人教版七年级数学上《解一元一次方程(一)合并同类项与移项》知识全解

合集下载

人教版(2024数学七年级上册5.2 第2课时 用移项的方法解一元一次方程

人教版(2024数学七年级上册5.2 第2课时 用移项的方法解一元一次方程
难点:理解方程的解的概念.
解方程:
6x - 20=3x + 10
两边加 20,得 6x - 20 + 20=3x + 10 + 20
合并同类项,得
6x=3x + 30
两边减 3x,得
6x - 3x=3x - 3x + 30
合并同类项,得
3x=30
系数化为 1,得
x=10.
知识点:用移项解一元一次方程
解:该小组有学生 x 人.
根据树苗的数量一定,列得方程
2x+3=3x-12.
移项,得
2x-3x=-12-3.
合并同类项,得 -x=-15.
系数化为 1,得
x=15.
树苗:2×15+3=33 (棵).
答:该小组有学生 15 人,共有 33 棵树苗.
x=100.
所以 2x=200,5x=500.
答:采用新、旧工艺的废水排水量分别为 200 t 和 500 t.
1.《九章算术》是世界上最早系统叙述分数运算的著作, 其中“盈不足”的算法更是一项令人惊叹的创造.请用方 程解决《九章算术》第 7 章中的一个问题:今有共买物, 人出八,盈三;人出七,不足四.问人数物价各几何,其 意是:有若干人共同买东西,若每人出 8 块钱,则余 3 块钱;若每人出 7 块钱,则还少 4 块钱.问一起买东西的 人数和所买东西的价格各是多少.
解:(3) 移项,得 3x+4x-6x=-2+7.
合并同类项,得 x=5.
(4) 6-8x=3x+3-5x.
(4) 移项,得 -8x-3x+5x=3-6.
合并同类项,得 -6x=-3.
系数化为1,得
3.在植树节活动中,七(1)班某小组的学生积极参加植树 活动,老师为大家提前准备了一定数量的树苗.如果每 人种 2 棵,那么还余 3 棵树苗;如果每人种 3 棵,那么 还少 12 棵树苗.该小组有学生多少人?共有多少棵树苗?

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

知识点 1 用合并同类项解一元一次方程
【例1】解方程:(1)-3x+0.5x=10.
(2)3y-4y=-25-20.
【思路点拨】先合并同类项,然后系数化为1,求得方程的解.
【自主解答】(1)合并同类项得-2.5x=10, 系数化为1,得x=-4. (2)合并同类项得-y=-45, 系数化为1,得y=45.
【总结提升】解“总量等于各部分量的和”问题的四个步骤 1.设:弄清问题中的总量及各分量,适当设未知数 . 2.列:根据“总量等于各部分量的和”这一相等关系正确列出 方程. 3.解:解方程,求出未知数的值. 4.答:按问题要求作答.
题组一:用合并同类项解一元一次方程 1.下列合并同类项,结果正确的是( A.3a+3b=6ab C.2y+3y+y=5y B.3m-2m=1 D. ax 1.5ax 0
2.一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把 空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放 两个水龙头,灌满水池需( A. 6 小时
5
)
B. 5 小时
6
C.2小时
D.3小时
【解析】选A.设同时开放两个水龙头,灌满水池需x小时,则
1 1 6 x x 1, 所以x . 2 3 5
(打“√”或“×”) (1)-3x+7x的结果等于10x.( × ) (2)解方程2x+x=9时,合并同类项得,3x=9.( √ ) (3)解方程 x 4 得,x=2.( × ) (4)方程x-4x=15的解是x=-5.( √ ) (5)方程-x+6x=-2-8的解是x=-1.( × )
1 2
【总结提升】合并同类项解一元一次方程的实质 合并同类项是一种恒等变形,就是利用乘法分配律把含有 未知数的项结合在一起、把常数项结合在一起 ,最终化为“ax=b (a≠0)”,再根据等式的性质2,两边同除以a,把系数化为1,

解一元一次方程(一)合并同类项与移项说课稿

解一元一次方程(一)合并同类项与移项说课稿

解一元一次方程(一)合并同类项与移项说课稿新安埠中学朱平今天我说课的内容是:人教版七年级上学期第三章第二节《解一元一次方程(一)——合并同类项与移项》的第1课时,下面我就教材分析、教学策略、教学过程设计和教学反思四个方面来完成本节课的说课。

