合并同类项(1)

合集下载

解一元一次方程(一)合并同类项(第1课时)教案

解一元一次方程(一)合并同类项(第1课时)教案

解一元一次方程(一)授课设计课题名称 3.2解一元一次方程(一)——合并同类项(第 1 课时)科目数学授课对象七年级学生教师1、经历运用方程解决实责问题的过程,领悟方程是刻画现实世界的有效数学模型.2、学会合并(同类项),会解“ax+ bx=c ”种类的一元一次方程.授课内容3、可以找出实责问题中的已知数和未知数,解析它们之间的数量关系,列出方程.4、初步领悟一元一次方程的应用价值,感觉数学文化。

一、教材内容解析本课内容是一堂用合并同类项法来解一元一次方程的研究活动课。

以方程为工具解析问题、解决问题,依照问题中的等量关系建立方程模型是全章的重点,而对一元一次方程的有关看法和解法的谈论,是建立在方程模型的背景下进行的。

列方程中蕴涵的“数学建模思想”和解方程中蕴涵的“化归思想”是本节致使全章向来浸透的主要数学思想。

本节课重点谈论用合并同类项法解一元一次方程,领悟解法中蕴涵的化归思想,这将为后边的进一步谈论一元一次方程中的“移项”、“去括号”和“去分母”解法准备理论依照,因此这节课是一节承上启下的基础课。

授课重点找等量关系列一元一次方程;用合并同类项法解一元一次方程。

会用“数学建模思想”解决实责问题,用“化归思想”解析以及分授课难点类谈论思想解方程。

二、授课目的会列一元一次方程解决实责问题,并会合并同类项解一元一次方程.知识技术数学思虑在研究过程中,领悟知识间的联系,提高解决问题的能力.学生在研究法规的过程中,感觉转变思想、类比思想和从特别到一问题解决般的思想方法,并培养学生的逆向思想.进一步丰富数学学习的成功体验,建立学习数学的信心和勇气,初步形成积极参加数学活动、主动与别人合作交流意识. 学生从已有感神态度知识出发,经过合适的研究、合作谈论、实践活动,获得一些直接的经验,领悟数学的合用价值,享受体验成功的快乐 .三、学习者特点解析学生在第二章《整式》中“整式的加减”的第一课时已经接触并掌握了合并同类项,故本节课可是把合并同类项运用在一元一次方程中,针对学生而言,本节课的掌握其实不难。

3.2.1解一元一次方程——合并同类项

3.2.1解一元一次方程——合并同类项

根据问题中的相等关系: 前年购买量+去年购买量+今年购买量=140台
列得方程
x + 2x +4x = 140
x 2x 4x 140
合并同类项
7 x 140 x 20
根据等式的性质2
分析:解方程,就是把
系数化为1 方程变形,变为 x = a
(a为常数)的形式.
想一想:上面解方程中“合并同类项” 起了什么作用?
1 1 x x x 15 2 4
考考你
一个数,它的三分之二,它的一半,它的 七分之一,它的全部,加起来总共是33。 求这个数。
解:设这个数是x,则:
2 1 1 x x x x 33 3 2 7
1. 你今天学习的解方程有哪些步骤?
合并同类项 系数化为1 (等式性质2) 2:如何列方程?分哪些步骤?
一.设未知数: 二.分析题意找出等量关系: 三.根据等量关系列方程:
作业:
•P93 习题3.2第1题
点此播放教学视频
点此播放教学视频
在一卷公元前1600年左右遗留下来的古 埃及草卷中, 记载着一些数学问题.其中 一个翻译过来就是“啊哈,它的全部,它 的七分之一, 其和等于19”.你能求出问 题中的“它”吗?请你能根据题意列出 方程. 1 设 :“它”为x,列出方程: x+ x =19 7
请欣赏一首诗: 太阳下山晚霞红,我把鸭子赶回笼; 一半在外闹哄哄,一半的一半进笼中; 剩下十五围着我,共有多少请算清。 你能列出方程来解决这个问题吗?
(2)-3x 7 x
解:(1)3x 5x (3 5) x 2 x
问题1:
某校三年共购买计算机140台,去年购买 数量是前年的2倍,今年购买数量又是去年的2 倍.前年这个学校购买了多少台计算机?

