数学人教版九年级上册相似三角形的基本图形

合集下载

初中数学 九年级 相似三角形-学案

初中数学 九年级 相似三角形-学案

第二十七章 相似相似三角形知识点一:相似形的概念概念:具有相同形状的图形叫相似图形.谈重点:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关.⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.典例精析例1.下列两个图形一定相似的是( )A.两个矩形B.两个等腰三角形C.两个五边形D.两个正方形【变式1】下列判断不正确的是() A.所有等腰直角三角形都相似B.所有直角三角形都相似C.所有正六边形都相似D.所有等边三角形都相似【变式2】在比例尺为 1:50000 的地图上量得甲、乙两地的距离为 10cm ,则甲、乙两地的实际距离是( )A.500kmB.50kmC.5kmD.0.5km知识点二:平行线分线段成比例定理①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3 则,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE.例【变式2】如图,已知直线a∥b∥c,直线m,n与a,b,c分别交于点A,C,E,B,D,F,若AC=4,CE=6,BD=3,则DF的值是()A.4 B.4.5 C.5 D.5.5两角对应相等,两三角形相似.拓展延伸:(1)有一组锐角对应相等的两个直角三角形相似.(2)顶角或底角对应相等的两个等腰三角形相似.典例精析例1.在矩形ABCD 中,E 为BC 上一点,DF ⊥AE 于点F.(1)求证:△ABE ∽△DFA ;(2)若AB=6,AD=12,AE=10,求DF 的长.【变式】如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于点D ,交AE 于点G ,弦CE 交AB 于点F ,求证:AC 2=AG •AE.例2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2.两边对应成比例且夹角相等,两三角形相似.典例精析例1.△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD与△ABC相似吗?说说你的理由.)A【变式3】在三角形ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E,M为DE的中点,AM与BE相交于点N,延长AM交BC于点G,AD与BE相交于点F,求证:(1)DE AD;(2)△BCE∽△ADM;(3)AM⊥BE.=CE CD例.如图,小正方形的边长为1,则下列选项中的三角形(阴影部分)与△ABC相似的是()基础训练1.如图,AD ⊥BC 于点D ,CE ⊥AB 于点E 交AD 于点F ,则图中与△AEF 相似的三角形的个数是( )E3725:A.∠ABD=∠ACBB.∠ADB=∠ABCC.AB ²=AD ·ACD.BCAB AB AD5.如图,在△ABC中,D是AB上一点,且AC²=AD·AB,则()A.△ADC∽△ACBB.△BDC∽△BCAC.△ADC∽△CDBD.无相似三角形6.A.B.C.D.7.8.与9.10.如图,在△ABC中,D是AB边上一点,连接CD,要使△ADC与△ACB相似,应添加的条件是 .(写出一个即可)11.如图,在△ABC 中,CD ⊥AB ,垂足为D ,下列条件中:①∠A+∠B=90°;②AB ²=AC ²+BC ²;③BDCD AB AC =;④CD ²=AD ·BD.能证明△ABC 是直角三角形的有 .12.如图,已知,∠ACB=∠ABD=90°,BC=6,AC=8,当BD= 时,图中的两个直角三角形相似.13.如图,∠1=∠2,∠B=∠D ,AB=DE=5,BC=4。

