任意角与弧度制-知识点汇总
高考数学复习考点知识讲解课件21 任意角和弧度制及任意角的三角函数

(2)已知α为第二象限角,则
A.3
B.-3
C.1
2 sin α
1−cos2
α
+
1−sin2 α
的值是(
cosα
D.-12
答案:C
解析:(2)由题意,
2 sin α
1−cos2 α
+
1−sin2 α 2 sin α
=
cosα
sin α
因为α为第二象限角,所以sin α>0,cos α<0,
2 sin α
长是一定值C(C>0)”,其它不变,求解?
C
1
1
C 2
2
解析:扇形周长C=2R+l=2R+αR,所以R= ,所以S扇= α·R = α·
2+α
2
2
2+α
2
2
2
C α
1
C
1
C
= ·
=
·
≤
.
2 4+4α+α2
2 4 +4+α
16
α
2
C
当且仅当α2=4,即α=2时,扇形面积有最大值 .
16
反思感悟 弧长、扇形面积问题的解题策略
终边在第三象限.
3.[必修4·P20习题A组T2改编]已知角α的终边过点P(8m,3),且cos
4
α=- ,则m的值为(
)
5
1
A.-
2
1
B.
2
C.-
3
2
D.
3
2
答案:A
解析:由已知得m<0且
8m
4
5
1
2
高中数学 知识点考点解析含答案 知识讲解_任意角和弧度制_提高

任意角和弧度制【学习目标】1.理解任意角的概念.掌握象限角、终边相同的角、终边在坐标轴上的角及区间角的表示方法。
2.了解弧度制的意义;掌握角的不同度量方法,能对弧度制和角度制进行正确的换算.3.掌握弧度制下扇形的弧长和面积的计算公式,并能结合具体问题进行正确地运算。
【要点梳理】 要点一:任意角的概念1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角 终边相同的角为{}|360k k Z βββα∈=+∈og ,角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差360︒的整数倍. 3.常用的象限角α是第一象限角,所以(){}|36036090,k k k Z αα<<+∈o o o g g α是第二象限角,所以(){}|36090360180,k k k Z αα+<<+∈o o o o g g α是第三象限角,所以(){}|360180360270,k k k Z αα+<<+∈o o o o g g α是第四象限角,所以(){}|360270360360,k k k Z αα+<<+∈o o o o g g要点二:弧度制 1.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写). 2.角度与弧度的换算弧度与角度互换公式: 180rad π︒=1rad=0180π⎛⎫ ⎪⎝⎭≈57.30°=57°18′,1°=180π≈0.01745(rad) 3.弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==. 要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--,等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 【典型例题】类型一:终边相同的角的集合例1.在与10030°角终边相同的角中,求满足下列条件的角。
2023年高考数学(理科)一轮复习—— 任意角和弧度制及任意角的三角函数

考点二 弧度制及其应用
例 1 (经典母题)一扇形的圆心角 α=π3,半径 R=10 cm,求该扇形的面积. 解 由已知得 α=π3,R=10, ∴S 扇形=21α·R2=12×π3×102=503π(cm2).
索引
迁移 1 (变所求)若本例条件不变,求扇形的弧长及该弧所在弓形的面积.
解 l=α·R=π3×10=103π(cm),
索引
常用结论
1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦. 2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量
制必须一致,不可混用. 3.象限角
索引
4.轴线角
索引
诊断自测 1.思考辨析(在括号内打“√”或“×”)
(1)小于90°的角是锐角.( ×) (2)锐角是第一象限角,第一象限角也都是锐角.( × ) (3)角α的三角函数值与其终边上点P的位置无关.( √ ) (4)若α为第一象限角,则sin α+cos α>1.( √ )
索引
分层训练 巩固提升
FENCENGXUNLIAN GONGGUTISHENG
A级 基础巩固
1.下列与角94π的终边相同的角的表达式中正确的是( C )
解析 (1)锐角的取值范围是0,π2. (2)第一象限角不一定是锐角.