3.4 第1课时 合并同类项(北师大版七年级上册数学课件)

3.4 第1课时 合并同类项(北师大版七年级上册数学课件)
解:能. 化简7a2-5b2+3a2b-4a2+b2-3a2b-3a2+4b2-2 =(7a2-4a2-3a2)+(-5b2+b2+4b2)+(3a2b-3a2b)-2 =-2, 所以,无论a,b取什么值,代数式的值都为2.
课堂检测 3
D D
2
答案:(1)6x-5f; (2)24b; (3)15a2b-2b2c; (4)-8wx. 答案:(1)-1; (2)-11/3.
的,为前者配一个.
(1)2x2y与-3x2y

(2)2abc与2ab 3abc ×
(3)-3pq与3qp

(4) -4x2y与5xy2 x2y ×
总结归纳 同类项的判别方法
(1)同类项只与字母及其指数有关,与系数无关,与 字母在单项式中的排列顺序无关; (2)抓住“两个相同”:一是所含的字母要完全相同, 二是相同字母的指数要相同,这两个条件缺一不可. (3)不要忘记几个单独的数也是同类项.
自学互研
归纳: 1.所含字相同. 2.相同字母的指数也相同. 满足以上两个条件的项叫做同类项
自学互研
游戏一
(1) 5x3 y2
(4)15zy2 x3
(2) 2 x3 y2 3
(3) x3 y2 z
(5) 125 (6)12
(7) a3 (8) 5a3
自学互研
游戏二 先判断每一组是否是同类项,不是
典例精析
例1 (1)如果2a2bn+1与-4amb3是同类项,则m= 2 ,n= 2 . (2)在6xy-3x2-4x2y-5yx2+x2中没有同类项的项是_6_x_y__.
分析:(1)根据同类项的定义,可知a的指数相同, b的指数也相同,即m=2,n+1=3.

七上数学合并同类项习题(计算1)

七上数学合并同类项习题(计算1)