九年级数学相似三角形的性质1

九年级数学相似三角形的性质1

变式3
如图5,PD⊥BC于D, BA⊥PC于 6 对. A, 则图中相似三角形共有_____ 分析:易证△BAC、△BDG、 △PAG、 △PDC彼此都是相似三角形. P
AA G F
B
D E 图 53 图
C
分离基本图 形
如图6,△BAC中,∠BAC=90 ° GD⊥BC于D, AD交GC于E . 求证:1)∠BAD =∠BCG. 2)△DEG∽△CEA . 证明:1) ∵∠BDG=∠A=90°,∠B= ∠ B , ∴ △BAC∽△BDG . A BA BD . ∴ BC BG G F E BA BC ∴ . BD BG B D C ∴ △BAD∽△BCG . 图6 ∴ ∠BAD = ∠BCG.
小 结
• 相似多边形的性质: • 相似三角形对应高的比,周长的比都等于 相似比. • 相似三角形面积的比等于相似比的平方. • 相似多边形周长的比等于相似比. • 相似多边形面积的比等于相似比的平方.
自我测试 1、两个矩形相似,它们的对角线之比是1:3,那么 它们的相似比是1:3 ___,周长比是____,面积比是____ 2、若两个相似三角形的相似比是3:5,其中第一 个三角形的周长为21cm,则第二个三角形的 周长为 35 cm. 3、如果把一个三角形每条边的长都扩大为原来 的5倍,那么它的周长扩大为原来的 5 倍, A 而面积扩大为原来的 25 倍。 4、如图,已知△ABC∽△ADE, D E 且BC=2DE,则△ADE与四 C 边形BCDE的面积比为( B ) B (A)1:2 (B)1:3 (C)1;4 (D)1:5
A
A
S
E
R
BPDຫໍສະໝຸດ QC如图,△ABC的高AD与边SR相交于点E . 设正方形的边长为x mm .

九年级数学上册《相似三角形的性质》教案、教学设计

九年级数学上册《相似三角形的性质》教案、教学设计
(三)学生小组讨论,500字
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。

九年级数学上册教案及备课素材-相似三角形判定定理的证明

九年级数学上册教案及备课素材-相似三角形判定定理的证明

*4.5 相似三角形判定定理的证明1.会证明相似三角形判定定理;(重点)2.运用相似三角形的判定定理解决相关问题.(难点)一、情景导入相似三角形的判定方法有哪些? 答:(1)两角对应相等,两三角形相似; (2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似. 怎样证明这些结论呢?二、合作探究探究点:相似三角形的判定定理【类型一】 根据条件判定三角形相似如图所示,给出以下条件:①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =ABBC;④AC2=AD ·AB .其中能单独判定△ABC ∽△ACD 的个数为( )A.1B.2C.3D.4解析:在图中已知两个三角形有一对公共角,只要再找一对角相等,或夹公共角的两组对应边成比例即可判定两个三角形相似.题中有三个条件可以单独判定△ABC ∽△ACD ,分别是①②④.①②是根据有两组角分别对应相等的两个三角形相似来判定的;④是根据两组对应边成比例且夹角相等的两个三角形相似来判定;③虽然两边对应成比例,但不能得到其夹角相等,所以不能判定两个三角形相似.故选C.方法总结:利用两边分别对应成比例且夹角相等的方法判定两个三角形相似时,一定要注意必须是对应成比例的两边的夹角相等,若不是夹角相等,则不能判定这两个三角形相似. 【类型二】 探索三角形相似的条件如图,已知AB ⊥BD ,CD ⊥BD .(1)若AB =9,CD =4,BD =10,请问在BD 上是否存在点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由;(2)若AB =9,CD =4,BD =12,请问在BD 上存在多少个点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;(3)若AB =9,CD =4,BD =15,请问在BD 上存在多少个点P ,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;(4)若AB =m ,CD =n ,BD =l ,请问在m 、n 、l 满足什么关系时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个点P ?两个点P ?三个点P ?解:(1)设BP =x ,则DP =10-x .若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x10-x ,解得x =9013;若△ABP ∽△PDC ,则ABPD =BP CD ,即910-x =x4,此时方程无解.综上,存在这样的点P ,此时BP =9013;(2)设BP =x ,则DP =12-x . 若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x12-x ,解得x =10813;若△ABP ∽△PDC ,则AB PD =BP CD ,即912-x =x 4,解得x =6. 综上所述,存在两个这样的点P ,此时BP =6或10813; (3)设BP =x ,则DP =15-x . 若△ABP ∽△CDP ,则AB CD =BP DP ,即94=x15-x ,解得x =13513;若△ABP ∽△PDC ,则ABPD=BP CD ,即915-x =x 4,解得x =3或12. 综上所述,存在三个这样的点,此时BP =13513,3或12; (4)设BP =x ,则DP =l -x . 若△ABP ∽△CDP ,则AB CD =BP DP ,即m n=xl -x,解得x =ml m +n ;若△ABP ∽△PDC ,则AB PD=BPCD ,即ml -x =x n,得方程x 2-lx +mn =0,Δ=l 2-4mn .当Δ=l 2-4mn <0时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个点P ;当Δ=l 2-4mn =0时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的两个点P ;当Δ=l 2-4mn >0时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的三个点P .方法总结:由于相似情况不明确,因此要分两种情况讨论,注意要找准对应边.三、板书设计相似三角形判定定理的证明⎩⎪⎨⎪⎧判定定理1判定定理2判定定理3本课主要是证明相似三角形判定定理,以学生的自主探究为主,鼓励学生独立思考,多角度分析解决问题,总结常见的辅助线添加方法,使学生的推理能力和几何思维都获得提高,培养学生的探索精神和合作意识.4.5 相似三角形判定定理的证明一、教学目标:知识与技能:正确理解并掌握相似三角形的判定定理的证明方法过程与态度: 让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。