一、教材分析(一)教材的地位和作用方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位,在小学阶段已经对方程进行了初步的研究,但尚未形成方程的概念,更未研究各类方程的解法,所以解方程既是本章的重点,也是今后学习其它方程、不等式及函数的重要基础和基本技能。

本节课的教学内容是《解一元一次方程》的第1课时用“合并同类项”法解方程,是以后系统学习“移项”、“去括号”和“去分母”法解一元一次方程中的重要基础,因此本节课具有承上启下的作用。

结合新《数学课程标准》的要求,根据教材内容和七年级学生认知结构,我确定本节课的教学目标、重点和难点如下:1.教学目标知识技能:会用合并同类项法解一些简单的一元一次方程。

过程与方法:经历根据具体实际问题中的数量关系列方程的过程,体会方程是刻画现实世界数量关系的有效数学模型,培养学生应用方程解决问题的能力。

情感态度与价值观:(1)通过将实际问题抽象成数学问题的过程,培养学生的应用意识和转化的数学思想。

(2)通过具体情境的探索、交流等数学活动,培养学生的团队合作意识和积极参与、勤于思考的习惯。

2.教学重点、难点重点:用列一元一次方程解决实际问题,用“合并同类项”法解一元一次方程。

难点:列方程解决实际问题。

二、教学策略(一)教学手段本节课我充分利用多媒体课件辅助教学,给学生直观的感受,这样,有助于激发学生的学习兴趣。

(二)学法指导遵循启发式教学原则,充分让学生进行小组合作、讨论交流、自主探究等方式来学习。

四、教学过程设计七年级学生的理解能力和思维特征要求我的数学课堂要生动、有趣、高效,因此我将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、勤动脑、善钻研”的研讨式学习方法。

人教版(2024新版)七年级数学上册课件:第五章 一元一次方程 小结与复习

人教版(2024新版)七年级数学上册课件:第五章 一元一次方程 小结与复习

结果仍相等.

等式的性质2:等式两边乘同一个数,或除以同一个
不为0的数,结果仍相等.
知识梳理
➢ 解一元一次方程的一般步骤:
1. 去分母.
依据等式的性质2.
2. 去括号.
依据分配律.
3. 移项.
依据等式的性质1.
4. 合并同类项.
依据分配律.
5. 系数化为1.
依据等式的性质2.
随堂练习
1.列方程表示下列语句中的相等关系:
即a+b=-5.
当x=1时,原式=a·13+b·1-3=a+b-3=-8.
随堂练习
3.解下列方程:

Байду номын сангаас
(1) −8x=3− ;


解:(1)移项,得


-8x+ =3- .


合并同类项,得


- x= .


系数化为1,得

x=- .
(2)0.5x-0.7=6.5-1.3x;
(2)移项,得
1.1a-10=210.
(4)在5天中,第一小组共植树60棵,第二小组共植树x(x<60)棵,
平均每天第一小组比第二小组多植2棵树.
60 x
− =2.
5 5
随堂练习
2.已知x=-1是方程ax3+bx-3=2的解,则当x=1时,求代数式
ax3+bx-3的值.
解:将x=-1代入方程a(-1)3+b(-1)-3=2,
2.工程问题
工程问题中的基本数量关系:
工作量=工作效率×工作时间(或人均效率×时间×人数);
合作的效率=各部分单独做的效率和;

人教版七年级上册数学作业课件 第三章 一元一次方程 第1课时 用合并同类项的方法解一元一次方程

人教版七年级上册数学作业课件 第三章 一元一次方程 第1课时 用合并同类项的方法解一元一次方程
3.2 解一元一次方程(一)——合 并同类项与移项
第1课时 用合并同类项的方法解 一元一次方程
知识点一 利用合并同类项解一元一次方程
1.对于方程 2y+3y-4y=1,合并同类项正确的是
(A)
A.y=1
B.-y=1
C.9y=1
D.-9y=1
2.方程-a-3a=8 的解为( A )
A.a=-2
B.a=2
如下,正确的是( A )
A.130x+90x=1 210 B.130+90x=1 210
C.130x+90=1 210
D.(130-90)x=1 210
7.若三个连续奇数的和是 15,则它们的积是( A )
A.105
B.15
C.35
D.75
8.(2021-2022·北京期中)学校合唱组的男同学人数是
女同学的1,女同学人数比男同学多 4
42
人.合唱组有
女同学和男同学各多少人?
解:设合唱组有女同学 x 人,则有男同学 14x 人. 根据题意得 x-14x=42,解得 x=56.所以14×56=14(人). 答:合唱组有女同学 56 人,男同学 14 人.
9.(教材 P91 习题 T7 变式)小红把 140 cm 长的铁丝分 成 2 段,分别做成两个正方形的数学模型.如果两个 正方形的边长比是 3∶4,那么这两个正方形的边长 分别是多少? 解:设这两个正方形的边长分别为 3x cm,4x cm, 则 4×3x+4×4x=140.解得 x=5. 所以 3x=15,4x=20. 答:这两个正方形的边长分别为 15 cm,20 cm.
C.a=-3
D.a=3
3.如果 x=m 是方程 12x-m=1 的解,那么 m 的值是