索引
2.(易错题)时间经过4h(时),时针转了___-__2_3π__弧度.
索引
3. 在 - 720° ~ 0° 范 围 内 , 所 有 与 角 α = 45° 终 边 相 同 的 角 β 构 成 的 集 合 为
_{_-__6__7_5_°__,___-__3_1_5_°___}_.
解析 设 P(x,y),由题设知 x=- 3,y=m, 所以 r2=|OP|2=(- 3)2+m2(O 为原点),即 r= 3+m2,
高三数学一轮复习知识点专题4-1任意角和弧度制及任意角的三角函数

高三数学一轮复习知识点专题专题专题4.1 任意角和弧度制及任意角的三角函数【考情分析】1.了解任意角的概念;了解弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义. 【重点知识梳理】 知识点一 角的概念 1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 2.角的分类角的分类⎩⎪⎨⎪⎧按旋转方向不同分类⎩⎪⎨⎪⎧ 正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类⎩⎪⎨⎪⎧象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角 所有与角α终边相同的角,连同角α在内,可构成一个集合:S ={β|β=α+k ·360°,k ∈Z}或{β|β=α+2k π,k ∈Z}.知识点二 弧度制及应用 1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 2.弧度制下的有关公式知识点三 任意角的三角函数有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线【典型题分析】高频考点一 象限角的判断【例1】(2020·新课标Ⅱ)若α为第四象限角,则( ) A. cos2α>0 B. cos2α<0C. sin2α>0D. sin2α<0【答案】D 【解析】当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误;当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误;由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确;【变式探究】(2020·黑龙江省宁安市一中模拟)设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4·180°+45°,k ∈Z ,那么( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N =∅【答案】B【解析】由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B 。
高考数学复习:任意角和弧度制及任意角的三角函数

当m=- 5 时,r=2 2,点P的坐标为 ( 3, 5),
所以cos x 3 6 ,tan y 5 15 ,
r 22 4
x 3 3
综上可知,cos θ=- ,t6an θ=- 或c1o5 s θ=- , 6
2
2.若圆弧长度等于圆内接正方形的边长,则该圆弧所对
圆心角的弧度数为 ( )
A.
B.
C. 2
D. 2
4
2
2
【解析】选D.设圆的直径为2r,则圆内接正方形的边长 为 2r, 因为圆的圆弧长度等于该圆内接正方形的边长, 所以圆弧的长度为 2r, 所以圆心角弧度为 2r 2.
r
考点三 任意角三角函数的定义及应用 【明考点·知考法】
【典例】函数y= sin x 3 的定义域为________.
2
世纪金榜导学号
【解析】由题意可得sin x- ≥30,即sin x≥ .作 3
2
2
直线y= 3交单位圆于A,B两点,连接OA,OB,则OA与OB围
2
成的区域(图中阴影部分含边界)即为角x的终边的范围,
故满足条件的角x的集合为
{x|2k x 2k 2 , k Z}.