相似三角形(初中数学九年级)

相似三角形(初中数学九年级)

相似三角形(初中数学九年级)学情分析: 学生对八年级所学习的三角形的全等,大部分学生掌握较好,故此,利用三角形的全等来对比相似,易懂。

教学内容分析: 相似三角形的知识是在全等三角形知识的基础上的拓广和发展,相似三角形承接全等三角形,从特殊的相等到一般的成比例予以深化,学好相似三角形的知识,为今后进一步学习三角函数及与固有关的比例线段等知识打下良好的基础。

本节课是为学习相似三角形的判定定理做准备的,因此学好本节内容对今后的学习至关重要教学目标: 1.知识目标:理解相似三角形的概念,掌握判定三角形相似的预备定理。

2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力,增进发放思维能力和现有知识区向最近发展区迁延的能力。

3.情感目标:加强学生对斩知识探究的兴趣,渗透几何中理性思维的思想。

教学难点分析:1.重点:相似三角形和相似比约概念及判定三角形相似的预备定理。

2.难点:相似三角形约定义和判定三角形相似的预备定理。

教学课时:1课时教学过程:一、引入1.什么叫做全等三角形?它在形状上、大小上有何特征?我们如何用符号表示全等?(目的:让学生通过全等三角形,知识迁移,对比马上要学习的新内容,相似三角形,它在形状上、大小上有何特征?)2.两个全等三角形的对应边和对应角有什么关系?(目的:让学生对比马上要学习的两个相似三角形的对应边和对应角有什么关系?)3、复习平行线分线段成比例定理(文字表述及基本图形)本节学习相似三角形的定义及相关判定定理.(意在让学生在学习相似三角形的时候,加深学生理解边成比例的事实)二、学习新课新授1:为加深学生对相似三角形概念的本质的认识给出几组相似三角形,让学生用尺子量出他们边与变的关系,在学生得出数据之后,询问学生,它们的形状如何,大小如何,是不是类似于一个全等呢?只不过大小不同,并将相似三角形的定义,相似比的概念给出来。

相似三角形的概念:我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形.相似三角形的概念作为相似三角形的判定方法之一.(相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别。

第06讲-相似三角形的判定(教案)