5.2解一元一次方程——移项(教学设计)2024—2025学年人教版数学七年级上册

5.2解一元一次方程——移项(教学设计)2024—2025学年人教版数学七年级上册

章节人教版第五章年级七年级学科数学课题解一元一次方程——移项课型运算课教学目标1.找相等关系列一元一次方程;2.用移项解ax+b=cx+d型的一元一次方程,体会解方程中的化归思想。

教学重难点1.找相等关系列一元一次方程;2,。

用移项解ax+b=cx+d型的一元一次方程,体会解方程中的化归思想。

教材分析1、本节课是数学人教版七年级上册第三章第二节第二小节的内容。

2、本节课主要内容是解一元一次方程的重要步骤移项。

是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。

学情分析针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。

在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。

教学过程设计教学环节教学活动学生活动设计意图第一环节创设情境引入新课问题一:复习合并同类项解下列方程:(1)x+3x-2x=4(2)3x-4x=-25-20问题二:创设情境把一些图书分给某班学生阅读,如果每人3本,还剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?如果设这个班有学生x人,每人分3本,共分出了3x_本,加上剩余的20本,这批书共(_3x+20_)_本。

每人分4本,需要4x本,减去缺少的25本,这批书共(4x-25 )_本。

说明基本事实:表示同一个量的两个式子具有相等关系,这是列方程的依据。

师生共同分析:这批书从学生比较熟悉的身边的问题开始,能给学生一种轻松的心理氛围,易于学生学习新知识。

这里,可根据情况逐步放手,让学生自己解决,培养独立解决问题的这批书的总数有几种表示方法?它们之间有什么关系?教师展示问题,教师和学生一起分析问题,找出相等关系,合理地设未知数、列式子。

的总数是一个定值,表示它的两个式子应该相等,根据这一相等关系列出方程3x+20=4x-25习惯。

人教版初中七年级上册数学《移项》精品课件

人教版初中七年级上册数学《移项》精品课件
表示这批书的总数的两个代数式相等.
3x + 20 = 4x – 25
思考
方程3x + 20 = 4x – 25的两边都有含x 的项(3x与4x)和不含字母的常数项(20 与– 25),怎样才能使它向x=a(常数) 的形式转化呢?
为了使方程的右边没有含x的项,等号两 边减4x;为了使左边没有常数项,等号两边减 20. 利用等式的性质1,得
2. 对方程 7x = 6 + 4x 进行移项,得__7_x_–__4_x_=__6_, 合并同类项,得___3_x_=__6__,系数化为1,得 ___x_=__2__.
3. 小新出生时父亲28岁,现在父亲的年龄比小 新年龄的3倍小2岁. 求小新现在的年龄.
解:设小新现在的年龄为x岁. 根据题意,得 3x – 2 = x + 28. 移项,得 2x = 30.
3x – 4x = – 25 – 20.
上面方程的变形,相当于把原方程左边的 20变为 – 20移到右边,把右边的4x变为 – 4x移 到左边.
像上面那样把等式一边的某项变号后移到 另一边,叫做移项.
3x + 20 = 4x – 25 移项
移项变号
3x – 4x = – 25 – 20 合并同类项
系数化为1,得 x=100.
等号两边 代表哪个
数量?
所以 2x=200, 5x=500.
答:新、旧工艺产生的废水排量分别为200 t和500 t.
练习1 解下列方程: (1)6x – 7 = 4x – 5; 解:移项,得 6x – 4x = – 5 + 7 合并同类项,得
2x = 2. 系数化为1,得
解:移项,得
3x + 2x = 32 – 7 合并同类项,得

202年初中数学七年级上册第二单元一元一次方程03 一元一次方程(3)解法(一)移项合并同类项

202年初中数学七年级上册第二单元一元一次方程03 一元一次方程(3)解法(一)移项合并同类项

3.2解一元一次方程(一)合并同项与移项一、解一元一次方程的方法1、合并同类项2、移项3、去括号去分母二、移项的定义:把等式一边的某项变号后移到另一边,叫做移项三、移项的性质:把某一项移到式子的另一边,要改变这一项的符号a+b=c → a=c-ba-b=c → a=c+b四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号相同,+(x-3)=x-3(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号相反。

