离散数学(屈婉玲版)第七章部分答案
离散数学习题(耿素云屈婉玲)

离散数学习题答案习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧ 解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式,所以成真赋值为011,111。
6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ⇔∧∧⌝∨∨⌝∨∧⌝∨∧()()()()()()p q r p q r p q r p q r p q r p q r ⇔∧∧⌝∨∧∧∨⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ⇔⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧⌝∨∧∧13567m m m m m ⇔∨∨∨∨,此即主析取范式。
主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ⇔∧∧。
9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨⌝∧ 解:公式的真值表如下:由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式1234567m m m m m m m ⇔∨∨∨∨∨∨习题三及答案:(P52-54)11、填充下面推理证明中没有写出的推理规则。
前提:,,,p q q r r s p ⌝∨⌝∨→结论:s 证明:① p 前提引入 ② p q ⌝∨ 前提引入 ③ q ①②析取三段论 ④q r ⌝∨ 前提引入⑤ r ③④析取三段论 ⑥ r s → 前提引入⑦ s ⑤⑥假言推理15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论:p u →证明:用附加前提证明法。
离散数学习题问题详解(耿素云屈婉玲)

离散数学习题答案习题二及答案:(P38)5、求下列公式的主析取式,并求成真赋值: (2)()()p q q r ⌝→∧∧ 解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取式,所以成真赋值为011,111。
6、求下列公式的主合取式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取式,所以成假赋值为100。
7、求下列公式的主析取式,再用主析取式求主合取式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ⇔∧∧⌝∨∨⌝∨∧⌝∨∧()()()()()()p q r p q r p q r p q r p q r p q r ⇔∧∧⌝∨∧∧∨⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ⇔⌝∧⌝∧∨⌝∧∧∨∧⌝∧∨∧∧⌝∨∧∧13567m m m m m ⇔∨∨∨∨,此即主析取式。
主析取式中没出现的极小项为0m ,2m ,4m ,所以主合取式中含有三个极大项0M ,2M ,4M ,故原式的主合取式024M M M ⇔∧∧。
9、用真值表法求下面公式的主析取式: (1)()()p q p r ∨∨⌝∧ 解:公式的真值表如下:由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取式,故主析取式1234567m m m m m m m ⇔∨∨∨∨∨∨习题三及答案:(P52-54)11、填充下面推理证明中没有写出的推理规则。
前提:,,,p q q r r s p ⌝∨⌝∨→结论:s 证明:① p 前提引入 ② p q ⌝∨ 前提引入 ③ q ①②析取三段论 ④q r ⌝∨ 前提引入⑤ r ③④析取三段论 ⑥ r s → 前提引入⑦ s ⑤⑥假言推理15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论:p u →证明:用附加前提证明法。
离散数学第七章图论习题课

P286 1、在无向图G中,从结点u到结点v有一条长度为 偶数的通路,从结点u到结点v又有一条长度为奇 数的通路,则在G中必有一条长度为奇数的回路。
证明 :
2、运用 (1) 判断有向图或无向图中通路(回路)的类型。 (2) 求短程线和距离。 (3) 判断有向图连通的类型。
三、图的矩阵表示
1、基本概念。 无向图的邻接矩阵A 根据邻接矩阵判断:各结点的度, 有向图结点 出,入度。 由Ak可以求一个结点到另一个结点长度为k 的路条数. 有向图的可达矩阵P 用P可以判定:各结点的度. 有向图的强分图。 关联矩阵M:是结点与边的关联关系矩阵. 用M判定:各结点的度
设给定图G(如由图所示),则图G的点割集
是
.