第06讲-相似三角形的判定(教案)
-难点二:掌握相似三角形的判定定理,尤其是AAA和AA判定定理的应用条件。学生容易混淆判定条件,需要通过对比分析来区分。
-举例:比较AAA与AA判定定理的区别,通过构造不同类型的三角形来展示各自的应用场景。
-难点三:在实际问题中灵活运用相似三角形的判定定理,这需要学生具备较强的观察力和逻辑思维能力。
-运用相似三角形的判定解决实际问题,将理论知识转化为实际应用能力。
-例:通过具体例题,如给定三角形的两边及夹角,判定另一三角形是否与之相似,并解释判定过程。
2.教学难点
-难点一:理解相似三角形的性质,特别是对应角相等、对应边成比例的概念。学生需要通过直观的图形和具体例题来加深理解。
-举例:解释为什么相似三角形的对应角相等,对应边成比例,并通过动态演示或模型展示来辅助理解。
4.课程总结时,我发现有些学生对相似三角形在实际生活中的应用还不够熟悉。在今后的教学中,我会增加一些与实际生活紧密相关的案例,让学生们更好地理解相似三角形的应用场景。
5.另外,我还注意到个别学生在课堂上的参与度不高,可能是对课程内容兴趣不足或基础知识掌握不牢固。针对这一问题,我将在课后主动与这些学生交流,了解他们的困难和需求,针对性地给予辅导和帮助。
第06讲-相似三角形的判定(教案)
一、教学内容
第06讲-相似三角形的判定
教材章节:人教版九年级数学下册,第四章“几何图形的相似性”,第二节“相似三角形的判定”。
内容:
1.掌握相似三角形的定义及性质。
2.学习并掌握AAA(角角角)相似判定定理、AA(角角)相似判定定理、SAS(边角边)相似判定定理。
3.能够运用相似三角形的判定定理解决实际问题。
-举例:解决实际问题,如测量不便于直接ቤተ መጻሕፍቲ ባይዱ量的物体长度,通过相似三角形的性质和判定定理来间接计算。

新第1讲 动点产生的相似三角形问题

新第1讲 动点产生的相似三角形问题

精锐教育学科教师辅导讲义【压轴题第1讲】动点产生的相似三角形问题.已知e 、e 是两个单位向量,向量2,2a e b e ==-,那么下列结论中正确的是(. 1e =2e ; .e =—2e ; C .1e =e ; e =—e .数关系.已知汽车在途中停车加油一次,根据图像,下列描述中,不正确的是( )2a = .1mm -=- .第22题,其中x 满足0322=--x x 。

相似基本图形:BF的长。

(★★★)总结:90,AD ,交线段AM附加练习:1、如图,在Rt △ABC 中,︒=∠90ACB ,CE 是斜边AB 上的中线,10=AB ,43tanA =,点P 是CE 延长线上的一动点,过点P 作CB PQ ⊥,交CB 延长线于点Q ,设EP x =,BQ y =。

(★★★★) (1)求y 关于x 的函数关系式及定义域;(2)过点B 作AB BF ⊥交PQ 于F ,当BEF ∆和QBF ∆相似时,求x 的值。

2、已知如图,在等腰梯形ABCD 中, AD ∥BC ,AB=CD ,AD=3,BC=9,34tan =∠ABC , 直线MN 是梯形的对称轴,点P 是线段MN 上一个动点(不与M 、作CF ∥AB 交射线BP 于点F 。

(★★★★★)(1).设PN x =,CE y =,试建立y 和x (2).联结PD ,在点P 运动过程中,如果EFC ∆和PDC ∆3、如图,已知梯形ABCD 中,AD //BC ,BC AB ⊥,4=AB ,5==CD AD ,43cot =∠C .点P 在边BC 上运动(点P 不与点B 、点C 重合),一束光线从点A 出发,沿AP 的方向射出,经BC 反射后,反射光线PE 交射线CD 于点E 。

联结PD ,若以点A 、P 、D 为顶点的三角形与PCE ∆相似,试求BP 的长度。

(★★★★★)4、在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,sin ∠EMP =1213. (1)如图1,当点E 与点C 重合时,求CM 的长;(4分)(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(4分)(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长。

九年级数学相似三角形经典题(含答案)

九年级数学相似三角形经典题(含答案)