七上合并同类项习题(计算1)一.填空题(共60小题)1.计算4a+2a﹣a的结果等于.2.计算2a2+3a2﹣a2的结果等于.3.计算2x2﹣3x2+x2的结果等于.4.计算a2﹣3a2+4a2的结果等于.5.计算﹣6ab+ab+8ab的结果等于.6.计算:3m2n﹣2nm2=.7.计算:a2b+2a2b=.8.化简2x2+3x2﹣6x2的结果为.9.4a2b﹣3ba2=.10.计算:3x﹣5x+4x=.11.计算5a2+2a2的结果等于.12.计算a+2a的结果为.13.合并同类项:3a3﹣5a3﹣a3=.14.计算:x2y﹣3x2y=.15.合并同类项﹣ab+7ab﹣9ab=.16.计算:5x﹣3x=.17.计算:2a+3a=.18.计算:12x2y﹣4yx2=.19.化简:4a2+6a2﹣a2=.20.计算:a2+a2=.21.化简2x3+3x3的结果为.22.计算:t﹣3t=.23.计算:(1)5+(﹣1)=;(2)﹣5﹣3=;(3)3×(﹣5)=;(4)(﹣3)2=;(5)2x+5x=;(6)3x2﹣7x2=.24.计算:﹣4m+6m=.25.计算:2x﹣5x=.26.计算x+7x﹣5x的结果等于.27.计算7a2b﹣5ba2=.28.计算:t﹣3t﹣t=.29.计算:﹣a﹣3a=.30.计算:2a2b﹣3a2b=.31.化简:xy+2xy=.32.化简xy2﹣3x2y﹣1+2xy2+5x2y=.33.计算2a﹣3a的结果是.34.计算4a2﹣5a2的结果是.35.计算:﹣a﹣2a=.36.计算:﹣2a2+5a2=.37.化简:﹣xy﹣5xy+6yx=.38.合并同类项:﹣7m﹣m=.39.计算:﹣5a3+7a3=.40.计算:2x2y+3x2y﹣4x2y=.41.合并同类项:8m2n﹣5m2n=.42.计算:3x+x=.43.计算﹣6a2+5a2的结果为.44.合并同类项:=.45.3xy2﹣7xy2=.46.化简:a+3a+5a+7a=.47.合并同类项.48.计算:7x﹣4x=.49.合并同类项:4a2+6a2﹣a2=.50.计算a3+a3的结果等于.51.2xy﹣6xy=.52.计算:3x2﹣4x2=.53.计算:3a2﹣6a2=.54.计算:﹣a+3a=.55.3x2﹣x2=.56.计算:x2y﹣3yx2=.57.3x2﹣2x2=.58.合并同类项:(1)﹣2ab+3ab=;(2)﹣2a2﹣2a2=.59.计算:﹣5m+7m=.60.﹣5xy+7xy=,﹣4a3b2﹣8a3b2=.七上合并同类项习题(计算1)参考答案与试题解析一.填空题(共60小题)1.计算4a+2a﹣a的结果等于5a.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此计算即可.【解答】解:4a+2a﹣a=(4+2﹣1)a=5a.故答案为:5a.【点评】本题考查了合并同类项,掌握合并同类项法则是解答本题的关键.2.计算2a2+3a2﹣a2的结果等于4a2.【分析】根据合并同类项的法则计算即可.【解答】解:原式=(2+3﹣1)a2=4a2,故答案为:4a2.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.3.计算2x2﹣3x2+x2的结果等于0.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此计算即可.【解答】解:2x2﹣3x2+x2=(2﹣3+1)x2=0.故答案为:0.【点评】本题考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.4.计算a2﹣3a2+4a2的结果等于2a2.【分析】直接利用合并同类项法则计算得出答案.【解答】解:a2﹣3a2+4a2=(1﹣3+4)a2=2a2.故答案为:2a2.【点评】此题主要考查了合并同类项,正确掌握相关运算法则是解题关键.5.计算﹣6ab+ab+8ab的结果等于3ab.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:原式=(﹣6+1+8)ab=3ab,故答案为:3ab.【点评】本题主要考查了合并同类项,熟记运算法则是解答本题的关键.6.计算:3m2n﹣2nm2=m2n.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,据此计算即可.【解答】解:3m2n﹣2nm2=m2n.故答案为:m2n.【点评】本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.7.计算:a2b+2a2b=3a2b.【分析】合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.据此计算即可.【解答】解:a2b+2a2b=(1+2)a2b=3a2b.故答案为:3a2b.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.8.化简2x2+3x2﹣6x2的结果为﹣x2.【分析】在合并同类项时,系数相加减,字母及其指数不变,据此求解即可.【解答】解:2x2+3x2﹣6x2=(2+3﹣6)x2=﹣x2.故答案为:﹣x2.【点评】本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.9.4a2b﹣3ba2=a2b.