常州市2017-2018年第二学期八年级数学期末试题(含答案)
2017-2018学年常州市八年级(上)期末数学试卷(电子稿含评分标准)

2017-2018学年江苏省常州市八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.剪纸是中国最古老的民间艺术之一,是中华传统文化中的瑰宝.下列四个剪纸图案中不是轴对称图形的是()A.B.C.D.2.9的算术平方根是()A.3B.﹣3C.±3D.3.在平面直角坐标系中,若点P的坐标为(﹣3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,两个三角形全等,则∠α的度数是()A.50°B.58°C.72°D.60°5.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是()A.B.C.D.6.下列各组数中,能作为直角三角形三边长的是()A.4,5,6B.5,7,12C.3,4,D.1,7.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过O,且MN∥BC,分别交AB、AC于点M、N.若BM=5,MN=9,则线段CN的长是()A.3B.4C.4.5D.58.如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x 表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A.B.C.D.6第7题图第8题图二、填空题(木大题共8小题,每小题2分,共16分)9.﹣8的立方根是.10.平面直角坐标系中点P(3,﹣2)关于x轴对称的点的坐标是.11.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距km.12.已知点P(﹣2,a)在一次函数y=3x+1的图象上,则a=.13.如图,在三角形纸片ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.如果∠BAC=40°,则∠CBD的度数是.第13题图第15题图第16题图14.函数y=x+1的图象可由函数y═x的图象经一定的变换得到.写一个这样的变换:.15.已知:如图,AB=AC,DB=DC,点E在AD上.下列结论:①∠BAD=∠CAD;②△ABE≌△ACE;③△DBE≌△DCE.其中正确的是(填序号)16.已知一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b>﹣1的解集是.三、解答题(第17、18题每题5分)17.计算:﹣18.已知(x+1)2﹣1=3,求x的值.19.(8分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.20.(8分)如图,平面直角坐标系中,函数y=﹣3x+b的图象与y轴相交于点B,与函数y=﹣x的图象相交于点A,且OB=5.(1)求点A的坐标;(2)求函数y=﹣3x+b、y=﹣x的图象与x轴所围成的三角形的面积.21.(8分)已知:如图,在△ABC中,∠ABC=90°,AB=BC,D是AC的中点,点E在AC上,点F在BC上,且AE=BF.(1)求证:DE=DF;(2)连接EF,求∠DEF的度数.22.(8分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移4个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(3,2)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数表达式.23.(8分)某手机专卖店销售1部A型手机的利润为100元,销售1部B型手机的利润为150元.该商店计划一次购进两种型号的手机共100部,设购进A 型手机x部,这100部手机的销售总利润为y元.(1)求y与x之间的函数表达式;(2)若B型手机的进货量不超过A型手机的2倍,问:该商店购进A型、B型手机各多少部,才能使销售总利润最大?24.(8分)周末,小明和爸爸沿同一条道路慢跑到红梅公园,两人从家中同时出发,爸爸先以100米/分钟的速度慢跑一段时间,休息了5分钟,再以m米/分钟的速度慢跑到红梅公园,小明始终以同一速度慢跑,两人慢跑的路程y (米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小明的速度是80米/分,求小明在途中与爸爸第二次相遇时行驶的路程.25.(10分)如图,已知一次函数y=x+3的图象与坐标轴交于点A、B,点C 在线段AO上,将△BOC沿BC翻折,点O恰好落在AB上点D处.(1)求OC的长;(2)过点A作AE⊥BC,交BC的延长线于点E,连接OE,试判断△AOE的形状,并说明理由.。
常州市2017~2018学年度第二学期期中质量调研八年级数学试卷及答案(可编辑修改word版)

2017~2018 学年度第二学期期中质量调研2018.4八年级数学试题一、选择题(每小题 2 分,共 16 分)1.下列图形中,是中心对称图形的是【】A.B.C.D.2.一个不透明的盒子中装有2 个红球、3 个白球和2 个黄球,它们除颜色外都相同.若从中任意摸出一个球,摸到哪种颜色的球的可能性最大【】A.红色B.白色C.黄色D.红色和黄色3.下列调查中,适宜采用抽样调查方式的是【】A.学校在给学生订制校服前尺寸大小的调查B.调查某品牌白炽灯的使用寿命C.调查乘坐飞机的旅客是否携带了违禁物品D.调查八年级某班学生的视力情况4.为了了解我市2017 年中考数学学科各分数段成绩分布情况,从中抽取180 名考生的中考数学成绩进行统计分析.在这个问题中,样本是指【】A.180 B.被抽取的180 名考生C.被抽取的180 名考生的中考数学成绩D.我市2017 年中考数学成绩1 2x x2+1 1 25.在,,,m +,- 中分式的个数有2 x 23 x -y【】A.2 个B.3 个C.4 个D.5 个6.矩形具有而菱形不具有的性质是【】A.对边相等B.对角线互相平分C.对角线互相垂直D.对角线相等7.若分式 6的值是正整数,则 m 可取的整数有 -------------------------------------------------------------------m - 2A .4 个B .5 个C .6 个D .10 个8如图,在平面直角坐标系中,四边形 ABCD 是平行四边形,A (-1,3)、B(1,1)、C (5,1).规定“把□ABCD 先沿 x 轴翻折,再向左平移 1 个 单位”为一次变换.如此这样,连续经过 2018 次变换后,□ABCD 的顶 点D 的 坐 标 变 为【】A .(-2015,3)B .(-2015,-3)C .(-2016,3)D .(-2016,-3)二、填空题(每小题 2 分,共 20 分)42ab 3c9.约分: 7a 2bc2 = .10.在整数 20180419 中,数字“1”出现的频率是. 11.若分式 xx - 1 有意义,则 x 满足的条件是.12.