应该填写:{f},{c,e}。
定义 设无向图G=<V, E>为连通图,若有点集
V1V,使图G删除了V1的所有结点后,所得的子
图是不连通图,而删除了V1的任何真子集后,所
得的子图是连通图,则称V1是G的一个点割
集.若某个结点构成一个点割集,则称该结点为
割点。
a c
a c
b
d
b
d
a c
a c
b
d
b
d
推论:任何6人的人群中,或者有3人互相认识,或者有 3人彼此陌生。(当二人x,y互相认识,边(x,y)着红色, 否则着兰色。则6人认识情况对应于K6边有红K3或者 有兰K3。)
证明简单图的最大度小于结点数。
证明: 设简单图G有n个结点。对任一结点u,由于G没
离散数学第7章 图论 习题

300页(2) 如果u可达v,它们之间可能不止一条
路,在所有这些路中,最短路的长度 称为u和v之间的距离(或短程线), 记作d<u,v>,如果从u到v是不可达的, 则通常写成 d<u,v> =∞
距离矩阵为
0 1 2 1 ∞ 0 1 1 ∞ 1 0 1 ∞ 1 2 0 dij=1表示存在边<vi,vj>。
c)画一个没有一条欧拉回路,但有一条汉密尔顿回路的图。
设G是一个具有k个奇数度结点(k>0)的连通图, 证明在G中的边能剖分为k/2条路(边不相重)。 证明:因为一个图中度数为奇数的结点个数必为偶数, 故k必为偶数。 将G中k个奇数度结点分为数目相等的两组{u1,u2,…,uk/2} 和{v1,v2,…,vk/2} 。对图G添加边(u1,v1), (u2,v2),…, (uk/2,vk/2)共k/2条边,得到图G’。由于图G’中每个结 点的度数均为偶数,故G’中存在一条欧拉回路。 在图G’中删去边(u1,v1),得到一条欧拉路, 此路的两个端 点是u1和v1。结点u2和v2必在路的中间, 再删去边 (u2,v2),得到两条边互不相重的迹,这两个迹的端点 分别为u2和v2。结点u3和v3必在某一条迹的中间。 再删去边(u3,v3) ,则将一条迹(包含u3和v3的迹)又分 为两条边互不相重的迹,共得到3条互不相重的迹。 以此继续下去,直到所有的添加边(u1,v1), (u2,v2),…, (uk/2,vk/2)全部删去,得到k/2条边互不相重的路(迹)。
(完整word版)离散数学习题解答(耿素云屈婉玲)北京大学出版社

习题一1。
下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明。
答:此命题是简单命题,其真值为1。
(2答:此命题是简单命题,其真值为1。
(3)3是素数或4是素数.答:是命题,但不是简单命题,其真值为1.x+<(4)235答:不是命题.(5)你去图书馆吗?答:不是命题。
(6)2与3是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道。
(8)这朵玫瑰花多美丽呀!答:不是命题。
(9)吸烟请到吸烟室去!答:不是命题。
(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为1。
(11)只有6是偶数,3才能是2的倍数.答:是命题,但不是简单命题,其真值为0。
(12)8是偶数的充分必要条件是8能被3整除.答:是命题,但不是简单命题,其真值为0。
(13)2008年元旦下大雪.答:此命题是简单命题,其真值还不知道。
2。
将上题中是简单命题的命题符号化。
解:(1)p:中国有四大发明.(2)p:是无理数.(7)p:刘红与魏新是同学。
(10)p:圆的面积等于半径的平方乘以π.(13)p:2008年元旦下大雪。
3。
写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(15.答:否定式5. p5q5.其否定式q的真值为1。
25不是无理数.答:25p25不是无理数。
q25是有理数. 其否定式q的真值为1.(3)2.5是自然数。
答:否定式:2.5不是自然数。
p:2。
5是自然数。
q:2.5不是自然数. 其否定式q的真值为1.(4)ln1是整数。
答:否定式:ln1不是整数. p:ln1是整数。
q:ln1不是整数. 其否定式q的真值为1。
4。
将下列命题符号化,并指出真值.(1)2与5都是素数答:p:2是素数,q:5是素数,符号化为p q∧,其真值为1。
(2)不但π是无理数,而且自然对数的底e也是无理数.答:p:π是无理数,q:自然对数的底e是无理数,符号化为p q∧,其真值为1。
离散数学最全课后答案(屈婉玲版)_0

离散数学最全课后答案(屈婉玲版)离散数学习题解1习题11 . 1 .2 . 1 .3 . 1 .4 . 1 .5 . 1 .6 . 1 .7 . 1 .8 . 1 .9 .|下列命题用符号表示,并给出其真值:(1) 2+2(2) 2+2 = 4的充要条件是3+3?6.(3)2+2?4和3+3 = 6都是必要和充分的条件。
(4)如果2+2?4,然后3+3?6,反之亦然。
(1)p?q,其中p: 2+2 = 4,q: 3+3 = 6,真值为1。
(2)p??q,其中p: 2+2 = 4,q: 3+3 = 6,真值为0。
(3)?p?q,其中p: 2+2 = 4,q: 3+3 = 6,真值为0。
(4)?p??q,其中p: 2+2 = 4,q: 3+3 = 6,真值为1.1.13。
用符号表示下列命题,并给出每个命题的真实值:(1)如果今天是星期一,明天就是星期二。