【分析】根据合并同类项得法则计算即可.【解答】解:4a2b﹣3ba2=(4﹣3)a2b=a2b.故答案为:a2b.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.10.计算:3x﹣5x+4x=2x.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:3x﹣5x+4x=(3﹣5+4)x=2x.故答案为:2x.【点评】本题主要考查了合并同类项,熟记运算法则是解答本题的关键.11.计算5a2+2a2的结果等于7a2.【分析】合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:5a2+2a2=(5+2)a2=7a2,故答案为:7a2.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.12.计算a+2a的结果为3a.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:a+2a=(1+2)a=3a.故答案为:3a.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.13.合并同类项:3a3﹣5a3﹣a3=﹣3a3.【分析】合并同类项是指同类项的系数相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:原式=(3﹣5﹣1)a3=﹣3a3,故答案为:﹣3a3.【点评】本题主要考查了合并同类项,熟记运算法则是解答本题的关键.14.计算:x2y﹣3x2y=﹣2x2y.【分析】根据合并同类项法则计算即可,在合并同类项时,系数相加减,字母及其指数不变.【解答】解:x2y﹣3x2y=(1﹣3)x2y=﹣2x2y.故答案为:﹣2x2y.【点评】本题主要考查了合并同类项,熟记运算法则是解答本题的关键.15.合并同类项﹣ab+7ab﹣9ab=﹣3ab.【分析】只是把系数相加减,ab部分不变即可.【解答】解:原式=(﹣1+7﹣9)ab=﹣3ab.故答案为﹣3ab.【点评】本题考查了合并同类项:同类项的合并只是把系数相加减,字母和字母的指数不变.16.计算:5x﹣3x=2x.【分析】根据和并同类项的运算法则,(把同类项的系数相加,所得结果作为系数,字母和字母的指数不变),进行解答即可.【解答】解:原式=(5﹣3)x=2x.故答案为2x.【点评】本题主要考查合并同类项的运算法则,同类项的概念,关键在于认真的进行计算.17.计算:2a+3a=5a.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变求解.【解答】解:2a+3a=5a,故答案为5a.【点评】本题考查了合并同类项的法则,解题时牢记法则是关键.18.计算:12x2y﹣4yx2=8x2y.【分析】直接合并同类项即可.【解答】解:12x2y﹣4yx2=8x2y.故答案为:8x2y.【点评】本题考查了合并同类项,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.19.化简:4a2+6a2﹣a2=9a2.【分析】根据合并同类项的法则求出答案即可.【解答】解:4a2+6a2﹣a2=(4+6﹣1)a2=9a2,故答案为:9a2.【点评】本题考查了合并同类项法则,注意:合并同类项的法则是:把同类项的系数相加作为结果的系数,字母和字母的指数不变.20.计算:a2+a2=2a2.【分析】合并同类项是指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:a2+a2=(1+1)a2=2a2,故答案为:2a2.【点评】此题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.21.化简2x3+3x3的结果为5x3.【分析】在合并同类项时,系数相加减,字母及其指数不变,据此求解即可.【解答】解:2x3+3x3=(2+3)x3=5x3,故答案为:5x3.【点评】本题考查了合并同类项,熟记合并同类项法则是解答本题的关键.22.计算:t﹣3t=﹣2t.【分析】在合并同类项时,系数相加减,字母及其指数不变,据此计算即可.【解答】解:t﹣3t=(1﹣3)t=﹣2t.故答案为:﹣2t.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.23.计算:(1)5+(﹣1)=4;(2)﹣5﹣3=﹣8;(3)3×(﹣5)=﹣15;(4)(﹣3)2=9;(5)2x+5x=7x;(6)3x2﹣7x2=﹣4x2.【分析】根据有理数的混合运算和合并同类项法则分别进行计算即可得出答案.【解答】解:(1)5+(﹣1)=4;(2)﹣5﹣3=﹣8;(3)3×(﹣5)=﹣15;(4)(﹣3)2=9;(5)2x+5x=7x;(6)3x2﹣7x2=﹣4x2.故答案为:(1)4;(2)﹣8;(3)﹣15;(4)9;(5)7x;(6)﹣4x2.【点评】此题考查了有理数的混合运算和合并同类项,熟练掌握运算法则是解题的关键.24.计算:﹣4m+6m=2m.【分析】直接合并同类项得出答案.【解答】解:﹣4m+6m=2m.故答案为:2m.【点评】此题主要考查了合并同类项,正确合并同类项是解题关键.25.计算:2x﹣5x=﹣3x.