计算: a - b÷(b - a ) = .a + b13. “平行四边形的对角线互相平行”是 事件.(填“必然”、“随机”、“不可能”)14. 如下图,将△ABC 绕点 C 逆时针旋转 50°得到△A 'B 'C ,则∠B 'CB 的大小为°. 15.若等式 3x - 5= 3 + x + 1 n x + 1对于任意 x (x ≠-1)都成立,则 n 的值是.16. 如图,□ABCD 中, AF 、BE 分别平分∠BAD 与∠ABC ,分别交 AD 、BC 于点 E 、F ,则 AF与 BE 之间的位置关系是:.A'AAEDAG BB CB'BFCDEC第 14 题 第 16 题 第 18 题17. 菱形 ABCD 的周长为 32cm ,则菱形 ABCD 的面积的最大值是 cm 2.18. 如图,矩形 ABCD 中,AB =14,AD =8,点 E 是 CD 的中点,DG 平分∠ADC 交 AB 于点 G ,过点 A 作 AF ⊥DG 于点 F ,连接 EF ,则 EF 的长为 .三、计算与化简(共 14 分)F2b a + ba - 2 a 2 - 419.⑴ (4 分) -a -b a - b⑵ (4 分)1 -a÷ a 2 + a⑶ (6 分)先化简,再求值: 1+x - 1 x 2 -3xx 2 - 1,其中 x = -2 .四、解方程(每小题 4 分,共 8 分)20.⑴2 = x - 2 3x + 3⑵ 34 - x + 2 = 1 - x x - 4五、作图题(6 分)2(1.6 分如)图平,面直角坐标系 x O y 中A ,(-2-,1)B ,(-4,-3),C (-1,-3),A '(2,1).⑴ 若△A 'B 'C '与△ABC 成中心对称(点 A 、B 分别与 A '、B '对应). 试在图中画出△A 'B 'C '.'⑵ 将⑴中△A 'B 'C '绕点C 顺时针旋转 90°,得到△ A ' B 'C ' .试在图中画出△ A ' B 'C ' .⑶ 若△ A ' B 'C ' 可由△ABC 绕点 G 旋转 90°则点 G 的坐标为.六、解答题(共 36 分,其中第 22、23、24 题各 6 分,第 25 题 8 分,第 26 题 10 分) 22.(6 分)某校在大课间中开设了 A (体操),B (跑操),C (舞蹈),D (健美操)四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题: ⑴ 这次被调查的学生共有 人.⑵ 请将统计图 2 补充完整.⑶ 已知该校共有学生 3400 人,请根据调查结果估计该校喜欢健美操的学生人数.图 1图 2项目23.(6 分)如图,□ABCD 中,点E、F 分别在BC、AD 上,且BE=DF.求证:AE∥F C.A F DB E C24.(6 分)A、B 两港口分别位于长江的上、下游,相距s km,若一艘游轮在静水中航行的速度为a km/h,水流速度为b km/h(b<a).⑴该游轮从A 港口航行到B 港口的速度为km/h,从B 港口航行到A 港口所用的时间为h;⑵ 该游轮从A 港口航行到 B 港口的时间比从B 港口航行到A 港口所用的时间少用多少?25.(8 分)如图,正方形ABCD 的边长为6,点E 是边AB 上一点,点P 是对角线BD 上一点,且PE⊥PC.⑴ 求证:PC=PE; A D⑵ 若BE=2,求PB 的长.PEB C26.(10 分)如图1,在平面直角坐标系xOy 中,A(0,4),B(8,0),C(8,4).⑴ 试说明四边形AOBC 是矩形.⑵ 在x 轴上取一点D,将△DCB 绕点C 逆时针旋转90°得到△D'CB'(点D'与点D 对应).① 若OD=3,求点D'的坐标.②连接AD'、OD',则AD'+OD'是否存在最小值,若存在,请直接写出最小值及此时点D'的坐标;若不存在,请说明理由.图 1八年级数学参考答案及评分意见一、选择题(每小题 2 分,共 16 分)二、填空题(每小题 2 分,共 20 分)6b 2 1 19.10.11.x ≠ 1 12.- 13.不可能ac14.50 15.- 8 4 a +b16.互相垂直平分(垂直或平分可得1 分)17.64 18.5三、计算与化简(共 14 分)19.(共14 分)⑴2ba -b-a +ba -b=2b - (a +b)a -b=-a +ba -b--------------------- 2 分3 分=﹣14 分⑵ 1 - a - 2a÷a 2- 4a 2+a= 1 -a - 2⋅ a= 1 -a +1a + 2a(a + 1)(a + 2)(a -2)--------- 2 分3分=1 a + 2⑶1+x 2-3x=x+14分+x 2-3x ------------------------------------------- 2 分x -1x 2-1(x +1)(x -1) (x + 1)(x - 1)1 +x 2- 2x=(x +1)(x -1)(x -1)2=(x +1)(x -1)x - 13 分4 分- 2 - 1= , 当x=-2 时,原式= =3 ----------------------------------------------------- 6 分x +1 - 2+1四、解方程(每小题 4 分,共 8 分)20.(共 8 分) ⑴2= x - 2 3x + 3解 得 :x=12 2 分经检验 x=12 是原方程的解 ---------- 3 分 ∴ 原方程的解是 x=12. --------------- 4 分 ⑵3 4 - x + 2 = 1 - xx - 4解 得 :x=4 2 分经检验 x=4 是原方程的增根 -------- 3 分 ∴ 原方程无解. ------------------------- 4 分 五、作图题(共 6 分)21.⑴ 如图 --------------------------------------- 2 分 ⑵ 如图 --------------------------------------- 4 分⑶ G (﹣3,1) ------------------------------ 6 分六、解答题(共 36 分)22.⑴ 5002 分⑵ 如图所示: --------------------------------------- 4 分⑶ 3400⨯245=1666 人 ---------------------------- 5 分500答:估计该校喜欢健美操的学生人数为 1666 人 ---------------------------------- 6 分23. ∵ 四边形 ABCD 是平行四边形人数(人)∴ AD=BC ,AD ∥BC ----------------------------------- 2 分 ∵ DF=BE∴ AD -DF=BC -BE 即:AF=CE 4 分∵ AF ∥EC∴四边形AECF 是平行四边形 ------------------------- 5分∴AE∥FC 6 分24.⑴ a+b,sa -b2 分⑵sa -b-sa +b =2sbh 5 分(a -b)(a +b)答:时间少用2sb(a -b)(a +b)h. 6 分25.