画法).(1)在图1中,作EF∥AB交AD于点F;(2)在图2中,若AB=BC,作一矩形,使得其面积等于▱ABCD的一半.16.如图,AE为菱形ABCD的高,请仅用无刻度的直尺按要求画图.(不写画法,保留作图痕迹).(1)在图1中,过点C画出AB边上的高;(2)在图2中,过点C画出AD边上的高.三、用圆或多边形有关性质作图17.如图,AB、AD是⊙O的弦,△ABC是等腰直角三角形,△ADC≌△AEB,请仅用无刻度直尺作图:(1)在图1中作出圆心O;(2)在图2中过点B作BF∥AC.18.在⊙O中,点A,B,C在⊙O上,请仅用无刻度的直尺作图:(1)在图1中,以点C或点B为顶点作一锐角,使该锐角与∠CAB互余;(2)在图2中,已知AD∥BC交⊙O于点D,过点A作直线将△ACB的面积平分.19.已知四边形ABCD内接于⊙O,且已知∠ADC=120°;请仅用无刻度直尺完成以下作图(保留作图痕迹,不写作法,写明答案).(1)在图1中,已知AD=CD,在⊙O上求作一个度数为30°的圆周角;(2)在图2中,已知AD≠CD,在⊙O上求作一个度数为30°的圆周角.20.仅用无刻度的直尺........,按要求画图(保留画图痕迹,不写作法)(1)如图①,画出⊙O的一个内接矩形;(2)如图②,AB是⊙O的直径,CD是弦,且AB∥CD,画出⊙O的内接正方形.21.如图,△ABC是⊙O的内接三角形,请仅用无刻度的直尺在下列图形中按要求画图.(1)在图1中,已知OD⊥BC于点D,画出∠A的角平分线;(2)在图2中,已知OE⊥AB于点E,OF⊥AC于点F,画出∠A的角平分线.22.如图,在正五边形ABCDE中,请仅用无刻度的直尺,分别按下列要求作,(1)在图1中,画出过点A的正五边形的对称轴;(2)在图2中,画出一个以点C为顶点的72°的角.23.在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.24.如图,线段AB是⊙O的直径,BC⊥CD于点C,AD⊥CD于点D,请仅用无刻度的直尺按下列要求作图.(1)在图1中,当线段CD与⊙O相切时,请在CD上确定一点E,连接BE,使BE平分∠ABC;(2)在图2中,当线段CD与⊙O相离时,请过点O作OF⊥CD,垂足为F.25.如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点,请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线.26.如图(甲、乙),AB为半圆⊙O1的直径,AO1为半圆⊙O2的直径,仅用无刻度的直尺完成下列作图:(1)如图甲,C为半圆⊙O1上一点,请在半圆⊙O1找个点D,使得D恰为的中点;(2)如图乙,E为半圆⊙O2上一点,请在半圆⊙O2找个点F,使得F恰为的中点.27.如图,四边形ABCD为菱形,且∠BAD=120°,以AD为直径作⊙O,与CD交于点P.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点C作AB边上的高CE;(2)在图2中,过点P作⊙O的切线PQ,与BC交于点Q.28.等腰△ABC中,AB=AC,以AB为直径作圆交BC于点D,请仅用无刻度的直尺,根据下列条件分别在图1、图2中画一条弦,使这条弦的长度等于弦BD.(保留作图痕迹,不写作法)(1)如图1,∠A<90°;(2)如图2,∠A>90°.29.在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.30.如图在⊙O中,图1中△ABC内接于⊙O且∠ABC=90°,图2中△A1BC1,内接于⊙O,AC是直径且AC∥A1C1,请仅用无刻度的直尺按要求画图.(1)在图1中,画出将△ABC的面积平分为两等份的弦.(2)在图2中,画出将△A1BC1的面积平分为两等份的弦.四、用网格的有关性质作图31.如图所示,在正方形网格中,每个小正方形的边长都是1,每个小格点的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,.(2)使三角形为边长都为无理数的钝角三角形且面积为4.32.在正方形网格中,点A、B、C都是格点,仅用无刻度的直尺按下列要求作图.(1)在图1中,作线段AB的垂直平分线;(2)在图2中,作∠ABC的角平分线.33.请在如图所示的正方形和等边三角形网格内,仅用无刻度的直尺完成下列作图,过点P向线段AB引平行线.34.已知△ABC,请用无刻度直尺画图.(1)在图1中,画一个与△ABC面积相等,且以BC为边的平行四边形;(2)在图2中,画一个与△ABC面积相等,且以点C为一顶点的正方形.35.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).36.如图是一个正方形网格图,图中已画了线段AB和线段EG,请使用无刻度的直尺在正方形网格中画图.