【分析】把同类项的系数相加,所得结果作为系数,字母和字母的指数不变解答即可.【解答】解:2x﹣5x=(2﹣5)x=﹣3x,故答案为:﹣3x.【点评】本题考查了合并同类项,利用把同类项的系数相加,所得结果作为系数,字母和字母的指数不变解答是解题关键.26.计算x+7x﹣5x的结果等于3x.【分析】根据合并同类项法则求解即可.【解答】解:x+7x﹣5x=(1+7﹣5)x=3x.故答案为:3x.【点评】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.27.计算7a2b﹣5ba2=2a2b.【分析】根据合并同类项法则化简即可.【解答】解:7a2b﹣5ba2=(7﹣5)a2b=2a2b.故答案为:2a2b【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.28.计算:t﹣3t﹣t=﹣3t.【分析】根据合并同类项法则化简即可.【解答】解:t﹣3t﹣t=(1﹣3﹣1)t=﹣3t.故答案为:﹣3t【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.29.计算:﹣a﹣3a=﹣4a.【分析】根据合并同类项法则化简即可.【解答】解:﹣a﹣3a=(﹣1﹣3)a=﹣4a.故答案为:﹣4a.【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.30.计算:2a2b﹣3a2b=﹣a2b.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变进行计算即可.【解答】解:原式=(2﹣3)a2b=﹣a2b,故答案为:﹣a2b.【点评】此题主要考查了合并同类项,关键是掌握合并同类项法则.31.化简:xy+2xy=3xy.【分析】根据合并同类项法则化简即可.【解答】解:xy+2xy=(1+2)xy=3xy.故答案为:3xy【点评】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.32.化简xy2﹣3x2y﹣1+2xy2+5x2y=3xy2+2x2y﹣1.【分析】根据合并同类项法则计算即可.【解答】解:xy2﹣3x2y﹣1+2xy2+5x2y=(1+2)xy2+(5﹣3)x2y﹣1=3xy2+2x2y﹣1.故答案为:3xy2+2x2y﹣1.【点评】本题考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.33.计算2a﹣3a的结果是﹣a.【分析】根据合并同类项法则合并即可.【解答】解:2a﹣3a=(2﹣3)a=﹣a,故答案为:﹣a.【点评】本题考查了合并同类项,能熟记合并同类项法则的内容是解此题的关键.34.计算4a2﹣5a2的结果是﹣a2.【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:4a2﹣5a2=﹣a2.故答案为:﹣a2.【点评】此题主要考查了合并同类项,正确掌握相关运算法则是解题关键.35.计算:﹣a﹣2a=﹣3a.【分析】直接利用合并同类项法则计算得出答案.【解答】解:﹣a﹣2a=﹣3a.故答案为:﹣3a.【点评】此题主要考查了合并同类项,正确把握合并同类项法则是解题关键.36.计算:﹣2a2+5a2=3a2.【分析】合并同类项指同类项的系数的相加,并把得到的结果作为新系数,要保持同类项的字母和字母的指数不变,据此计算即可.【解答】解:﹣2a2+5a2=(﹣2+5)a2=3a2,故答案为:3a2.【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.37.化简:﹣xy﹣5xy+6yx=0.【分析】在合并同类项时,系数相加减,字母及其指数不变,据此计算即可.【解答】解:﹣xy﹣5xy+6yx=(﹣1﹣5+6)xy=0.故答案为:0.【点评】本题主要考查了合并同类项,熟记运算法则是解答本题的关键.38.合并同类项:﹣7m﹣m=﹣m.【分析】将同类项的系数相加,字母部分不变即可得.【解答】解:原式=(﹣7﹣)m=﹣m,故答案为:﹣m.【点评】本题主要考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.39.计算:﹣5a3+7a3=2a3.【分析】直接利用合并同类项法则计算得出答案.【解答】解:﹣5a3+7a3=2a3.故答案为:2a3.【点评】此题主要考查了合并同类项,正确掌握相关运算法则是解题关键.40.计算:2x2y+3x2y﹣4x2y=x2y.【分析】原式合并同类项即可得到结果.【解答】解:原式=(2+3﹣4)x2y=x2y,故答案为:x2y【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.41.合并同类项:8m2n﹣5m2n=3m2n.【分析】根据合并同类项法则计算可得.【解答】解:8m2n﹣5m2n=(8﹣5)m2n=3m2n,故答案为:3m2n.【点评】本题主要考查合并同类项,解题的关键是掌握合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.42.计算:3x+x=4x.【分析】根据合并同类项的法则计算.【解答】解:3x+x=(3+1)x=4x,故答案为:4x.