⑴ 过点P 作PF⊥AB,PG⊥BC,垂足分别为点F、G.∴ ∠PFB=∠PGB=∠PGC=90°∵ 四边形ABCD 是正方形∴ ∠A=∠ABC=90°,AB=AD=BC∴∠ABD=∠ADB=45°,四边形FBGP 是矩形 ------------------------------------------- 1 分∴ ∠FPB=90°-∠ABD=90°-45°=45°∴ ∠ABD=∠FPB∴FP=FB∴ 矩形FBGP 是正方形 2 分∴PF=PG,∠FPG=90° 3 分∴ ∠FPG+∠EPG=90°∵EP⊥PC ∴ ∠EPC=90°∴ ∠GPC+∠EPG=90°∴ ∠FPG=∠GPC 4 分∵ ∠FPG=∠GPC ,PF=PG,∠PFE=∠PGC∴ △PFE≌△PGC (ASA)∴PE=PC 5 分(方法不唯一,酌情给分)⑵ 设EF=x∵△PFE≌△PGC ∴GC=EF=x由BE=2 得:BF=x+2由正方形FBGP 得:BG=x+2∵BC=6 ∴BG+GC=6∴(x+2)+x=6 解得:x=2 6 分∴PF=BF=2+2=4 7 分△PFB 中,∠PFB=90°,由勾股定理得:PB 2= 42+ 42= 32八年级数学 第 11 页 (共 11 页) 32 2 59237 80 5 ∵ PB >0 ∴ PB = (或4 ) --------------------------------------------------------- 8 分 答:PB 的长为 32 .26.⑴ ∵ A (0,4),B (8,0),C (8,4)∴ OA=4,BC=4,OB=8,AC=8∴ OA=BC ,AC=OB∴ 四边形 AOBC 是平行四边形1 分 ∵ ∠AOB=90°∴ □AOBC 是 矩形 2 分 八年级最后一题第⑵题,答案作如下修正:第①题的答案:D '(12,-1)或 D '(12,-7)第②题的答案:最小值为 或 4 ,此时点 D '(12,2)评分标准与原先类似.⑵ ∵ □AOBC 是矩形∴ ∠ACB=90°,∠OBC=90°∵ △D 'CB '将△DCB 绕点 C 逆时针旋转 90°得到(点 D ' 与点 D 对应) ∴ ∠D 'B 'C = ∠DBC = 90︒ , B 'C = BC = 4 , D 'B ' = DB --------------------- 4 分∠BCB ' = 90︒ ,即:点 B ' 在 AB 边上 -------------------------------------------------- 5 分 ∴ D 'B ' ⊥AC6 分 ①如图 1,当点 D 在原点右侧时: D 'B ' = DB = 8 - 3 = 5∴ 点 D ' 的坐标为(4,9) -------------------------------------------------------------------- 7 分 ②如图 2,当点 D 在原点左侧时: D 'B ' = DB = 8 + 3 = 11∴ 点 D ' 的坐标为(4,15)8 分综上所述:点 D ' 的坐标为(4,9)或(4,15).图 1图 2 AD '+OD '的最小值是 (或4 ) ------------------------------------------------------ 9 分 点 D '的坐标是(4,2).10 分。
2017-2018学年度 八年级数学期末测试卷(含答案)

2017—2018学年度第一学期期末检测试卷八年级数学A 卷 B 卷题号一二三2324252627总 分得分A 卷(100分)一、选择题(每小题4分,共40分)1、-8的立方根为 ( )A .2B .-2C .±2D .±42、实数, -π, , , 0, 3 , 0.1010010001……中,无理数的71132-4个数是 ( )A .2B .3C .4D .53、下列图形中是中心对称图形的为 ( )4、下列运算正确的是 ( )A. B. C. D.623a a a =⨯633x x =)(1055x x x =+3325b a ab ab -=-÷-)()(5、分解因式结果正确的是 ( )32b b a -A 、B 、C 、D 、)(22b a b -2)(b a b -))((b a b ab -+))((b a b a b -+6、通过估算,估计 76 的大小应在 ( )A .7~8之间B .8.0~8.5之间C .8.5~9.0之间D .9~10之间7、下列图形中是旋转对称图形有 ( )①正三角形 ②正方形 ③三角形 ④圆 ⑤线段A.个B.个C.个D.个54328、已知a 、b 、c 是三角形的三边长,如果满足,则0108)6(2=-+-+-c b a 三角形的形状是 ( )A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形9、如图:在菱形ABCD 中,AC=6,BD=8,则菱形的边长为 ( )A .5B .10C .6D .810、如图,□ABCD 中,对角线AC 和BD 交于O ,若AC =8,BD =6,则AB 长的取值范围是 ( )A .B .71<<AB 42<<AB C .D .86<<AB 43<<AB 二、填空题(每小题4分,共32分)11、的算术平方根是________;3612、.计算: .()[]=+-222322221n m mn n m 13、多项式是完全平方式,则m = .6422++mx x 14、如图,在平行四边形ABCD 中,EF∥AD,GH∥AB,EF 、GH10题图9题图相交于点O,则图中共有____ 个平行四边形.15、已知,如图,网格中每个小正方形的边长为1,则四边形ABCD 的面积为 .16、已知:等腰梯形的两底分别为和,一腰长为,则它的对cm 10cm 20cm 89角线的长为 .cm 17、□中,是对角线,且,,则ABCD BD BD BC =︒=∠70CBD =∠ADC 度.三、解答题(共28分)19、(每小题4分,共8分)因式分解(1) (2)22916y x -22242y xy x +-20、(本题8分) 先化简,再求值:,其中()()()()224171131x x x x +--++-12x =-15题图18题图A B CD 14题H G F EO21、(每小题3分,共6分)在如图的方格中,作出△ABC 经过平移和旋转后的图形:(1)将△ABC 向下平移4个单位得△;C B A '''(2)再将平移后的三角形绕点顺时针方向旋转90度。
2017-2018学年度第二学期期末调研考试八年级数学试卷

2017-2018学年度第二学期期末调研考试八年级数学试卷注意:本试卷共8页,三道大题,26个小题。
总分120分。
时间120分钟。
题号 一 二 21 22 23 24 25 26 总分 得分一、 选择题(本大题共16小题.1~6题,每题2分;7~16题,每题3分;总共42分。
在每题给出的四个选项中,只有一项符合题目要求。