(1)画一个以AB为边的正方形ABCD;(2)画一个以EG为一条对角线的菱形EFGH,且面积与(1)中正方形的面积相等.37.图1,图2均为正方形网络,每个小正方形的面积均为1.在这个正方形网格中,各个小正方形的顶点叫做格点.在网格中画图,使得每个形图的顶点均在格点上.(1)画一个边长为整数的菱形,且面积等于24.(2)画一个直角三角形,使其一边长为2,且一个角为45°.38.如图,网格中每个小正方形的边长均为1,请你按下列要求在网格中画图.(1)在图1中画出以AB为对角线、面积是24的平行四边形ACBD;(2)在图2中画出以AB为对角线、面积是24的矩形AEBF.(所画四边形的顶点都在小正方形的顶点上)39.在5×5的网格中有线段AB,在网格线的交点上找一点C,使三角形ABC 满足如下条件.(仅用直尺作图)(1)在网格①中作一个等腰三角形ABC;(2)在网格②中作一个直角三角形ABC,使两直角边的长为无理数.40.在10×10的正方形网格中(每个小正方形的边长为1)线段AB在网格中的位置如图所示,请仅用无刻度直尺,按要求分别完成以下画图.(1)在图1中,画出一个以AB为边,另两个顶点C、D也在格点上的菱形ABCD;(2)在图2中,画出一个以A、B为顶点,另两个顶点C、D也在格点上的菱形,且使这个菱形的面积最大或最小(仅选其一,即可):其面积值是.中考二轮专题复习练习题-5创新作图专题(参考答案)1.解:(1)如图1,直线EM即为所求;(2)如图2,点D即为所求.2.解:(1)如图①,点P'为所求作的图形,(2)如图②,点P'为所求作的图形,3.解:(1)如图,DM为所作;(2)如图,AN为所作.4.解:(1)如图,点N即为所求.(2)如图,点O为所作;5.解:(1)如图1,点P为所作;(2)如图2,EF为所作.6.解:(1)如图①,点F为所作;(2)如图②,CP为所作.7.解:(1)如图1,直线EF即为所求;(2)如图2,射线AM即为所求.8.解:(1)连接AC、BD交于点O,作直线EO交BC于F,点F即为所求.(2)连接AC、BD交于点O,作直线EO交BC于F,点F即为所求.9.解:如图1、2,△OMN为所作.10.解:(1)如图所示:四边形EFGH即为所求的菱形;(2)如图所示:四边形AECF即为所求的菱形.11.解:(1)如图1中,线段DF即为所求.(2)如图2中,线段DF即为所求.12.解:(1)如图①,点Q即为所求;(2)如图②,点Q即为所求.13.解:(1)连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO 与AB的交点为点N,如图1,(2)延长MO交ADE于Q,连结CQ,则CQ为所作,如图2.14.解:(1)如图1,直线l为所作;(2)如图2,直线MN为所作.15.解:(1)如图1,F点就是所求作的点;(2)如图2,矩形EGFH就是所求作的四边形.16.解:(1)如图1所示,线段CG即为所求;(2)如图2所示,线段CG即为所求.17.解:(1)设AC交⊙O于K,连接BK,DE,BK交DE于点O,点O即为所求.(2)如图2中,作直线AO交⊙O于F,直线直线BF,直线BF即为所求.18.解:(1)如图1,∠BCE为所作;(2)如图2,AF为所作.19.解:(1)如图1所示:∠ABD=30°或∠CBD=30°;(2)如图2所示:∠CAE=30°.20.解:(1)如图所示,过O作⊙O的直径AC与BD,连接AB,BC,CD,DA,则四边形ABCD即为所求;(2)如图所示,延长AC,BD交于点E,连接AD,BC交于点F,连接EF 并延长交⊙O于G,H,连接AH,HB,BG,GA,则四边形AHBG即为所求.21.解:(1)如图1所示:AM即为所求;(2)如图2所示:AN即为所求.22.解:(1)如图1,连接BD,CE,交于点F,过A、F作直线AF,则AF即为所求;(2)如图2,连接AC,则∠ACB=36°,∠BCD=108°,∴∠ACD=72°.同理,连接CE,则∠BCE=72°.23.解:(1)如图1,连接OA、OB,在优弧AB上任意找一点C,连接AC、AB ∠ACB为所求作(2)如图2,连接OA交圆O于点C,在优弧BC上任意找一点D,连接CD、BD,∠CDB为所求作24.解:(1)如图1;(2)如图2.25.解:如图①中,连接P A,P A就是∠P的平分线.如图②中,连接AO延长交⊙O于E,连接PE,PE就是∠P的平分线.26.解:(1)如图甲所示:(2)如图乙所示:27.解:(1)如图1,CE为所;(2)如图2,PQ为所作.28.解:(1)如图1,DE为所作:(2)如图2,DE为所作:29.解:(1)如图1,EF为所作;(2)如图2,∠DBC为所作.30.解:(1)如图所示:(2)如图所示:31.解:(1)满足条件的△ABC如图所示.(2)满足条件的△DEF如图所示.32.解:(1)如图所示:直线CD即为所求;(2)如图所示:射线BD即为所求.33.解:如图所示,PQ即为所求.34.解:(1)如图1所示:平行四边形BCDE即为所求;(2)如图2所示:正方形CDEF即为所求.35.