【点评】本题考查的是合并同类项,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.43.计算﹣6a 2+5a 2的结果为﹣a 2.【分析】根据合并同类项的法则化简即可.【解答】解:﹣6a 2+5a 2=(﹣6+5)a 2=﹣a 2.故答案为:﹣a 2.【点评】本题主要考查了合并同类项,熟记合并同类项的法则是解答本题的关键.44.合并同类项:=.【分析】根据合并同类项的法则求出即可.【解答】解:=﹣x 2y ,故答案为:﹣x 2y .【点评】本题考查了同类项的定义和合并同类项法则,能熟记同类项的定义和合并同类项的法则的内容是解此题的关键.45.3xy 2﹣7xy 2=﹣4xy 2.【分析】根据合并同类项的法则计算即可.【解答】解:3xy 2﹣7xy 2=(3﹣7)xy 2=﹣4xy 2.故答案为:﹣4xy 2【点评】本题主要考查了合并同类项,熟记合并同类项法则是解答本题的关键.46.化简:a +3a +5a +7a =16a .【分析】根据同类项可直接进行加减运算,由此可得出答案.【解答】解:a +3a +5a +7a=(1+3+5+7)a=16a .故答案为:16a .【点评】本题考查了整式的加减,解决此类题目的关键是熟练运用合并同类项的法则,这是各地中考的常考点.47.合并同类项=x 2.【分析】直接利用合并同类项法则计算得出答案.【解答】解:原式=(5+)x 2=x2.故答案为:=x2.【点评】此题主要考查了合并同类项,正确掌握运算法则是解题关键.48.计算:7x﹣4x=3x.【分析】根据合并同类项法则计算可得.【解答】解:7x﹣4x=(7﹣4)x=3x,故答案为:3x.【点评】本题主要考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:所含字母都相同;相同字母的指数也相同;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.49.合并同类项:4a2+6a2﹣a2=9a2.【分析】根据合并同类项法则计算可得.【解答】解:原式=(4+6﹣1)a2=9a2,故答案为:9a2.【点评】本题考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:所含字母相同;相同字母的指数也相同;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.50.计算a3+a3的结果等于2a3.【分析】原式合并同类项即可得到结果.【解答】解:原式=2a3,故答案为:2a3【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.51.2xy﹣6xy=﹣4xy.【分析】根据把同类项的系数相加,所得结果作为系数,字母和字母的指数不变解答即可.【解答】解:2xy﹣6xy=﹣4xy,故答案为:﹣4xy【点评】此题考查合并同类项,关键是根据合并同类项的法则解答.52.计算:3x2﹣4x2=﹣x2.【分析】根据合并同类项解答即可.【解答】解:3x2﹣4x2=﹣x2,故答案为:﹣x2【点评】此题考查合并同类项,关键是根据合并同类项的法则计算.53.计算:3a2﹣6a2=﹣3a2.【分析】根据合并同类项的法则把系数相加即可.【解答】解:3a2﹣6a2=﹣3a2,故答案为:﹣3a2.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.54.计算:﹣a+3a=2a.【分析】根据合并同类项的法则即可求出答案.【解答】解:原式=2a,故答案为:2a【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.55.3x2﹣x2=2x2.【分析】根据合并同类项的法则即可求解.【解答】解:原式=(3﹣1)x2=2x2.故答案是:2x2.【点评】本题考查了合并同类项的法则,系数相加作为系数,字母和字母的指数不变.56.计算:x2y﹣3yx2=﹣2yx2.【分析】根据合并同类项的法则,系数相加作为系数,字母和字母的指数不变进行合并.【解答】解:x2y﹣3yx2=﹣2yx2.故答案为:﹣2yx2.【点评】本题考查同类项的定义,合并同类项时把系数相加减,字母与字母的指数不变.57.3x2﹣2x2=x2.【分析】直接利用合并同类项法则计算得出答案.【解答】解:3x2﹣2x2=(3﹣2)x2=x2.故答案为:x2.【点评】此题主要考查了合并同类项,正确掌握运算法则是解题关键.58.合并同类项:(1)﹣2ab+3ab=ab;(2)﹣2a2﹣2a2=﹣4a2.【分析】(1)直接利用合并同类项法则计算得出答案;(2)直接利用合并同类项法则计算得出答案.【解答】解:(1)﹣2ab+3ab=ab;(2)﹣2a2﹣2a2=﹣4a2.故答案为:ab,﹣4a2.【点评】此题主要考查了合并同类项,正确掌握相关运算法则是解题关键.59.计算:﹣5m+7m=2m.【分析】直接合并同类项即可.【解答】解:﹣5m+7m=2m,故答案为:2m.【点评】本题考查的是整式的加法,正确合并同类项法则是解题的关键.60.﹣5xy+7xy=2xy,﹣4a3b2﹣8a3b2=﹣12a3b2.【分析】根据合并同类项解答即可.【解答】解:﹣5xy+7xy=2xy,﹣4a3b2﹣8a3b2=﹣12a3b2,故答案为:2xy;﹣12a3b2.【点评】此题考查合并同类项,关键是根据合并同类项法则解答.。