2
答案:6π
题组二:走进教材
1.(必修4P5T4改编)下列与 9 的终边相同的角的表达
4
式中正确的是 ( )
A.2kπ+45°(k∈Z) C.k·360°-315°(k∈Z)
B.k·360°+ 9 π(k∈Z)
4
D.kπ+ 5 (k∈Z)
4
【解析】选C.由定义知终边相同的角的表达式中不能
同时出现角度和弧度,应为 +2kπ或k·360°+45°
高中数学《7、1角与弧度》知识点+教案课件+习题

知识点:1.弧度制(1)弧度制的定义长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示,读作弧度.以弧度作为单位来度量角的单位制叫做弧度制.(2)任意角的弧度数与实数的对应关系正角的弧度数是一个正数;负角的弧度数是一个负数;零角的弧度数是零.(3)角的弧度数的计算如果半径为r的圆的圆心角α所对弧的长为l,那么,角α的弧度数的绝对值是2.角度制与弧度制的换算(1)(2)一些特殊角的度数与弧度数的对应关系视频教学:练习:1.将表的分针拨慢20分钟,则分针转过的角的弧度是( )A. B. C. D.2.集合,,则有( )A. B. C. D.3.与角的终边相同的角的表达式中,正确的是( )A. B. C. D.4.若扇形的半径为2,面积为,则它的圆心角为( )A. B. C. D.5.已知扇形的圆心角为,半径为,则此扇形的面积为( )A. B. C. D.课件:教案:教材分析前一节已经学习了任意角的概念,而本节课主要依托圆心角这个情境学习一种用长度度量角的方法—弧度制,从而将角与实数建立一一对应关系,为学习本章的核心内容—三角函数扫平障碍,打下基础.教学目标与核心素养课程目标1.了解弧度制,明确1弧度的含义.2.能进行弧度与角度的互化.3.掌握用弧度制表示扇形的弧长公式和面积公式.数学学科素养1.数学抽象:理解弧度制的概念;2.逻辑推理:用弧度制表示角的集合;3.直观想象:区域角的表示;4.数学运算:运用已知条件处理扇形有关问题.教学重难点重点:弧度制的概念与弧度制与角度制的转化;难点:弧度制概念的理解.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程一、情景导入度量单位可以用米、英尺、码等不同的单位制,度量质量可以用千克、磅等不同的单位制,不同的单位制能给解决问题带来方便.角的度量是否也可以用不同的单位制呢?能否像度量长度那样,用十进制的实数来度量角的大小呢?要求:让学生自由发言,教师不做判断。
任意角的概念与弧度制知识点习题附答案

典型题一 有关角的概念的问题
1.下列命题正确的是: ( )
A.终边相同的角一定相等。
B.第一象限的角都是锐角。
C.锐角都是第一象限的角。
D.小于 900 的角都是锐角。
2.下列结论:①第一象限角都是锐角
②锐角都是第一象限角
③第一象限角一定不是负角
④第二象限角是钝角
⑤小于 180°的角是钝角、直角、或锐角。
4.与角 终边相同的角的集合为 k 360 , k k 180 45, k
1)终边落在 y=x 上:
45 +k 360, k
2)终边落在第一象限角平分线上:
5.弧度制:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角,用符号 rad 表示,读作弧度。 以弧度为单位来度量角的单位制度叫弧度制。
C.3 个
D.4 个
2.[四川遂宁 2019 高一测试]将表的分针拨慢 20 分钟,则分针转过的角的弧度是(
)
A. 2 3
B. 3
C. 2 3
D.
3
3.已知扇形的周长为 6cm,半径是 2cm,则扇形的圆心角的弧度数是( )
A.4
B.1
C.1 或 4
D.2
4.若角α是第二象限角,则 是(
)
2
D. α-β=90°+ k 360 (k∈Z)
12.已知角α与β的终边关于 y 轴对称,则α与β的关系为( )
A. α-β=π+2kπ B. α-β=π +2kπ
2
13.若α=2kπ+π (k∈Z),则α的终边在(
3
3
2
C. α+β=2kπ )
A.第一象限
B.第四象限
任意角和弧度制和诱导公式

公式四:
角度制表示如下:用弧度制可表示如下:
公式五:
角度制表示如下:用弧度制可表示如下:
sin(90) = cos, sin( ) = cos,
cos(90) = sin. cos( ) = sin.
公式六:
角度制表示如下:用弧度制可表示如下:
sin(90+) = cos, sin( +) = cos,
五、弧度制
1.定义:长度1.长度等于半径长的弧所对的圆心角称为1弧度的角。它的单位是rad。读作弧度;这种用“弧度”做单位来度量角的制度叫做弧度制。
如下图,依次是1rad,2rad,3rad,αrad
探究:
(1)平角、周角的弧度数,(平角=rad、周角=2rad)
(2)正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0
, , ,
则A、B、C的关系是。
5.角 终边落在第二、四象限的角的平分线上,则角 的集合是。
6.角 , 的终边关于原点对称,则 , 满足关系。
7.角 , 的终边关于 轴对称,则 , 满足关系。
三、解答题
8.当12点过15分的时候,时钟长短针的夹角是多少度?