解:(1)如图1所示;(2)如图2、3所示;36.解:(1)如图所示:正方形ABCD,即为所求;(2)如图所示:菱形EFGH,即为所求.37.解:(1)菱形ABCD即为所求.(2)Rt△EFG即为所求.38.解:(1)如图1中,平行四边形ACBD即为所求.(2)如图2中,矩形AEBF即为所求.39.解:(1)∵=5,AB=5,∴作AC=5,或BC=5,△ABC如图1所示:(2)∵=,=2,()2+(2)2=5+20=25=AB2,∴画出△ABC和△ABC1是直角三角形,如图2所示.40.解:(1)如图1所示:四边形ABCD即为所求;(2)如图2所示:以线段AB为对角线得到菱形ADBC此时面积最大,其面积为:××3=15.当AB为正方形对角线时,最小面积为:5.答案为:15.。
初三数学第二轮复习练习试

初三数学第二轮复习练习试文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]初三数学第二轮复习练习试卷(三)Array1、如图,在正方形网格中,∠α、∠β、∠γ的大小关系是(A.α>β>γB.α=β>γC.α<β=γD.α=β=γ2、小明的爸爸下岗后一直谋职业,做起了经营水果的生意,一天他先去批发市场,用100元购甲种水果,用150元购乙种水果,乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价每千克高元,然后到零售市场,都按每千克元零售,结果,乙种水果很快售完,时,出现滞销,他又按原零售价的5折售完剩余的水甲种水果售出45果。
请你帮小明的爸爸算一算这一天卖水果是赔钱了,还是赚钱了(不考虑其他因素)若赔钱,赔多少若赚钱,赚多少3、某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度元交费。
①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)②下表是这户居民 3 月、4 月的用电情况和交费情况:根据上表数据,求电厂规定A度为多少4、图中的虚线网格我们称之为正三角形网格,它的每个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形.(1)直接写出单位正三角形的高与面积;(2)图1中的平行四边形ABCD含有多少个单位正三角形ABCD的面积是多少(3)求出图1中线段AC的长(可作辅助线);(4)求出图2中四边形EFGH的面积.5、如图1,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,D、E在x轴上,CF交y轴于点B(2,0),且其面积为8。
⑴求此抛物线的解析式;⑵如图2,若P点为抛物线上不同于A的一点,连结PB并延长交抛物线于点Q,过点P、Q分别作x轴的垂线,垂足分别为S、R。
初三数学第二轮复习练习试卷11
初三数学第二轮复习练习试卷(十一)1、将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E 、D 分别落在 E ’、 D ’,已知∠CFD ’等于A 、31°B 、28°C 、24°D 、22°[2、甲、乙两人骑车从学校出发,先上坡到距学校6千米的A 地,再下坡到距学校16千米的B 地,甲、乙两人行程y (千米)与时间x (小时)之间的函数关系如图所示.若甲、乙两人同时从B 地按原路返回到学校,返回时,甲和乙上、下坡的速度仍保持不变.则下列结论:①乙往返行程中的平均速度相同;②乙从学校出发45分钟后追上甲;③乙从B 地返回到学校用时1小时18分钟;④甲、乙返回时在下坡路段相遇.其中正确的结论有( )A .②③B .①④C .①②④D .②③④3、一个均匀的正方体子,六个面分别标有数字1、2、3、4、5、6,连续抛掷两次,朝上的数字分别为m 、n . 若把m 、n 作为点A 的横纵坐标,那么点A(m ,n)在函数x y 2 的图象上的概率是多少?4、请你根据图中图象所提供的信息解答下面问题:(1)分别写出a 1、a 2中变量y 随x 变化而变化的情况:(2)E DF D ’ E ’ A BC 第1题图5 10 36 0 16 (第2题图) 甲 乙5、如图,一天早上,小张正向着教学楼AB 走去,他发现教学楼后面有一水塔DC ,可过了一会抬头一看:“怎么看不到水塔了?”心里很是纳闷。
经过了解,教学楼、水塔的高分别为20m 和30m ,它们之间的距离为30m ,小张身高为1.6m 。