请将正确选项的代号填写在下面的表格中)1.函数2+=x y 中,自变量x 的取值范围是A . 2>xB .2<xC .2-≥xD .2-≤x2.计算24-)(的结果是A .4-B .4C .2D .2-3.如图,在等边ABC ∆中,点D 、E 分别为AB 、AC 的中点,则ADE ∠的度数是 A .︒30 B.︒06 C.︒012 D.︒015 4.下面哪个点在函数32+=x y 的图象上A .(-2,-1)B .(-2,1)C .(-2,0)D .(2,1) 5.下列函数中,是正比例函数的是 A.1432+-=x x y B.x y 4=C. 75-=x yD. 3xy = 6.一组数据43973,,,,的众数与中位数分别是A.3,9 B.3,3 C.3,4 D. 4,7 7. 当21<<a 时,代数式|1|)2(2-+-a a 的值是 A .1 B .-1 C .32-a D .a 23-8.在ABC ∆中,C B A ∠∠∠、、的对应边分别是c b a 、、,若︒=∠+∠90C A ,则A. 222c b a =+B. 222b c a =+C. 222a c b =+ D. c a =得分 评卷人题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 答案9.平行四边形的对角线一定具有的性质是A .相等B .互相垂直C .互相平分D .互相垂直且相等 10.如图,四边形ABCD 的对角线为AC 、BD ,且AC=BD ,则下列条件能判定四边形ABCD 是矩形的是 A.AB=BC B.BD AC ⊥ C.AB //CD D.AC 、BD 互相平分11.在菱形ABCD 中,AB=6,︒=∠120A ,则菱形ABCD 的面积是 A .318 B .18 C .336 D .36 12.下列命题正确的是A .对角线相等的四边形是矩形 B.对角线互相垂直且相等的四边形是正方形 C.对角线互相垂直的四边形是菱形 D.对角线互相平分的四边形是平行四边形 13.一组数据6、3、4、a 、2的平均数是4,则这组数据的方差是 A .0 B.2 C.2 D.1014.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC 、BE 相交于F ,则CFE ∠为A .︒145 B.︒120 C.︒115 D.︒10515.若一次函数b kx y +=的函数值y 随x 的增大而增大,且图象与y 轴的负半轴相交,那么对b k 和的符号判断正确的是A .0,0><b k B.0,0>>b k C.0,0<<b k D.0,0<>b k 16.小亮家与姥姥家相距24km ,小亮8:00从家出发,骑自行车去姥姥家。
常州市2017-2018学年上学期期末考试八年级数学试题及答案(高清图片版)(1)

八年级数学第1页(共6页)5•己知一次函数尸kx+b,函数值y 随自变量x 的增大而减小,且好<0■则函数厂吹x+b题号一二三总分分数17181920 21 222324 252018.1常州市教育学会学业水平监测八年级数学 得分评卷人选择题(本大题共8小题,每小題2分.共16分)1.剪纸是中国最古老的民间艺术之一, 案中不是轴对称图形的是是中华传统文化中的瑰宝.下列四个剪纸图( )A.2. 9的算术平方根是A. 3B. 一33. 平面直角坐标系中,点力的坐标为A.第一彖限B.第二彖限B.C. (一3, C. ±3D.占2) •则点M 在 第三象限 D ・第四象限C. 4. 如图,两个三角形全等,则Zu 的度数是A. 50° C ・ 72°B ・ 58° D ・ 60°D.))的图像大致是A. 4. 5, 6B ・ 5, 7. 12 C. 3. 4, 41D ・ 1, 72, 38. 如图(1),在中,点P从点/出发向点C运动,在运动过程中•设x示线段肿的长,y表示线段肋的长.夕与x之间的关系如图(2)所示.则边BC 的长是()A. >/30B. 733 C■厲 D. 6二、填空题(本大题共8小题,每小题2分,共16分)9. 一8的立方根是_________ .10・平面直角坐标系中.点M(3, -2)关于x轴的对称点坐标为 _______________ ・11.已知甲、乙两人从同一地点出发,甲往东走4km.乙往南走了3km,这时甲、12. 己知点尸(-2, a)在一次函数尸3x+l的图像上,则" ________________ ・得分评卷人7•如图,在dlBC中,ZABC、ZACB的平分线相交于点O, MTV过O,且网〃BC,八年级数学第2页(共6页)13. 如图,在三角形纸片中,AC=BC.把ZUEC沿着/C翻折,点2?落在点Q处,连接3D.如果ZB4C=40° ,则ZCBD的度数是 _________________ ° •14. 函数y=x+l的图像可由函数尺的图像经一定的变换得到.写一个这样的变换^15. 己知:如图,AB=AC. DB=DC,点E在AD ±.下列结论:®ZBAD= ZCAD;②厶ABE^^ACE;③厶DBE^^DCE.其中正确的是.(填序号)16. 已知一次函数y=kx+b的图像如图所示,则关于x的不等式&+Q-1的解集是八年级数学第3页(共6页)八年级数学第3页(共6页)19•如图■点& F 在 4B 上,AD 二BC ・ ZA=ZB, AE=BF ・求证:4DF 沁BCE.20・如图,平面直角坐标系中,函数y = + b 的图像与y 轴相交于点与函数4 的图像和交于点儿ROB=5・3 (1)点/的坐标;4(2) 求函数y = -3x + b % y = -jx 的图像与x 轴所围成的三角形的面积.得分评卷人三、解答题(第17、18题每题5分, 第25题10分.共68分)第19〜24题每题8分,18.已知(X + 1)2-1 = 3,求 x 的值.17•计算:辰-J" +V^・。
2017-2018学年八年级下期末数学试题(附答案答案)

湖北省武汉市青山区 2017-2018 学年八年级下学期 期末考试数学试题 一、你一定能选对!(本大题共有 10 小题,每小题 3 分,共 30 分) 1.若代数式 A.x≥﹣2 在实数范围内有意义,则 x 的取值范围是( ) B.x>﹣2 C.x≥2 D.x≤2 2.下列各组数据中能作为直角三角形的三边长的是( ) A.1,2,2 B.1,1, C.4,5,6 D.1, ,2 3.下面给出的四边形 ABCD 中,∠A、∠B、∠C、∠D 的度数之比,其中能判定四边形 ABCD 是 平行四边形的条件是( ) A.3:4:3:4 B.3:3:4:4 C.2:3:4:5 D.3:4:4:3 4.甲、乙、丙、丁四人进行射击测试,每人10 次射击的平均成绩恰好是 9.4 环,方差分别是 S 甲 2
=0.90,S 乙 2=1.22,S 丙 2=0.43,S 丁 2=1.68,在本次射击测试 中,成绩最稳定的是( ) A.甲 B.乙 C.丙 D.丁 5.如果直线 y=kx+b 经过一、二、四象限,则有( ) A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 6.如图,在 ABCD 中,已知 AD=12cm,AB=8cm,AE 平分∠BAD 交 BC 边于点 E,则 CE 的长 等于( )
A.8cm B.6cm C.4cm D.2cm 7.小华周末坚持体育锻炼.某个周末他跑步到离家较远的和平公园,打了一会儿篮球后散步回家.下 面能反映当天小华离家的距离 y 与时间 x 的函数关系的大致图象是( )