9.已知 , 角的7倍角的终边和 角的终边重合,试求这个角 。
角度
0°
30°
45°
60°
90°
120°
135°
150°
180°
弧度
π
角度
240°
270°
300°
315°
弧度
7π/6
5π/4
4π/3
7π/4
11π/6
2π
二.选择题。
1.设 ,如果 且 ,则 的取值范围是()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1任意角与弧度制 知识梳理: 一、任意角和弧度制 1、角的概念的推广 定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角,记作:角或 可以简记成。 2、角的分类:
由于用“旋转”定义角之后,角的范围大大地扩大了。可以将角分为正角、零角和负角。 正角:按照逆时针方向转定的角。 零角:没有发生任何旋转的角。 负角:按照顺时针方向旋转的角。 3、 “象限角” 为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x轴的正半轴。 角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。 例1、(1)A={小于90°的角},B={第一象限的角},则A∩B= (填序号). ①{小于90°的角} ②{0°~90°的角} ③ {第一象限的角} ④以上都不对 (2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、 C关系是( ) A.B=A∩C B.B∪C=C C.AC D.A=B=C 4、常用的角的集合表示方法 1、终边相同的角: (1)终边相同的角都可以表示成一个0到360的角与)(Zkk个周角的和。 (2)所有与终边相同的角连同在内可以构成一个集合 即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和 注意: 1、Zk 2、是任意角 3、终边相同的角不一定相等,但相等的角的终边一定相同。终边相同的角有无数个,它们相差360°的整数倍。 4、一般的,终边相同的角的表达形式不唯一。 例1、(1)若角的终边与58角的终边相同,则在2,0上终边与4的角终边相同的角
为 。 (2)若和是终边相同的角。那么在
例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: (1)210; (2)731484. 例3、求,使与900角的终边相同,且1260180,. 2、终边在坐标轴上的点: 终边在x轴上的角的集合: Zkk,180| 终边在y轴上的角的集合:Zkk,90180| 终边在坐标轴上的角的集合:Zkk,90| 3、终边共线且反向的角: 终边在y=x轴上的角的集合:Zkk,45180| 终边在xy轴上的角的集合:Zkk,45180| 4、终边互相对称的角: 若角与角的终边关于x轴对称,则角与角的关系:k360 若角与角的终边关于y轴对称,则角与角的关系:180360k 若角与角的终边在一条直线上,则角与角的关系:k180 角与角的终边互相垂直,则角与角的关系:90360k 例1、若360k,),(360Zmkm则角与角的中变得位置关系是( )。 A.重合 B.关于原点对称 C.关于x轴对称 D.有关于y轴对称 二、弧度与弧度制 1、弧度与弧度制: 弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度 定义:长度等于 的弧所对的圆心角称为1弧度的角。
如图:AOB=1rad ,AOC=2rad , 周角=2rad 注意: 1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 2、角的弧度数的绝对值 rl(l为弧长,r为半径) 3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同。 4、在同一个式子中角度、弧度不可以混用。 2、角度制与弧度制的换算 弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度 角度与弧度的互换关系:∵ 360= rad 180= rad
∴ 1=radrad01745.0180 '185730.571801rad 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 例1、 把'3067化成弧度例 例2、 把rad53化成度 例3、将下列各角从弧度化成角度 (1)36 rad (2)2.1 rad? (3) rad53 3、弧长公式和扇形面积公式 rl ;
2
212
1rlRS