相似三角形经典习题教师版例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CD F S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长.解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆. 例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2.说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FC AB GF =,即2232xx -=. ∴33-=x ,∴3612)33(2-=-=AEG F S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.相似三角形 一,比例线段 1, 成比例线段对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比等于另外两条线段的比,如b a =dc(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形基本图形的应用与拓展
教学目标
(1)能运用相似三角形的判定方法判断两个直角三角形相似;
(2)在理解基本图形基础上,学会在折叠、测量等问题中应用基本图形并
能进行拓展;
(3)通过对基本图形的应用与拓展,培养学生独立思考的习惯,发展学生
的探究意识,提高学生的总结、归纳能力、阅读理解能力和创新能力。
教学重点:会将基本图形在折叠、测量等问题中加以应用和拓展
教学难点:在复杂的图形中分解出基本图形和基本图形的拓展
教学过程
一、引入

如图,AD∥BC,∠A=900, E是AB上一点,且AE=BC,∠1=∠2,
(1) Rt△ADE与Rt△BEC全等吗?请说明理由;
(2)△CDE是不是直角三角形?请说明理由

二、阅读感知
基本图形特点分析与演变
此图是由两个全等的直角三角形构成的直角梯形。

引导学生学会观察基本图形
三、基本图形的应用
1.在折叠问题中的应用
例1如图,四边形OABC是一张放在平面直角坐标系中的
矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点

D
处.已知折叠55CE,且3tan4EDA.
(1)判断OCD△与ADE△是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和
直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并
画出相应的直线;如果不存在,请说明理由.

A
B
C
D

E
A

B
C
D

E

O x y C B E D
A
例2如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8
开”纸、“16开”纸….已知标准纸...的短边长为a.

(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步 将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B处,
铺平后得折痕AE;
第二步 将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折
痕AF.
则:ADAB的值是 ,ADAB,的长分别是 , .
(2)“2开”纸、“4开”纸、“8开”纸的长与宽之比是否都相等?若相等,
直接写出这个比值;若不相等,请分别计算它们的比值.
(3)如图3,由8个大小相等的小正方形构成“L”型图案,它的四个顶点
EFGH,,,分别在“16开”纸的边ABBCCDDA,,,上,求DG
的长.
2.在面积求值问题中的应用
例3如图,直线上有三个正方形a、b、c,若a、c的面积分别为5和11,则
b
的面积为( )
A.4 B.6 C.16 D.55
练习.在直线l上依次摆放着七个正方形(如图所示)。已知斜放置的三
个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次
是S1、S2、S3、S4,

则S1+S2+S3+S4= .
3.在动态问题中的应用
例4如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上
运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B
重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a。
(1)求证:△ADE∽△BEC;
(2)当点E为AB边的中点时(如图2),
求证:①AD+BC=CD;②DE,CE分别平分∠ADC,∠BCD;
(3)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m
的代数式表示△BEC的周长;若无关请说明理由。

c
b
a
A

B
C

D
E

F

G

4.在测量问题中的应用
例5如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平
面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知
AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该
古城墙的高度是( )
A、6米 B、8米 C、18米 D、24米

变式1:
如图所示,已知正方形ABCD,E是AB的中点,F是AD上的一点,EG⊥CF,

且AF=14 AD,
求证:(1)CE平分∠BCF;
(2)14 AB2=CG*FG.
三、基本图形的拓展
例6阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=900,点P在BC
边上,当 ∠APD=900时,易证△ABP∽△PCD,从而得到BP*PC=AB*CD.解答下
列问题:
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD
时,求证:BP*PC=AB*CD.
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=600,
AO⊥BC于点O,以O为原点,以BC所在直线为x轴,建立平面直角坐标系,
点P为线段OC上一动点(不与端点O、C重合).
①当∠APD=600时,点P的坐标;
②过点P作PE⊥PD,交y轴于点E,设OP=x,OE=y求y与x的函数关系式,
并写出自变量x的取值范围.
四、感悟深化
主要归纳为三点:直角三角形相似的证明与应用;基本图形的应用;归纳出基本

图形的优点。
五、布置作业

D
P
A
B
C

图1

y
A

P
C D B
x

A
B
P

C

D


2

相关文档
最新文档