只有今天是星期一。
明天是星期二。
(3)今天是星期一,只有明天是星期二。
(4)如果今天是星期一,明天就是星期三。
订单P:今天是星期一;问:明天是星期二;明天是星期三。
问??1.(2) q?p??1.(3) p?问??1.(4) p?r何时p??0为真;p??一小时是假的。
1.14。
象征以下命题。
(1)刘跑得快,跳得高。
老王来自山东或河北。
(3)因为天气寒冷。
所以我穿上了羽绒服。
(4)王欢和李乐组成一个小组。
(5)李欣和李默是兄弟。
(6)王强和刘伟都学过法语。
他一边吃饭一边听音乐。
如果下大雨,他就乘公共汽车去上班。
只有下大雨时,他才乘公共汽车去上班。
除非下大雨。
他刚刚乘公共汽车去上班。
雪很滑,他迟到了。
(12)2和4是质数,这是错误的。
(13)“2或4是质数,这是错误的”是错误的。
离散数学习题解答(1)p?其中,刘跑得快,刘跳得高。
(2)p?其中,p:老王来自山东,q:老王来自河北。
(3)p?问:那里的天气很冷,问:我穿着羽绒服。
(4)p,其中P:王欢和李乐组成一个组,这是一个简单的命题。
离散数学屈婉玲版课后答案
离散数学屈婉玲版课后答案【篇一:离散数学第四版课后答案】xt>第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然??,但是??”、“不仅??,而且??”、“一面??,一面??”、“??和??”、“??与??”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月 13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
(完整word版)离散数学答案屈婉玲版第二版高等教育出版社课后答案
离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数1q: 3是无理数0r: 2是无理数 1s: 6能被2整除1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔(⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p)) ⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r ⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入。
离散数学第三版 屈婉玲 课后习题答案
离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)11119、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q001111011010100101110001由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q)1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(pq)r(pq r,此即主析取范式。
离散数学第七章检测题及答案
离散数学第七章检测题一、 单项选择题(每小题2分,共20分)1.下图中是哈密尔顿图的是( 2 )2.下面给出的四个图中,哪个不是汉密尔顿图( (4) ).3.下列是欧拉图的是( 2 )4. 下列各图不是欧拉图的是( 4 )5.设()A G 是有向图,G V E 的邻接矩阵,其第i 列中“1”的数目为( )。
(C)(1).结点i v 的度数; (2).结点i v 的出度; (3).结点i v 的入度; (4).结点j v 的度数。
6.无向图G 中有16条边,且每个结点的度数均为2,则结点数是( 2 )(1).8 (2).16 (3).4 (4).327.设G=为无向图〉〈EV,,23,7==EV,则G一定是((4)).(1).完全图;(2).零图;(3).简单图;(4).多重图.8.若具有n个结点的完全图是欧拉图,则n为( 2).(1).偶数;(2).奇数;(3).9;(4).10.9.无向图G是欧拉图,当且仅当().(1)(1).G连通且所有结点的度数为偶数;(2).G的所有结点的度数为偶数;(3).G连通且所有结点的度数为奇数;(4).G的所有结点的度数为奇数.10.下面哪一种图不一定是树().(3)(1).无圈连通图;(2).有n个结点1n-条边的连通图;(3).每对结点间都有路的图;(4).连通但删去一条边就不连通的图.二、填空题(每空3分,共45分)1.在下图中,结点v2的度数是 4 ,结点v5的度数是 3 。
2.在一棵根树中,有且只有一个结点的入度为__0___,其余所有结点的入度均为_1__。
其中入度为__0___的结点称为树根,出度为__0___的结点称为树叶。
3.设图111,G V E=,22221,,G V E E E=⊆且,如果,则称2G是1G的子图,如果,则称2G是1G的生成子图。
(2121,V V V V⊆=)4.在任何图,G E=中,∑∈Vvv)deg(= 2 │E│,其奇数度结点的个数必为偶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1 列各组数中,那些能构成无向图的度数列?那些能构成无向简单图的度数列?