A. B.
C. D. 8.某中学随机地调查了 50 名学生,了解他们一周在校的体育锻炼时间,结果如下表所示: 1 时间(小时) 人数 5 10 6 15 7 20 8
5 则这 50 名学生这一周在校的平均体育锻炼时间是( ) A.6.2 小时 B.6.4 小时 C.6.5 小时 D.7 小时 9.设直线 y=kx+6 和直线 y=(k+1)x+6(k 是正整数)及 x 轴围成的三角形面积为 Sk(k=1,2,
人教版八年级下学期期末数学试卷(含解析)

人教版八年级下学期期末考试数学试卷及答案 一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列图案是中心对称图形的是( )A .B .C .D . 2.在函数y =中,自变量x 的取值范围是( ) A .x >2 B .x ≠2 C .x <2 D .x ≤23.下列不能判定四边形ABCD 是平行四边形的条件是( )A .AB ∥CD ,AD ∥BCB .OA =OC ,OB =OD C .AB ∥CD ,AD =BC D .AB =CD ,AD =BC4.已知一次函数y =kx ﹣1,若y 随x 的增大而增大,则它的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 5.正方形具有而矩形不具有的性质是( )A .对角相等B .对角线互相平分C .对角线相等D .对角线互相垂直 6.某校有25名同学参加比赛,预赛成绩各不相同,要取前12名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这25名同学成绩的( )A .中位数B .众数C .平均数D .方差7.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D8.某农场2017年玉米产量为100吨,2019年玉米产量为169吨,求该农场玉米产量的年平均增长率.设该农场玉米产量的年平均增长率为x ,则依题意可列方程为( )A .100(1+x )2=169B .169(1﹣x )2=100C .169(1+x )2=100D .100(1﹣x )2=1699.如图,设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车原地返回.设x小时后两车间的距离为y千米,y关于x的函数关系如图所示,则乙车的速度为()A.50千米/小时B.45千米/小时C.40千米/小时D.35千米/小时10.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.B.3+3C.6+D.二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.方程x2=2x的解为.12.在▱ABCD中,∠A=42°,则∠C=°.13.一组数据:2,3,4,5,6的方差是.14.(4分)已知一次函数y=2x﹣1的图象经过点(3,m),则m的值是.15.(4分)已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n=.16.(4分)如图,已知直线l1:y=kx+b与直线l2:y=mx+n相交于点P(﹣4,﹣3),则关于x的不等式mx+n<kx+b的解集为.17.(4分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F,若CF=2,FD=4,则BC的长为.18.(4分)已知过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,则k的取值范围为.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)解方程:(1)x2+2x=3;(2)x(x﹣4)=8﹣2x.20.(10分)“新型冠状病毒肺炎”疫情牵动着亿万国人的心,为进一步加强疫情防控工作,某校利用网络平台进行疫情防控知识测试,测试题共10道题目,每小题10分.小明同学对801和802两个班各40名同学的测试成绩进行了整理和分析,数据如下:①801班成绩频数分布直方图如图:②802班成绩平均分的计算过程如下,=80.5(分);③数据分析如下:班级平均数中位数众数方差80182.5m90158.7580280.575n174.75根据以上信息,解决下列问题:(1)m=,n=;(2)你认为班的成绩更加稳定,理由是;(3)在本次测试中,801班甲同学和802班乙同学的成绩均为80分,你认为两人在各自班级中谁的成绩排名更靠前?请说明理由.21.(10分)已知直线l1:y=2x+4分别与x轴,y轴交于点A,B,直线l2经过直线l1上的点C(m,2),且与y 轴的负半轴交于点D,若△BCD的面积为3.(1)直接写出点A,B,C的坐标;(2)求直线l2的解析式.22.(11分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE ∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.23.(11分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.(1)求证:方程总有两个实数根;(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.24.(11分)某商场以每件220元的价格购进一批商品,当每件商品售价为280元时,每天可售出30件,为了迎接“618购物节”,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?25.(14分)如图,点E是矩形ABCD的边CB延长线上一点,点F是AE的中点.(1)如图①,若点G,H分别是ED,BC的中点;①判断FG和HC之间的关系,并说明理由;②求证:∠DEH=∠FHE;(2)如图②,若CE=AC,连接BF,DF.求证:BF⊥DF.26.(14分)如图1①②③,平面内三点O,M,N,如果将线段OM绕点O旋转90°得ON,称点N是点M关于点O的“等直点”,如果OM绕点O顺时针旋转90°得ON,称点N是点M关于点O的“正等直点”,如图1②.(1)如图2,在平面直角坐标系中,已知点P(2,1).①在P1(﹣1,2),P2(2,﹣1),P3(1,﹣2)三点中,是点P关于原点O的“等直点”;②若直线l1:y=kx+4交y轴于点M,若点N是直线l1上一点,且点N是点M关于点P的“等直点”,求直线l1的解析式;(2)如图3,已知点A的坐标为(2,0),点B在直线l2:y=3x上,若点B关于点A的“正等直点”C在坐标轴上,D是平面内一点,若四边形ABCD是平行四边形,直接写出点D的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列图案是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:B.2.在函数y=中,自变量x的取值范围是()A.x>2B.x≠2C.x<2D.x≤2【分析】根据被开方数是非负数,可得自变量x的取值范围.【解答】解:由题意,得2﹣x≥0,解得x≤2,故选:D.3.下列不能判定四边形ABCD是平行四边形的条件是()A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AB∥CD,AD=BC D.AB=CD,AD=BC【分析】根据平行四边形的判定定理分别对各个选项进行判断即可.【解答】解:如图所示:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故本选项不符合题意;B、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故本选项不符合题意;C、∵AB∥CD,AD=BC,∴四边形ABCD是等腰梯形,故本选项符合题意;D、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项不符合题意,故选:C.4.已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【分析】根据“一次函数y=kx﹣1且y随x的增大而增大”得到k>0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k>0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.5.正方形具有而矩形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对角线互相垂直【分析】根据正方形、矩形的性质即可判断.【解答】解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:D.6.