小张要想看到水塔,他与教学楼的距离至少应有多少m ?6、在Rt △ABC 中,90=∠C °,60=∠A °,6=BC ,等边三角形DEF从初始位置(点E 与点B 重合,EF 落在BC 上,如图1所示)在线段BC 上沿BC 方向以每秒1个单位的速度平移,DF DE 、分别与AB 相交于点NM 、.当点F 运动到点C 时,△DEF 终止运动,此时点D 恰好落在AB 上,设△DEF 平移的时间为x .(1)求△DEF 的边长;(2)求M 点、N 点在BA 上的移动速度;(3)在△DEF 开始运动的同时,如果点P 以每秒2个单位的速度从D 点出发沿 DE →EF 运动,最终运动到F 点.若设△PMN 的面积为y ,求y 与x 的函数关系式,写出自变量的取值范围;并说明当P 点在何处时,△PMN 的面积最大?(第5题图)B C (E )F B C E F (图1) (图2)(第6题图)。
初三数学第二轮复习练习试
初三数学第二轮复习练习试卷(四)1、罗马数字共有 7 个:I (表示 1),V (表示 5),X (表示 10),L (表示 50),C (表示 100),D (表示 500),M (表示 1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如IX =10-1=9,VI =5+1=6,CD =500-100=400,则XL =___,XI =___。
2、小明参加“开心词典”答题的活动中,在回答第五道题时,被难住了,题目如下:如图所示,天平两端能保持平衡。
请回答在右图中,天平的右边应放几个圆形,才能使天平保持平衡,他打电话向你求助,你能通过计算,并给他一个正确的答案吗?请说出你的做法。
3、在栽植农作物时,一个很重要的问题是“合理密植”.如图是栽植一种蔬菜时的两种方法,A 、B 、C 、D 四珠顺次连结成为一个菱形,且AB=BD ;A ′、B ′、•C ′、D ′四株连结成一个正方形,这两种图形的面积为四株作物所占的面积,•两行作物间的距离为行距;一行中相邻两株作物的距离为株距;设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积.在株距都为a ,其他客观因素也相同的条件下,•请从栽植的行距,蔬菜所占的面积,充分生长后空隙地面积三个方面比较两种栽植方法.哪种方法能更充分地利用土地.○ ▲▲ ▲▲ □□ □ ▲▲▲ ▲▲ ▲ ▲ ○○ ○ △ △□□ △4、观察图2-6-10中⑴)至⑸中小黑点的摆放规律,并按照这样的规律继续摆放.记第n个图中小黑点的个数为y.解答下列问题:⑴填下表:⑵当n=8时,y=___________;⑶请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,请求出该函数的解析式.5、如图2-3-5所示,抛物线2y ax bx c=++与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C,且当x=0和x=2时y的值相等,直线y=3x—7与这条抛物线相交于两点.其中一点的横坐标是4,另一点是这条抛物线的顶点M。
2023年广东中考数学二轮专题复习——方程(组)与不等式(组)(含答案)
2023年广东中考数学专题复习——方程(组)与不等式(组)(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是( )A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2 D.{x+y=10x=3y-22.若把不等式组{2-x≥-3,x-1≥-2的解集在数轴上表示出来,则其对应的图形为A.长方形 B.线段 C.射线 D.直线3.用配方法解方程x2-2x-1=0时,配方后所得的方程为( )A.(x-1)2=2 B.(x-1)2=0C.(x+1)2=2 D.(x+1)2=04.计算2x-2-xx-2的结果是( )A.0 B.1 C.x D.-15.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为( ) A.1 B.-1 C.2 D.-26.不等式x≥2的解集在数轴上表示为( )A BC D7.已知方程组{2x+y=4,x+2y=5,则x+y的值为( )A.-1 B.0 C.2 D.38.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是( )A.k>-1 B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠09.小朱要到距家1 500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱的速度是x 米/分,则根据题意所列方程正确的是( )A .1 440x -100-1 440x =10B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10D .1 440x +100-1 440x =1010.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为( )A .5 B .-5 C .1 D .-1二、填空题(本大题共5小题,每小题3分,共15分)11.