(1)1,1,1,2,3
(2)2,2,2,2,2
(3)3,3,3,3
(4)1,2,3,4,5
(5)1,3,3,3
解答:(1),(2),(3),(5)能构成无向图的度数列。
(1),(2),(3)能构成五项简单图的度数列。
7.2 设有向简单图D的度数列为2,2,3,3,入度列为0,0,2,3,试求D的出度列。
解:因为 出度=度数-入度,所以出度列为2,2,1,0。
7.3 设D是4阶有向简单图,度数列为3,3,3,3。它的入度列(或出度列)能为1,1,
1,1吗?
解:由定理7.2可知,有向图的总入度=总出度。该有向图的总入度=1+1+1+1=4,总出
度=2+2+2+2=8,4!=8,所以它的出度列(或入度列)不能为1,1,1,1。
7.6 35条边,每个顶点的度数至少为3的图最多有几个顶点?
解:根据握手定理,所有顶点的度数之和为70,假设每个顶点的度数都为3,则
n为小于等于370的最大整数,即:23
∴ 最多有23个顶点
7.7 设n阶无向简单图G中,δ(G)=n-1,问△(G)应为多少?
解: 假设n阶简单图图n阶无向完全图,在Kn共有2)1(nn条边,各个顶点度数之和
为n(n-1)
∴每个顶点的度数为nnn)1(=n-1
∴△(G)=δ(G)=n-1
7.8 一个n(n≥2)阶无向简单图G中,n为奇数,有r个奇度数顶点,问G的补图G中
有几个奇度顶点?
解:在Kn图中,每个顶点的度均为(n-1),n为奇数,在G中度为奇数的顶点在G中
仍然为奇数,
∴共有r个奇度顶点在G中
7.9 设D是n阶有向简单图,D’是D的子图,已知D’的边数m’=n(n-1),问D的边数
m为多少?
解: 在D’中m’=n(n-1) 可见D’为有个n阶有向完全图,则D=D’ 即D’就
是D本身,
∴m=n(n-1)
7.18 有向图D入图所示。求D中长度为4 的通路总数,并指出其中有多少条是回路?
又有几条是V3到V4的通路?
答: D中长度为四的通路总数:15
其中有3条是回路
2条是V3到V4的通路
评语:此题的结果是对的,但是应该写出求解过程,即:先写出邻接矩阵A,然后求A的
四次幂,通过矩阵指出通路或回路的条数。
7.19 设n阶图G中有m条边,每个顶点的度不是k就是k+1,若G中有Nk个k
度顶点,Nk+1个(k+1)度顶点,则Nk为?
解: 由题义可以得到: Nk*k+ Nk+1*(k+1)=2m ① 握手定理
Nk+ Nk+1=n ② n阶图
由①②解得 Nk=n*(k+1)-2m