某校有25名同学参加比赛,预赛成绩各不相同,要取前12名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这25名同学成绩的()A.中位数B.众数C.平均数D.方差【分析】由于有25名同学参加比赛,要取前12名参加决赛,故应考虑中位数的大小.【解答】解:∵某校有25名同学参加比赛,取前12名参加决赛,∴成绩超过中位数(即第13名成绩)即可参加决赛,∴她想知道自己能否进入决赛,只需再知道这25名同学成绩的中位数,故选:A.7.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D【分析】连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.8.某农场2017年玉米产量为100吨,2019年玉米产量为169吨,求该农场玉米产量的年平均增长率.设该农场玉米产量的年平均增长率为x,则依题意可列方程为()A.100(1+x)2=169B.169(1﹣x)2=100C.169(1+x)2=100D.100(1﹣x)2=169【分析】根据该农场2017年及2019年玉米的产量,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:100(1+x)2=169.故选:A.9.如图,设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车原地返回.设x小时后两车间的距离为y千米,y关于x的函数关系如图所示,则乙车的速度为()A.50千米/小时B.45千米/小时C.40千米/小时D.35千米/小时【分析】设甲车的速度为mkm/h,乙车的速度为nkm/h,根据题意列出方程即可求出答案.【解答】解:设甲车的速度为mkm/h,乙车的速度为nkm/h,由图象可知:,∴解得:n=45,故选:B.10.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.B.3+3C.6+D.【分析】过点D作DE⊥AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.【解答】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB=DC=BC,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE===3,∴2DE=6.∴MA+MB+MD的最小值是6.故选:D.二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.方程x2=2x的解为x1=0,x2=2.【分析】首先移项,再提取公因式,即可将一元二次方程因式分解,即可得出方程的解.【解答】解:∵x2=2x∴x2﹣2x=0,x(x﹣2)=0,解得:x1=0,x2=2,故答案为:x1=0,x2=2.12.在▱ABCD中,∠A=42°,则∠C=42°.【分析】由平行四边形的性质对角相等,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=42°,故答案为:42°.13.一组数据:2,3,4,5,6的方差是2.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差计算公式可以解答本题.【解答】解:,=2,故答案为:2.14.(4分)已知一次函数y=2x﹣1的图象经过点(3,m),则m的值是5.【分析】利用一次函数图象上点的坐标特征可求出m的值,此题得解.【解答】解:∵一次函数y=2x﹣1的图象经过点(3,m),∴m=2×3﹣1=5.故答案为:5.15.(4分)已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n=4.【分析】根据根与系数的关系得出m+n=2,mn=﹣5,根据m2﹣2m﹣5=0求出m2=5+2m,代入即可.【解答】解:∵m、n是方程x2﹣2x﹣5=0的两个根,∴m+n=2,mn=﹣5,m2﹣2m﹣5=0,∴m2=2m+5,∴m2+mn+2n=2m+5+mn+2n=﹣5+2×2+5=4.故答案为:4.16.(4分)如图,已知直线l1:y=kx+b与直线l2:y=mx+n相交于点P(﹣4,﹣3),则关于x的不等式mx+n<kx+b的解集为x>﹣4.【分析】观察函数图象得到当x>﹣4时,直线l2:y=mx+n在直线l1:y=kx+b的下方,于是得到不等式mx+n <kx+b的解集.【解答】解:根据图象可知,不等式mx+n<kx+b的解集为x>﹣4.故答案为x>﹣4.17.(4分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F,若CF=2,FD=4,则BC的长为4.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC==4.故答案为:4.18.(4分)已知过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,则k的取值范围为<k<1.【分析】由点P(m,km﹣1)可知:过点P(m,km﹣1)的直线恒过点(0,﹣1),由于过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,结合图象即可求出k的范围.【解答】解:∵点P(m,km﹣1),∴m=0时,km﹣1=﹣1,∴过点P(m,km﹣1)的直线恒过(0,﹣1),设过点P(m,km﹣1)的直线l为y=kx﹣1,当直线l经过点(3,0)时,则3k﹣1=0,∴k=,∵过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,∴直线不能与y=x﹣3平行,∴k<1,∴<k<1,故答案为:<k<1.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)解方程:(1)x2+2x=3;(2)x(x﹣4)=8﹣2x.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+2x+1=4,∴(x+1)2=4,∴x+1=2,x+1=﹣2,则x1=1,x2=﹣3.(2)∵x(x﹣4)+2(x﹣4)=0,∴(x+2)(x﹣4)=0,∴x+2=0,x﹣4=0,即x1=﹣2,x2=4.20.(10分)“新型冠状病毒肺炎”疫情牵动着亿万国人的心,为进一步加强疫情防控工作,某校利用网络平台进行疫情防控知识测试,测试题共10道题目,每小题10分.小明同学对801和802两个班各40名同学的测试成绩进行了整理和分析,数据如下:①801班成绩频数分布直方图如图:②802班成绩平均分的计算过程如下,=80.5(分);③数据分析如下:班级平均数中位数众数方差80182.5m90158.7580280.575n174.75根据以上信息,解决下列问题:(1)m=85,n=70;(2)你认为801班的成绩更加稳定,理由是801班成绩的方差小于802班的方差,说明波动小,更稳定;(3)在本次测试中,801班甲同学和802班乙同学的成绩均为80分,你认为两人在各自班级中谁的成绩排名更靠前?请说明理由.【分析】(1)将801班的学生成绩排序后,计算中间位置的两个数的平均数即可得到中位数,从802班的平均数的计算过程可得成绩为70分出现次数最多,因此众数是70;(2)从方差的大小进行判断;(3)从甲、乙两位学生的成绩和所在班级的成绩的中位数进行比较得出答案.【解答】解:(1)将40名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为=85,因此中位数是85,即m=85;根据802班的平均数的计算可知,成绩为70分出现的次数最多,是17次,因此众数是70,即n=70;故答案为:85,70;(2)801班,因为801班成绩的方差小于802班的方差,说明波动小,更稳定;故答案为:801班,801班成绩的方差小于802班的方差,说明波动小,更稳定;(3)乙同学,因为801班的中位数大于80分,说明有一半以上的同学比甲成绩好,而802班的中位数小于80分,说明乙同学比一半以上的同学成绩好,所以乙同学在班级的排名更靠前.21.(10分)已知直线l1:y=2x+4分别与x轴,y轴交于点A,B,直线l2经过直线l1上的点C(m,2),且与y 轴的负半轴交于点D,若△BCD的面积为3.(1)直接写出点A,B,C的坐标;(2)求直线l2的解析式.【分析】(1)根据图象上点的坐标特征求得即可;(2)根据三角形BCD的面积求得D的坐标,然后根据待定系数法即可求得.