练习题 一、选择题 1、下列角中终边与330°相同的角是( ) A.30° B.-30° C.630° D.-630° 2、把-1485°转化为α+k·360°(0°≤α<360°, k∈Z)的形式是 ( ) A.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°
3、终边在第二象限的角的集合可以表示为: ( )
A.{α∣90°B.{α∣90°+k·180°
o r C 2rad 1rad r l=2r o A A B C.{α∣-270°+k·180°D.{α∣-270°+k·360°4、下列命题是真命题的是( ) Α.三角形的内角必是一、二象限内的角 B.第一象限的角必是锐角
C.不相等的角终边一定不同D.Zkk,90360|=Zkk,90180| 5、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是( ) A.B=A∩C B.B∪C=C C.AC D.A=B=C 6、在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( ) A.① B.①② C.①②③ D.①②③④
7、若α是第一象限的角,则-2是( ) A.第一象限的角 B.第一或第四象限的角 C.第二或第三象限的角 D.第二或第四象限的角 8、下列结论中正确的是( ) A.小于90°的角是锐角 B.第二象限的角是钝角 C.相等的角终边一定相同 D.终边相同的角一定相等 9、集合A={α|α=k·90°,k∈N+}中各角的终边都在( ) A.x轴的正半轴上 B.y轴的正半轴上 C.x轴或y轴上 D.x轴的正半轴或y轴的正半轴上 10、α是一个任意角,则α与-α的终边是( ) A.关于坐标原点对称 B.关于x轴对称C.关于直线y=x对称D.关于y轴对称 11、集合X={x|x=(2n+1)·180°,n∈Z},与集合Y={y|y=(4k±1)·180°,k∈Z}之间的关系是( ) A.XY B.XY C.X=Y D.X≠Y 12、设α、β满足-180°<α<β<180°,则α-β的范围是( ) A.-360°<α-β<0° B.-180°<α-β<180° C.-180°<α-β<0° D.-360°<α-β<360° 13、下列命题中的真命题是 ( ) A.三角形的内角是第一象限角或第二象限角 B.第一象限的角是锐角 C.第二象限的角比第一象限的角大
D.角α是第四象限角的充要条件是2kπ-2<α<2kπ(k∈Z) 14、设k∈Z,下列终边相同的角是 ( ) A.(2k+1)·180°与(4k±1)·180° B.k·90°与k·180°+90° C.k·180°+30°与k·360°±30° D.k·180°+60°与k·60°
15、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )
A.2 B.1sin2 C.1sin2 D.2sin 16、设角的终边上一点P的坐标是)5sin,5(cos,则等于 ( ) A.5 B.5cot C.)(1032Zkk D.)(592Zkk 17、若90°<-α<180°,则180°-α与α的终边 ( ) A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.以上都不对
18、设集合M={α|α=k,k∈Z},N={α|-π<α<π},则M∩N等于 ( )
A.{-3,} B.{-4,7} C.{-4,107,3,} D.{07,03 } 19、“21sinA”“A=30o”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
20、中心角为60°的扇形,它的弧长为2,则它的内切圆半径为 ( )
A.2 B.3 C.1 D.23 21、设集合M={α|α=kπ±,k∈Z},N={α|α=kπ+(-1)k,k∈Z}那么下列结论中正确的是 ( ) A.M=N B.MN C.NM D.MN且NM 二、填空题
22、若角α是第三象限角,则2角的终边在 . 23、与-1050°终边相同的最小正角是 . 24、已知是第二象限角,且,4|2|则的范围是 .
任意角的三角函数练习题一、选择题1. 设角属于第二象限,且2cos2cos,则
2角属于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 给出下列各
函数值:①)1000sin(0;②)2200cos(0;③)10tan(;④917tancos107sin. 其中符号为负的有( )A. ① B. ② C. ③ D. ④3. 02120sin等于( )A. 23 B. 23 C. 23 D. 214. 已知4sin5,并且是第二象限的角,那么tan的值等于( )A. 43
B. 34 C. 43 D. 345.若θ∈(5π4 ,3π2 ),则1-2sinθcosθ 等于 A.cosθ-sinθ B.sinθ+cosθ