要使分式5x -1有意义,则x 的取值范围是 .12.一元二次方程x 2-3x =0的根是 .13.已知a|a |+b|b |=0,则ab|ab |的值为 .14.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b = .15.对于实数a ,b ,定义运算“*”:a*b ={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2= .三、解答题(一)(本大题共3小题,每小题8分,共24分)16.解方程:x 2-10x +9=0.17.解不等式组:{9x +5<8x +7,43x +2>1-23x ,并写出其整数解.18.解方程:2xx-2=1-12-x.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.先化简,再求值:x-2x-1÷(x+1-3x-1),其中x=3-2.20.某条高速的建设正在紧张地进行,现有大量的沙石需要运输.某车队有载重为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)该车队载重为8吨和10吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.21.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:该方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车的进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?23.关于x的一元二次方程(m-1)x2-2mx+m+1=0.(1)求方程的根;(2)m为何整数时,此方程的两个根都为正整数?2023年广东中考数学专题复习——方程(组)与不等式(组) 答案版(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是(C)A.{x+y=10y=3x+2B.{x+y=10y=3x-2C.{x+y=10x=3y+2 D.{x+y=10x=3y-22.若把不等式组{2-x≥-3,x-1≥-2的解集在数轴上表示出来,则其对应的图形为(B)A.长方形 B.线段 C.射线 D.直线3.用配方法解方程x2-2x-1=0时,配方后所得的方程为(A)A.(x-1)2=2 B.(x-1)2=0C.(x+1)2=2 D.(x+1)2=04.计算2x -2-xx -2的结果是(D )A .0B .1C .xD .-15.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为(A )A .1B .-1C .2D .-26.不等式x≥2的解集在数轴上表示为(C )AB CD 7.已知方程组{2x +y =4,x +2y =5,则x +y 的值为(D )A .-1 B .0 C .2 D .38.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则实数k 的取值范围是(D )A .k>-1B .k<1且k≠0C .k≥-1且k≠0D .k>-1且k≠09.小朱要到距家1 500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,并且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱的速度是x 米/分,则根据题意所列方程正确的是(B )A .1 440x -100-1 440x=10 B .1 440x =10+1 440x +100C .1 440x =1 440x -100+10 D .1 440x +100-1 440x =1010.设x 1,x 2是方程x 2+3x -3=0的两个实数根,则x 2x 1+x 1x 2的值为(B )A .5 B .-5 C .1 D .-1二、填空题(本大题共5小题,每小题3分,共15分)11.要使分式5x -1有意义,则x 的取值范围是x≠1.12.一元二次方程x 2-3x =0的根是x 1=0,x 2=3.13.已知a|a |+b|b |=0,则ab|ab |的值为-1.14.如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =0.15.对于实数a ,b ,定义运算“*”:a*b ={a 2-ab (a ≥b ),ab -b 2(a <b ).例如:4*2,因为4>2,所以4*2=42-4×2=8.若x 1,x 2是一元二次方程x 2-5x +6=0的两个根,则x 1*x 2=3或-3.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.解方程:x 2-10x +9=0.