【解答】解:(1)直线l1:y=2x+4中,令y=0,则2x+4=0,解得x=﹣2,∴A(﹣2,0),令x=0,则y=4,∴B(0,4),∵直线l1:y=2x+4经过C(m,2),∴2=2m+4,解得m=﹣1,∴C(﹣1,2);(2)∵S△BCD=BD•|x C|=3 且C(﹣1,2),∴BD×1=3∴BD=6,∵点D在y轴的负半轴上,且B为(0,4)∴D(0,﹣2),设直线l2的解析式为y=kx+b(k≠0),∵直线l2过C(﹣1,2),D(0,﹣2)∴,解得,∴直线l2的解析式为y=﹣4x﹣2.22.(11分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE ∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.【分析】(1)根据平行四边形的判定和菱形的判定证明即可;(2)根据菱形的性质和勾股定理解答即可.【解答】证明:(1)∵AB∥DC,∴∠CAB=∠ACD.∵AC平分∠BAD,∴∠CAB=∠CAD.∴∠CAD=∠ACD,∴DA=DC.∵AB=AD,∴AB=DC.∴四边形ABCD是平行四边形.∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.∵AB=4,∴OB=2,AO=OC=2.∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=4,∠ACE=90°.∴.23.(11分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.(1)求证:方程总有两个实数根;(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.【分析】(1)根据根的判别式和非负数的性质即可求解;(2)根据一元二次方程的根与系数的关系可以得到x1+x2=1﹣k,x1x2=k﹣2,再将它们代入x12﹣3x1x2+x22=1,即可求出k的值.【解答】解:(1)△=(k﹣1)2﹣4(k﹣2)=(k﹣3)2,∵(k﹣3)2≥0,∴△≥0,∴此方程总有两个实数根.(2)由根与系数关系得x1+x2=1﹣k,x1x2=k﹣2,∵x12﹣3x1x2+x22=1,∴(x1+x2)2﹣5x1x2=1,∴(1﹣k)2﹣5(k﹣2)=1,解得k1=2,k2=5.由(1)得无论k取何值方程总有两个实数根,∴k的值为2或5.24.(11分)某商场以每件220元的价格购进一批商品,当每件商品售价为280元时,每天可售出30件,为了迎接“618购物节”,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?【分析】(1)根据总利润=单件利润×销售数量解答;(2)根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)(280﹣220)×30=1800 (元).∴降价前商场每天销售该商品的利润是1800元.(2)设每件商品应降价x元,由题意,得(280﹣x﹣220)(30+3x)=1800×2,解得x1=20,x2=30.∵要更有利于减少库存,∴x=30.答:每件商品应降价30元.25.(14分)如图,点E是矩形ABCD的边CB延长线上一点,点F是AE的中点.(1)如图①,若点G,H分别是ED,BC的中点;①判断FG和HC之间的关系,并说明理由;②求证:∠DEH=∠FHE;(2)如图②,若CE=AC,连接BF,DF.求证:BF⊥DF.【分析】(1)①证明FG是△AED的中位线,得出FG=AD,FG∥AD,由H是BC的中点,得出CH=BC,由矩形的性质得AD=BC,AD∥BC,即可得出FG=HC,FG∥HC;②由直角三角形斜边上的中线性质得CG=DE=GE,则∠GEH=∠GCE,由①结论得四边形FHCG是平行四边形,得出FH∥GC,则∠FHE=∠GCE,即可得出结论;(2)连接FC,由直角三角形斜边上中线性质得出BF=AE=AF,由SAS证得△BFC≌△AFD,得出∠BFC=∠AFD,由等腰三角形的性质得CF⊥AE,即∠CFD+∠AFD=90°,推出∠CFD+∠BFC=90°,即可得出结论.【解答】(1)①解:判断:FG=HC,FG∥HC;理由如下:∵点F,G分别是AE,DE的中点,∴FG是△AED的中位线,∴FG=AD,FG∥AD,∵H是BC的中点,∴CH=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴FG=HC,FG∥HC;②证明:∵四边形ABCD是矩形,∴∠BCD=90°∵G是DE的中点,∴CG=DE=GE,∴∠GEH=∠GCE,∵FG=HC,FG∥HC,∴四边形FHCG是平行四边形,∴FH∥GC,∴∠FHE=∠GCE,∴∠GEH=∠FHE,即∠DEH=∠FHE;(2)证明:连接FC,如图②所示:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD=BC,∴∠ABE=90°∵F是AE的中点,∴BF=AE=AF,∴∠FBA=∠F AB,∴∠FBC=∠F AD,在△BFC和△AFD中,,∴△BFC≌△AFD(SAS)∴∠BFC=∠AFD∵CE=AC,F是AE的中点,∴CF⊥AE,∴∠CFD+∠AFD=90°,∴∠CFD+∠BFC=90°,∴BF⊥DF.26.(14分)如图1①②③,平面内三点O,M,N,如果将线段OM绕点O旋转90°得ON,称点N是点M关于点O的“等直点”,如果OM绕点O顺时针旋转90°得ON,称点N是点M关于点O的“正等直点”,如图1②.(1)如图2,在平面直角坐标系中,已知点P(2,1).①在P1(﹣1,2),P2(2,﹣1),P3(1,﹣2)三点中,P1,P3是点P关于原点O的“等直点”;②若直线l1:y=kx+4交y轴于点M,若点N是直线l1上一点,且点N是点M关于点P的“等直点”,求直线l1的解析式;(2)如图3,已知点A的坐标为(2,0),点B在直线l2:y=3x上,若点B关于点A的“正等直点”C在坐标轴上,D是平面内一点,若四边形ABCD是平行四边形,直接写出点D的坐标.【分析】(1)①将OP顺时针旋转90°或逆时针旋转90°,求出旋转后点P的对应点坐标,即可求解;②分两种情况讨论,利用全等三角形的判定和性质可求点N坐标,代入解析式,可求解;(2)分点C在x轴上和点C在y轴上,由平行四边形的性质可求解.【解答】解:(1)如图2,连接OP,作PF⊥y轴,将OP绕点O顺时针旋转90°得到OE,过点E作EH⊥y轴,∴PF=2,OF=1,∠PFO=∠EHO=90°,∵将OP绕点O顺时针旋转90°得到OE,∴OP=OE,∠POE=90°,∴∠POF+∠EOH=90°,∵∠POF+∠FPO=90°,∴∠FPO=∠EOH,又∵∠PFO=∠EHO=90°,OE=OP,∴△PFO≌△OHE(AAS),∴HE=OF=1,PF=OH=2,∴点E(1,﹣2),将OP绕点O顺时针旋转90°得到OG,同理可求点G(﹣1,2),∴P1,P3是点P关于原点O的“等直点”,故答案为:P1,P3;②∵y=kx+4交y轴于点M,∴点M(0,4),∵点N是点M关于点P的“等直点”,∴MP=NP,MP⊥NP,如图,当线段MP绕点P顺时针旋转90°得PN,过P作PQ⊥y轴于点Q,NK⊥PQ交QP的延长线于点K,则∠MQP=∠NKP=90°,∠QMP+∠QPM=∠QPM+∠NPK=90°,∴∠QMP=∠KPN,∴△MPQ≌△PNK(AAS),∴MQ=PK=4﹣1=3,PQ=NK=2,∴点N(5,3),∵点N是直线l1上一点,∴3=5k+4,解得k=﹣,∴直线l1的解析式为:y=﹣x+4,当线段MP绕点P逆时针旋转90°得PN,同理可得点N(﹣1,﹣1),∴﹣1=﹣k+4,解得k=5,∴直线l1的解析式为:y=5x+4,∴综上所述:直线l1的解析式为y=﹣x+4或y=5x+4;(2)如图3,当点C在x轴上时,∵点A的坐标为(2,0),∴OA=2,∵点C是点B关于点A的“正等直点”,∴∠BAC=90°,AB=AC,∴点B的横坐标为2,∴点B的坐标(2,6),∴AB=6=AC,∴OC=8,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=6,∴点D(8,﹣6);若点C在y轴上时,过点B作BE⊥x轴于E,∵点C是点B关于点A的“正等直点”,∴∠BAC=90°,AB=AC,∴∠BAE+∠CAO=90°,又∵∠CAO+∠ACO=90°,∴∠BAE=∠ACO,又∵AC=AB,∠AOC=∠AEB=90°,∴△ACO≌△ABE(AAS),∴BE=AO=2,AE=OC,∴点B的纵坐标为﹣2,∴点B坐标为(﹣,﹣2),∴EO=,∴CO=2+=,∴点C(0,),设点D(x,y),∵四边形ABCD是平行四边形,∴AC与BD互相平分,∴,∴∴点D(,),综上所述:点D坐标为(8,﹣6)或(,).。
2017-2018新北师大版数学八年级期末试卷附答案