4.2 第1课时 合并同类项 课件(共23张PPT)

4.2  第1课时 合并同类项  课件(共23张PPT)
人教2024七上数学
同步精品课件
人教版七年级上册
人教2024新版七(上)数学精彩课堂精品课件
第1课时 合并同类项
知识关联
探究与应用
课堂小结与检测
旧知回顾




1.单项式-34a2b5的系数是
,次数是
.
2.多项式1+xy-xy2的次数及最高次项的系数是
A.2,1
B.2,-1
1
2
C.3,-1
3. 多项式a3+ ab4-a6-6的项为
原式 =(
=1

- ,


- )×2×(-3)

例题精讲





例3
(1)水库水位第一天连续下降了a h,平均每小时下降2
cm;第二天连续上升了a h,平均每小时上升0.5 cm.这两天水
位总的变化情况如何?
解:(1)把下降的水位变化量记为负,上升的水位变化量记为正,
则第一天水位的变化量是一2a cm,第二天水位的变化量是
0.5a cm,由
-2a十0.5a=(-2+0.5)a =-1.5a
可知,这两天水位总的变化情况为下降了1.5a cm.
例题精讲





例3
(2)某商店原有5袋大米,每袋大米为x kg,上午售出3袋,下午又
购进同样包装的大米4袋.进货后这个商店有大米多少千克?
(2)把进货的数量记为正,售出的数量记为负,则上午大米质量






4.合并同类项:
(1)2a+3b+6a+9b-8a+12b;

七年级数学合并同类项1(2019年11月)

七年级数学合并同类项1(2019年11月)

引 伸:
_2 已知: 3
x(3m-1)y3

1_ - x5y(2n+1)
4
是同类项,求 5m+3n 的值 .
变式1、 合并同类项:
(a-b)2-3(a-b)-2(a-b)2+7(a-b)
变式2、
已知: a+b= - ¼
求代数式 3(a+b)-5a-5b+7 的值
变式2、
若代数式 2y2+3y+7 的值为 8 求代数式 4y2+6y-9 的值 。
小明为一个娱乐场所提供了如下的设计方案, 其中半圆形休息区和矩形游泳池以外的地方 都是绿地。
m
bn
n
a (1)游泳区和休息区的面积各是多少? (2)绿地的面积是多少?
如图的长方形是由两个小长方形组成,求 这个长方形的面积。
8
5
n
有两种表示方法:
8n+5n 或 (8+5)n 从上面这两个代数式你观察到了什么? 你能得出什么结论?
合并同类项的法则:
同类项的系数相加,所得的 结果作为系数,字母和字母的 指数不变。
例1、合并同类项: (1)-xy2+3xy2, (2)7a+3a2+2a-a2+3
合并同类项的步骤: 1、准确找出同类项(用下划线);
2、逆用分配律,把同类项的系数加
在一起(用小括号),字母和字母的
指数不变;
3、写出合并后的结果。
练习:
合并同类项: (1)3a+2b-5a-b,
(2)-4ab+8-2b2-9ab-8,
(3) –5yx2+2xy+6x2y-2xy+4xy2

人教版(2024新版)七年级数学上册第四章课件:4.2 课时1 合并同类项

人教版(2024新版)七年级数学上册第四章课件:4.2 课时1 合并同类项

新知探究
例如: 4x2+2x+7+3x-8x 2 -2.
4x2+2x+7+3x-8x 2-2
= 4x2-8x2+2x+3x+7-2
(交换律)
= (4x 2 -8x2)+(2x+3x)+(7-2) (结合律)
= (4-8)x2+(2+3)x+(7-2)
=
-4x2+5x+5.
(分配律)
通常我们把一个多项式的各项按照某个字母的指数
人教版 七年级(上册) 2024新版教材
4.2 课时1 合并同类项
学习目标
1. 知道什么是同类项,会判断同类项.
2. 掌握合并同类项的方法,能准确合并同类项.
3. 通过类比数的运算探究、合并同类项的方法,从中
体会“数式通性”和类比思想.
知识回顾
1.单项式-xy2z3的系数和次数分别是( C )
A.-1,5
2.
(3-4) xy2
-1
(3) 3xy2-4xy2=____________=_____xy
➢ 上述各多项式的项有什么共同特点?
①每个式子的项含有相同的字母;
②并且相同字母的指数也相同.
它们含有相同的
字母x,y,并且x
的指数都是1,y
的指数都是2.
新知探究
像72a与-120a,3m2与2m2,3xy2与-4xy2这样,所含
B.0,6

2.多项式− −



C.-1,6
− 的各项分别是( B )

2
A.-x , ,1
B.-x2,

4.2.2 合并同类项的值(1)

4.2.2 合并同类项的值(1)