-(x-3)=-x+3(3)(3)等式两边乘同一个数,结果仍相等。

五、解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1概念题一、解一元一次方程的方法1、2、3、二、移项的定义:把等式叫做移项三、移项的性质:把某一项移到式子的另一边,要a+b=c → a=a-b=c → a=四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号号,+(x-3)=(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号号。

-(x-3)=(3)等式两边乘同一个数,结果仍。

五、解一元一次方程的一般步骤包括:、、、、。

3.2.1 解法(一)合并同类项一、合并下列各式中可以合并的项:(1)2x+3x-4x= (2)3y-2y+y=(3)8x+7+2x= (4)7x-4.5x=(5)15x+4x-10x= (6)-6ab+8ab+ab=(7) -p2-p2-p2-p2= (8) m-n2+m-n2=(9) 4(a+b)+(a+b)-7(a+b)=(10)2(x+y)2-7(x+y)2+9(x+y)2=二、完成下面的解题过程:(1)解方程-3x+0.5x=10. (2)解方程3x-4x=-25-20.解:合并同类项,得 . 解:合并同类项,得 .两边,得两边,得∴=x;x;∴=(3)9x—5x=8 (4)4x-6x-x =-15解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=(5) 3+-6-xxx(6)4x+3-3x-2=0x-=5.1⨯4315-7⨯5.2解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=三、用合并同类法解下列方程:(1)6x —x =4 (2)-4x +6x -0.5x =-0.3 (3)9x -5x =8(4)4x -6x -x =-15 (5)2y -25y =6-8 (6)14x +12x =3(7)3(x -7)+5(x -4)=15 (8)7232=+x x (9)314125=-x x(10) 21)15(51=+x (11)3x -1.3x +5x -2.7x =-12×3-6+43.2.2 解法(二)移项把某一项移到式子的另一边,要 一、选择题1.下列变形中属于移项的是( )A.由572x y -=,得275y x --+ B.由634x x -=+,得634x x -=+ C.由85x x -=-,得58x x --=-- D.由931x x +=-,得319x x -=+ 2.解方程6x +1=-4,移项正确的是( )A.6x =4-1B.-6x =-4-1C.6x =1+4D.6x =-4-1 3.解方程-3x +5=2x -1, 移项正确的是( )A.3x -2x =-1+5B.-3x -2x =5-1C.3x -2x =-1-5D.-3x -2x =-1-5 4.下列变形正确的是( ) A.由3921x +=,得3219x =+B.由125x-=,得110x -=C.由105x -=,得15x = D.由747x +=,得41x +=5.方程3412x x -=+,移项,得3214x x -=+,也可以理解为方程两边同时( ) A.加上()24x -+ B.减去()24x -+ C.加上()24x + D.减去()24x + 二、填空(1)方程3y =2的解是y = ; (2)方程-x =5的解是x = ; (3)方程-8t =-72的解是t = ; (4)方程7x =0的解是x = ; (5)方程34x =-12的解是x = ;三、填空:(只写移项的变化,不用计算结果) (1) x +7=13移项得 ; (2) x -7=13移项得 ; (3) 5+x =-7移项得 ; (4) -5+x =-7移项得 ; (5) 4x =3x -2移项得 ;(6) 4x =2+3x 移项得 ; (7) -2x =-3x +2移项得 ; (8) -2x =-2-3x 移项得 ; (9) 4x +3=0移项得 ; (10) 0=4x +3移项得 .四、将下列方程中含有未知数的项移到方程的左边,•将常数项移方程的右边:(1)6+x =10 (2)5433xx -=(3)7-6x =5-4x (4) 11522x x -=-+五.完成下面的解题过程:(1)解方程6x -7=4x -5. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(2)解方程3x -4x =-25-20. 解:合并同类项,得 .系数化为1,得 .(3).解方程2x +5=25-8x. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(5)解方程:5x +2=7x -8解: ,得5x -7x =-8-2. ,得-2x =-10. ,得x =5.3.用先移项后合并的方法解下列方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《解一元一次方程(一)合并同类项与移项》知识全解