解:方法一(配方法):将方程x 2-10x +9=0变形为x 2-10x =-9,配方,得x 2-10x +25=-9+25,整理,得(x -5)2=16,解得x 1=1,x 2=9.方法二(求根公式法):因为a =1,b =-10,c =9,Δ=100-36=64>0,由求根公式解得x 1=1,x 2=9.方法三(因式分解法):将方程x 2-10x +9=0变形为(x -1)(x -9)=0,解得x 1=1,x 2=9.17.解不等式组:{9x +5<8x +7,43x +2>1-23x ,并写出其整数解.解:{9x +5<8x +7, ①43x +2>1-23x , ②解不等式①得x<2,解不等式②得x>-12.把①②的解集表示在数轴上,如图.故原不等式组的解集是-12<x<2.其整数解是0和1.18.解方程:2x x -2=1-12-x.解:方程的两边同时乘(x -2),得2x =x -2+1,解得x =-1.检验:当x =-1时,x -2≠0,故x =-1是原方程的解.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.先化简,再求值:x -2x -1÷(x +1-3x -1),其中x =3-2.解:原式=x -2x -1÷(x 2-1x -1-3x -1)=x -2x -1×x -1(x +2)(x -2)=1x +2.当x =3-2时,原式=33.20.某条高速的建设正在紧张地进行,现有大量的沙石需要运输.某车队有载重为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)该车队载重为8吨和10吨的卡车各有多少辆?(2)随着工程的进展,该车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.解:(1)设该车队载重为8吨和10吨的卡车分别有x 辆、y 辆,根据题意得{x +y =12,8x +10y =110,解得{x =5,y =7.故该车队载重为8吨的卡车有5辆,载重为10吨的卡车有7辆;(2)设载重为8吨的卡车增加了z 辆,依题意得8(5+z)+10(7+6-z)>165,解得z<52.∵z≥0且为整数,∴z =0,1,2;∴6-z =6,5,4,∴车队共有3种购车方案:①载重为8吨的卡车不购买,载重为10吨的卡车购买6辆;②载重为8吨的卡车购买1辆,载重为10吨的卡车购买5辆;③载重为8吨的卡车购买2辆,载重为10吨的卡车购买4辆.21.已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.(1)求证:该方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是方程的两个实数根,第三边BC的长为5.当△ABC是等腰三角形时,求k的值.(1)证明:∵Δ=[-(2k+1)]2-4×1×(k2+k)=1>0,∴方程有两个不相等的实数根;(2)解:∵由x2-(2k+1)x+k2+k=0,得(x-k)[x-(k+1)]=0,∴x1=k,x2=k+1.即AB,AC的长为k,k+1,当AB=BC时,即k=5,满足三角形构成条件;当AC=BC时,k+1=5,解得k=4,满足三角形构成条件.综上所述,k=4或k=5.五、解答题(三)(本大题共2小题,每小题12分,共24分)22.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车的进价为1 000元/辆,售价为1 300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?解:(1)设前4个月自行车销量的月平均增长率为x,根据题意列方程,得64(1+x)2=100,解得x1=-225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).故该商城4月份卖出125辆自行车.(2)设购进B 型车x 辆,则购进A 型车30 000-1 000x 500辆,根据题意得不等式组2x≤30 000-1 000x 500≤2.8x ,解得12.5≤x≤15,因为自行车辆数为整数,所以13≤x≤15,销售利润W =(700-500)×30 000-1 000x 500+(1 300-1 000)x.整理得W =-100x +12 000,因为W 随着x 的增大而减小,所以当x =13时,销售利润W 有最大值,此时,30 000-1 000×13500=34,所以该商城应购进A 型车34辆,B 型车13辆.23.关于x 的一元二次方程(m -1)x 2-2mx +m +1=0.(1)求方程的根;(2)m 为何整数时,此方程的两个根都为正整数?解:(1)方法一:根据题意得m≠1.Δ=(-2m)2-4(m -1)(m +1)=4.∴x 1=2m +22(m -1)=m +1m -1,x 2=2m -22(m -1)=1.方法二:根据题意得m≠1.原方程可化为(x -1)[(m -1)x -(m +1)]=0,∴x 1=m +1m -1,x 2=1.(2)由(1)知x 1=m +1m -1=1+2m -1,∵方程的两个根都是正整数,∴2m -1是正整数,∴m -1=1或2.∴m =2或3.。