2017-2018新北师大版数学八年级期末试卷附答案一、选择题1.下列汉字或字母中既是中心对称图形又是轴对称图形的是( )2.计算5x +3+2x +3的结果是( ) A .-3x +3 B .-7x +3 C.3x +3 D.7x +33.若a ,b 都是实数,且a <b ,则下列不等式的变形正确的是( )A .a +x >b +xB .-a +1<-b +1C .3a <3b D.a 2>b24.已知△ABC 在平面直角坐标系的位置如图所示,将△ABC 向右平移6个单位,则平移后A 点的坐标是( )A .(-2,1)B .(2,1)C .(2,-1)D .(-2,-1)第4题图 第5题图5.如图,▱ABCD 中,已知∠ADB =90°,AC =10cm ,AD =4cm ,则BD 的长为( ) A .4cm B .5cm C .6cm D .8cm 6.不等式组⎩⎨⎧2x +2>x ,3x <x +2的解集是( )A .x >-2B .x <1C .-1<x <2D .-2<x <17.下列说法中正确的是( )A .斜边相等的两个直角三角形全等B .腰相等的两个等腰三角形全等C .有一边相等的两个等边三角形全等D .两条边相等的两个直角三角形全等 8.直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中如图所示,则关于x 的不等式k 2x <k 1x +b 的解集为( )A .x <-1B .x >-1C .x >2D .x <2第8题图 第9题图9.如图,DC ⊥AC 于C ,DE ⊥AB 于E ,并且DE =DC ,则下列结论中正确的是( ) A .DE =DF B .BD =FD C .∠1=∠2 D .AB =AC 10.若(x +y )3-xy (x +y )=(x +y )·M (x +y ≠0),则M 是( ) A .x 2+y 2 B .x 2-xy +y 2 C .x 2-3xy +y 2 D .x 2+xy +y 211.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同.设现在平均每天植树x 棵,则列出的方程为( )A.400x =300x -30B.400x -30=300xC.400x +30=300xD.400x =300x +3012.如图,在△ABC 中,∠ABC =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10第12题图 第13题图13.如图,在平行四边形ABCD 中,∠B =60°,将△ABC 沿对角线AC 折叠,点B 的对应点落在点E 处,且点B ,A ,E 在一条直线上,CE 交AD 于点F ,则图中等边三角形共有( )A .4个B .3个C .2个D .1个14.若m +n -p =0,则m ⎝ ⎛⎭⎪⎫1n -1p +n ⎝ ⎛⎭⎪⎫1m -1p -p ⎝ ⎛⎭⎪⎫1m +1n 的值是( )A .-3B .-1C .1D .315.如图,在等腰直角△ABC 中,∠C =90°,点O 是AB 的中点,且AB =6,将一块直角三角板的直角顶点放在点O 处,始终保持该直角三角板的两直角边分别与AC 、BC 相交,交点分别为D 、E ,则CD +CE =( )A. 2B. 3 C .2 D. 6二、填空题(本大题共5小题,每小题5分,共25分) 16.因式分解:2x 2-18=__________.17.如图,将△APB 绕点B 按逆时针方向旋转90°后得到△A 1P 1B ,连接PP 1.若BP =2,则线段PP 1的长为________.第17题图 第18题图18.如图,在▱ABCD 中,点E 在BC 边上,且AE ⊥BC 于点E ,DE 平分∠CDA .若BE ∶EC =1∶2,则∠BCD 的度数为________.19.若关于x 的方程1x -3+kx +3=3+k x 2-9有增根,则k 的值为________. 三、解答题(本大题共7小题,各题分值见题号后,共80分) 21.(8分)因式分解:(1) m 2n -2mn +n ; (2) x 2+3x (x -3)-9.22.(8分)(1)解方程:1x -3=3x ;参考答案与解析1.C 2.D 3.C 4.B 5.C 6.D 7.C 8.B9.C 10.D 11.A 12.B 13.B14.A 解析:原式=m n -m p +n m -n p -p m -p n =m -p n +n -p m -m +np .∵m +n -p =0,∴m -p =-n ,n -p =-m ,m +n =p ,∴原式=-1-1-1=-3.15.B 解析:连接CO ,由题意可知AC =BC ,∠C =90°,且O 为AB 的中点,∴CO ⊥AB ,∠DCO =∠BCO =45°=∠EBO ,∴CO =BO .∵∠DOE =∠COB =90°,∴∠COD +∠COE =∠COE +∠BOE =90°,∴∠COD =∠BOE .在△COD 和△BOE中,⎩⎨⎧∠COD =∠BOE ,CO =BO ,∠DCO =∠EBO ,∴△COD ≌△BOE (ASA),∴CD =BE ,∴CE +CD =CE +BE =BC .在Rt △ABC 中,AB =6,∴BC =AC =AB 22=3,∴CD +CE =3,故选B.16.2(x +3)(x -3) 17.22 18.120° 19.-37或320.72≤x <92 解析:依题意有⎩⎪⎨⎪⎧x -1≥52,x -1<72,解得72≤x <92.21.解:(1)原式=n (m 2-2m +1)=n (m -1)2.(4分)(2)原式=x 2-9+3x (x -3)=(x +3)(x -3)+3x (x -3)=(x -3)(x +3+3x )=(x -3)(4x +3).(8分)22.解:(1)方程两边都乘x (x -3),得x =3(x -3),解得x =92.(3分)经检验,当x =92时,x (x -3)≠0,故x =92是原分式方程的根.(4分)(2)去括号,得2x -12+4≤3x -5,移项、合并同类项,得-x ≤3,系数化1,得x ≥-3.其解集在数轴上表示如图.(8分)23.解:化简得原式=2x -3.(5分)∵x 为满足-3<x <2的整数,∴x =-2,-1,0,1.(7分)∵x 要使原分式有意义,∴x ≠-2,0,1,∴x =-1.当x =-1时,原式=2×(-1)-3=-5.(10分)24.解:(1)∵AD 垂直平分BE ,EF 垂直平分AC ,∴AB =AE =EC ,∴∠C =∠CAE .(3分)∵∠BAE =30°,∴∠AEB =75°,∴∠C =12∠AEB =37.5°.(7分)(2)∵△ABC 的周长为13cm ,AC =6cm ,∴AB +BE +EC =7cm.∵AB =CE ,BD =DE ,∴2DE +2EC =7cm ,(10分)∴DE +EC =72cm ,即DC =72cm.(12分)25.解:(1)2 y 轴 120(6分)(2)由旋转得OA =OD ,∠AOD =120°.(7分)∵△AOC 是等边三角形,∴∠AOC =60°,∴∠COD =∠AOD -∠AOC =60°,∴∠COD =∠AOC .(9分)又∵OA =OD ,∴OC ⊥AD ,即∠AEO =90°.(12分)26.解:(1)设每行驶1千米纯用电的费用为x 元,由题意得76x +0.5=26x ,解得x =0.26.(5分)经检验,x =0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元.(7分)(2)设从A 地到B 地油电混合行驶,需用电行驶y 千米,由题意得0.26y +⎝ ⎛⎭⎪⎫260.26-y ×(0.26+0.5)≤39,解得y ≥74.(12分)所以至少需用电行驶74千米.(14分)27.解:(1)过点A 作AF ⊥BC 于点F ,则∠AFB =90°.∵∠ABC =60°,∴∠BAF =30°.∵AB=8,∴BF =12AB =4,∴AF =AB 2-BF 2=4 3.(2分)∵经过t 秒后BQ =16-2t ,∴S =12·BQ ·AF=12×(16-2t )×43=-43t +323(t ≤6).(4分) (2)103(8分) 解析:由图可知S 四边形PQCD =S 四边形ABCD -S △BPQ -S △ABP .∵AP =t ,∴S △ABP =12AP ·AF =23t .又∵S 四边形ABCD =12AF (AD +BC )=12×43×(6+16)=443,∴S 四边形PQCD =443-(-43t +323)-23t =23t +12 3.∵S =S 四边形PQCD,∴23t +123=-43t +323,解得t =103. (3)由题意可知四边形PEQD 或四边形PQED 为平行四边形,∴PD =EQ .(10分)∵PD =6-t ,EQ =8-2t 或2t -8,∴6-t =8-2t 或6-t =2t -8,解得t =2或t =143.(14分)故当t=2或143时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.(16分)。