课标要求
1.了解解方程的基本目标(使方程逐步转化为x=a 的形式),理解解一元一次方程的一般步骤(本节主要是合并同类项与移项),掌握一元一次方程的解法,体会解法中蕴涵的化归思想;
2.能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”,体会建立数学模型的思想;
3.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力.
知识结构 内容解析
1.合并同类项:本质是分配律的逆运算,原来是在式子中运算,现在是在等式中运算,并且要注意格式上的问题,原来可以写“解:原式=......”,现在在方程中不存在这种写法,也可以帮助学生理解合并同类项在两处的却别,还能说明方程是在化简,渗透化归思想.
2.移项:把等式一边的某项变号后移到另一边,叫做移项.这是概念,其中移项变号显得尤为重要,而且这也是许多学生极为容易犯错的地方,我认为让学生理解透彻这移项的本质实际上是等式性质1——等式两边同时加上或减去同一个数,等式仍然成立,是帮助学生避免犯错的办法之一.
3.合并同类项与移项的作用:合并同类项与移项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并逐步使方程向x =a 的形式转化,让学生明白,解方程实际上是化简的一个过程,而且可以帮助学生建立解数学题的一种方法:把未解决的问题转化为一个已经解决的问题,这就是重要的数学思想——化归思想,也是一种重要的学习方法!
4.解方程的步骤:移项、合并同类项、系数化为1.
5.用一元一次方程分析和解决实际问题的一般过程:表示同一量的两个不同式子相等. 重点难点
本节的重点是:利用合并同类项、移项变号法则解方程.
教学重点的解决方法:学生在整式加减中已经学会了合并同类项,通过观察类比得出合并同类项与移项的解法,学生积极动手、动脑、动口为主线来完成,设置由浅入深一些练习题,加深对概念的理解与把握.通过题组的学习和训练,归纳出用一元一次方程解题的一般步骤.体会方程是刻画现实世界数量关系的一个有效的数学模型,
本节的难点是:找相等关系列一元一次方程
教学难点的解决方法:要运用一元一次方程解决生活中的实际问题,首先必须了解一元一次方程的概念,而概念的教学又要从大量的实例出发.通过问题情境,建立一元一次方程的数学模型.
(1)注意师生互动,提高学生的思维效率.(2)针对学生的盲区,出相应的练习巩固.
教法导引
本节的重点在于讨论解方程中的“合并同类项”和“移项”两个基本做法,这样就已经可解ax+b=cx+d 类型的一元一次方程.
实际问题 一元一次方程 合并 移项 步骤 设未知数,
列方程
本节中对于“合并同类项”和“移项”的讨论,分别以问题1和问题2为出发点.以较为简单的实际问题作讨论方程解法的背景,一方面可使学生感觉到要讨论的解法来源于实际问题的需要,另一方面可使根据实际问题列方程贯穿于全章,将列方程的教学过程拉长.从而达到由简单问题到复杂问题地逐步提高学生列方程的能力的教学效果.本节首先提及在数学史上对解方程颇有影响的一部著作,即生活在约780~850年间的阿拉伯数学家阿尔—花拉子米所著的《对消与还原》一书,提问“对消”与“还原”是什么意思,以此作为后面内容的引子.
本节在问题1和问题2之后,各安排了两道例题,其中前一例题是单纯解方程,其作用是巩固对相应解法的理解和掌握;后一例题是简单的实际问题,其作用有两个,一是巩固对相应解法的理解和掌握,二是逐步引导学生理解和掌握如何列方程.解方程和列方程是利用方程分析和解决实际问题的基本过程中不可或缺的两个环节.
在教学中,要把数学思想和方法的教学贯穿于整个教学中,学生只有及早形成自己的思想和方法,才能学得轻松,从而更加爱学数学.同时及时找出课堂上出现的共性问题,利用辅导课及时纠正,然后做针对性练习来巩固盲区,强化课堂薄弱环节,使课堂走向优质高效化.学法建议
通过回顾已学过的整式加减中的合并同类项和等式性质1这些已有知识,为后续的合并同类项与移项学习作好知识储备与铺垫,通过对实际问题的讨论与探究,激发起学生的强烈的求知欲和探索愿望,用方程思想从日常生活情境中借助等量关系,用一元一次方程表示出来,初步建立一元一次方程基本模型.让学生尝试进一步将所学知识运用到解方程中,最后体验到“合并同类项”和“移项”给解方程带来的便利性!并通过应用题组灵活运用所学知识形成技能技巧.让学生自己归纳出用一元一次方程解决实际问题的一般步骤,体会方程是刻画现实世界数量关系的一个有效的数学模型.。

相关文档
最新文档