针对训练1
若单项式
2 3
x²yn与-2xmy3是同类项,化简求值:
(m+3n-3mn)- 2(-2m-n+mn)
对点突破二
小李家的住房示意图如下图所示(单位:米),小李打 算把卧室和客厅铺上木地板,请你帮他算一算,他至少需 要买木地板的为 84x 平方米。
针对训练2
一风景区门票售价:成人20元/人,儿童8元/人 . 甲旅 游团有x名成人,y名儿童;乙旅游团成人的人数是甲旅游 团的2倍,儿童的人数是甲旅游团的一半,那么: (1)乙旅游团的总人数是多少?(用代数式表示) (2)甲、乙旅游团买门票总共需要(用代数式表示) (3)当甲旅游团有50名成人,10名儿童时,甲、乙两个旅 游团买门票总共需要多少元?
预习检测
当a=1,b=2时,求多项式
3ab2 2a2b 4ab2 5a2b 的值。
解:原式= 3ab2 4ab2 5a2b 2a2b
(3 4)ab2 (5 2)a2b ab2 3a2b
当a=1,b=2时, 原式= 1 22 312 2
4 6 2
对点突破1:
已知Ia-2 I +(b+3)²= 0,求3a - 4ab + 5 - a²+ 3ab - 3 的值 。
解:Ia-2 I ≥ 0,(b - 3)² ≥ 0且Ia-2 I +(b+3)²= 0
所以Ia-2 I = 0,(b - 3)²= 0 所以 a-2 = 0,b - 3 = 0 所以a=2 ,b = 3 3a²-4ab+5-a²+3ab-3=2a²-ab+2 将a=2,b=3代入, 原式=2×2²-2×3+2=4
知识链接:
合并同类项: 3(x+y)3-7(x-y)-2(x+y)3+5(x-y)+2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下节课预习内容
教后感
(做此类题目应先与学生一起探讨一般步骤:(1)去括号;
(2)合并同类项;(3)代入求值.)
解:5(3a2b-ab2)-4(-ab2+3a
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化
随堂
练习
课堂
小结
达标
检测
=15a2b-5ab2+4ab2-12a2b
教师揭示以上这些动手操作实际上蕴含了数学中的一种运算,本节课我们就来学习整式的加减运算.
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化




例题教学
回顾以上过程,思考:整式的加减运算要进行哪些工作?
师生小结:整式的加减实际上是“去括号”和“合并同类项”法则的综合应用.
拓展练习:求多项式.
(1)2x-3y+7与6x-5y-2的和;
(2)(-3x2-x+2)+(4x2+3x-5);
(3)(4a2-3a)+(2a2+a-1);
(4)(x2+5xy-y2)-(x2+3xy-2y2);
(5)2(1-a+a2)-3(2-a-a2).
例2求5(3a2b-ab2)-4(-ab2+3a2b)的值,其中a=-2,b=3.
2、在活动中发展学生的合作精神及探索问题的能力.
教具
与课件




3.6整式的加减
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化






情境创设
事先准备三张如下图所示的卡片.
鼓励学生把长方形和等腰三角形拼成各种图形,分别计算出它们的周长和面积.
=3a2b-ab2.
当a=-2,b=3时,
原式=3×(-2)2×3-(-2)×32
=36+18=54.
拓展练习:
求值:3y2-x2+(2x-y)-(x2+3y2),其中x=1、y=-2.
小结回顾
1.怎样进行整式的加减?
2.通过本节课的学习你还有哪些疑问?
3.本节课涉及哪些数学思想方法?
布置
作业
课堂作业课后作业
教师总结:进行整式的加减运算时,如果有括号先去括号,再合并同类项.
例1求2a2-4a+1与-3a2+2a-5的差.
(本题首先带领学生根据题意列出式子,强调要把两个代数式看成整体,列式时应加上括号)
解:(2a2-4a+1)-(-3a2+2a-5)
=2a2-4a+1+3a2-2a+5
=5a2-6a+6.
尊重主体面向全体先学后教当堂训练科研兴教力求高效
教材第课(章)第节(单元)第课时,总课时年月日
课题
3.6整式的加减
教学模式
讨论交流
教学
目标(认知技能
情感)
1.会进行简单的整式加减运算;
2.经历观察、归纳等数学活动过程,发展学生的合作精神和有条理的思考和探究能力.
教学重难点
1、进行简单的整式加减运算.
相关文档
最新文档