初三数学第二轮复习练习试卷
初三数学第二轮复习练习试卷(二)1、如 ,一 方形 片ABCD ,其 AD=a , AB=b(a>b) ,在 BC 上 取一点 M ,将 ABM 沿 AM翻折后 B 至 B ′的地点,若 B ′ 方形 片 ABCD 的 称中心, a的 是.AD bB ′B MCy2、在方格 中,每个小格的 点称 格点,以格点 点的三角形叫做格点三角形.在如 5× 5 的方格 中,以 A 、 B 点作格点三角形与△ OAB 相像(相像比不可以 1) , 另一个 点 C 的坐 .AOBx3、 (1)命 “ a 、b 是 数,若 a>b , a 2>b 2”若 保持不 ,怎 改 条件,命 才是真命 ,以下四种改法:① a 、b 是 数,若 a>b>0, a 2>b 2;② a 、b 是 数,若 a>b 且 a+b>0, a 2 >b 2;③ a 、 b 是 数,若 a<b<0, a 2>b 2;④ a 、b 是 数,若a<b 且 a+b<0, a 2>b 2. 此中真命 的个数是( )A .1 个B .2 个C .3 个D .4 个4、近 眼 的度数 y (度) 与 片焦距 x ( m )成反比率, 已知 400°近 眼 片的焦距0.25m ,眼 度数y 与 片焦距 x 之 的函数关系式5、鞋子的“鞋 ”和鞋 (厘米)存在一种 算关系,下表是几 “鞋 ”和“鞋 ”的 表:鞋 15 23 25 26 ⋯鞋20364042 ⋯( 1 )通 画算、比 、 察等方法,猜想 种 算可能切合哪一种函数关系? 写出鞋 x 与鞋 y的关系式。
( 2) 你所求的 算关系式能否正确。
( 3)假如 球巨人姚明的脚 31 厘米,那么他穿多大 的鞋?6、某生 “科学 算器”企业有 100 名 工, 企业生 的 算器有百 企业代理 售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第二轮复习练习试卷(四)
1、罗马数字共有 7 个:I(表示 1),V(表示 5),X(表示 10),L(表示 50),C(表
示 100),D(表示 500),M(表示 1000),这些数字不论位置怎样变化,所表示的数
目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:
如IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL=___,XI=___。
2、小明参加“开心词典”答题的活动中,在回答第五道题时,被难住了,题目如下:如
图所示,天平两端能保持平衡。
请回答在右图中,天平的右边应放几个圆形,才能使天平保持平衡,他打电话向你
求助,你能通过计算,并给他一个正确的答案吗?请说出你的做法。
3、在栽植农作物时,一个很重要的问题是“合理密植”.如图是栽植一种蔬菜时的两种方
法,A、B、C、D四珠顺次连结成为一个菱形,且AB=BD;A′、B′、•C′、D′四株连
结成一个正方形,这两种图形的面积为四株作物所占的面积,•两行作物间的距离为行
距;一行中相邻两株作物的距离为株距;设这两种蔬菜充分生长后,每株在地面上的影
子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面
积.在株距都为a,其他客观因素也相同的条件下,•请从栽植的行距,蔬菜所占的面积,
充分生长后空隙地面积三个方面比较两种栽植方法.哪种方法能更充分地利用土地.
○ ▲▲ ▲▲ □□ □
▲▲▲ ▲▲ ▲ ▲ ○○
○
△ △
□□
△
- 2 -
4、观察图2-6-10中⑴)至⑸中小黑点的摆放规律,并按照这样的规律继续摆放.记第n
个图中小黑点的个数为y.解答下列问题:
⑴ 填下表:
⑵ 当n=8时,y=___________;
⑶请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图象上,请求出该
函数的解析式.
5、如图2-3-5所示,抛物线2yaxbxc与x轴交于A、B两点(点A在点B的左侧),
与y轴交于点C,且当x=0和x=2时y的值相等,直线y=3x—7与这条抛物线相交于两
点.其中一点的横坐标是4,另一点是这条抛物线的顶点M。
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q,若点P在线段BM上运动,
设OQ的长为t,四边形P QAC的面积为S(当P与B重合时,S为△ACB的面积).求S与
t之间的函数关系式及自变量t的取值范围;
(3)S有无最大、最小值,若有,请分别求出t为何值时S取最大、最小值?最大、
最小值各是多少;若没有,请说明理由.