图形的相似教案含课时
图形的相似教案

图形的相似教案教学目标:1. 能够理解图形的相似及其性质;2. 能够判断两个图形是否相似;3. 能够利用图形的相似性质求解相关问题。
教学内容:1. 什么是相似图形:相似图形是指有相同形状但可能有不同大小的图形。
2. 相似图形的性质:相似图形的对应角相等,对应边成比例。
3. 判断相似图形的方法:利用对应角相等和对应边成比例的性质进行判断。
4. 相似比例的计算:相似比例=边长比例=周长比例=面积比例。
5. 找出相似边长比例:利用已知边长或对应边长比例求解未知边长。
6. 求解相似图形的面积比例:利用边长比例求解面积比例。
教学过程:1. 导入引入:通过展示一组相似图形,让学生观察图形的相似性,并思考相似图形的性质。
2. 基础概念介绍:解释相似图形的概念及其性质,引导学生理解相似图形的含义。
3. 判断相似图形:给出一组图形,让学生判断是否相似,并解释判断的依据。
4. 相似比例计算:通过示例演示相似比例的计算方法,让学生明确相似比例的含义和计算方式。
5. 找出相似边长比例:给出一组相似图形,让学生利用已知边长或对应边长比例求解未知边长。
6. 求解相似图形的面积比例:给出一组相似图形,让学生利用边长比例求解面积比例。
7. 练习与讨论:提供一些练习题供学生进行讨论和解答,加深对相似图形的理解和应用能力。
8. 总结归纳:让学生总结相似图形的性质和判断方法,进行知识归纳和概念澄清。
9. 拓展应用:提出一些拓展的应用问题,让学生运用相似图形的知识解决实际问题。
10. 延伸探究:引导学生思考与图形相似性相关的其他数学概念和知识,鼓励学生进一步探究。
教学评价:1. 在教学过程中观察学生的思维活动和参与情况,及时纠正错误和补充相关知识;2. 给学生提供一些实际应用问题,观察学生的解决能力和创造性思维;3. 综合考察学生在练习和讨论中的解题能力和对相似图形的理解。
图形的相似教案

图形的相似教案教案标题:探索图形的相似性教学目标:1. 了解图形的相似性概念,并能鉴别具备相似特征的图形;2. 学会利用比例和比例关系来判断图形的相似性;3. 掌握相似图形的性质和性质间的关系;4. 运用相似性的原理解决实际问题。
教学准备:1. 教师:投影仪、电脑、PPT;2. 学生:纸、笔、尺子。
教学过程:步骤一:引入(5分钟)1. 使用多媒体展示一组具有相似性的图形(例如:大小不同但形状相似的三角形、矩形等),引发学生对图形相似性的思考;2. 讨论并解释图形相似性的概念,强调相似图形的形状相似程度高、对应角度相等、对应边长成比例。
步骤二:探究相似图形的性质(15分钟)1. 将相似的三角形A和B投影在黑板上,并提示学生观察两者的形状以及对应边长;2. 让学生自己发现并描述相似三角形A和B的性质,如对应角度相等、对应边长成比例;3. 利用比例关系解决一些简单的相似三角形的计算问题。
步骤三:举例分析相似性的应用(15分钟)1. 引用实际生活中应用相似性原理的例子,例如测量高楼的高度、制作地图等;2. 呈现一个实际问题,如一个人影和他的身高的相似性,让学生思考如何利用相似性解决这个问题;3. 引导学生运用相似性原理,解决相关实际问题。
步骤四:扩展应用和巩固练习(15分钟)1. 提供一些相似图形的练习题,要求学生辨别相似图形和非相似图形;2. 要求学生通过测量和计算来判断相似图形的相似性;3. 引导学生应用相似性原理解决一些实际问题。
步骤五:总结和评价(10分钟)1. 让学生回顾本节课所学内容,总结相似性的概念和性质;2. 提出一些问题,帮助学生深入思考和巩固所学知识;3. 点评学生的表现,及时纠正错误,激发学生的学习兴趣。
教学延伸:1. 针对表现较好的学生,可以引导他们自主探究相似图形的其他性质,例如角平分线成比例、相似三角形的周长比例等;2. 针对表现较差的学生,可以提供更多的练习题和示例,帮助他们巩固所学概念。
27.1图形的相似教案

27.1图形的相似教案篇一:27.1图形的相似教案(含1.2课时)[1]九年级数学图形的相似集体备课教案27.1图形的相似(第1课时)【教学任务分析】【教学环节安排】【当堂达标自测题】一、填空题1.观察下列图形,指出.2.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的.3、下面各组中的两个图形,是形状相同的图形,.二、选择题1.(1)????????;(2);(3);(4).在上述各种符号中,形状相同的符号有几组?()a.一组B.二组c.三组d.四组2.下列说法中,正确的是()a.正方形与矩形的形状一定相同B.两个直角三角形的形状一定相同c.形状相同的两个图形的面积一定相等d.两个等腰直角三角形的形状一定相同3.经历平移、旋转、轴对称变化前后的两个图形()a.形状大小都一样B.形状一样,大小不一样c.形状不一样,大小一样d.形状大小都不一样4.在平面坐标系中,一个图形各点的横坐标、纵坐标都加上或减去同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()a.不能够互相重合B.形状相同,大小也一定相同c.形状不一样d.形状相同,大小不一定相同三、解答题画一个三角形,然后把它的各边扩大2倍,画出图形,观察新图形与原图形的关系.九年级数学图形的相似集体备课教案陈军27.1图形的相似(第2课时)【教学任务分析】【教学环节安排】篇二:27.1图形的相似教学设计教案教学准备1.教学目标1.1知识与技能:1.掌握相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等;2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。
1.2过程与方法:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题。
1.3情感态度与价值观:培养学生严谨的数学思维习惯。
2.教学重点/难点教学重点:相似多边形的主要特征与识别教学难点:运用相似多边形的特征进行相关的计算。
图形相似教学设计(共6篇)

图形相似教学设计(共6篇)第1篇:图形相似的教学案例三星初中邱清华教学内容:依据新教材(苏科版)八年级下学期《图形的相似》的相关内容而开发生成的适合网络教学的自编教材。
教材设计意念:根据基础教育课程的具体目标,我们知道学习是学生主动建构知识的过程的建构主义理论,把握好学生的独立探索与教师的引导支持之间的辩证关系。
因此在教学中,我给予了学生充足的时间习参与集体活动,进行多向、充分的探索交流,关注学生学习兴趣的养成,让学生在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度和价值观;其次根据初中生的心理特点,他们对游戏活动有着强烈的好奇心,以及对具有挑战性的知识强烈的欲望,再加上他们已有平面图形的有关知识作基础,完全有可能也有能力自己探索相似图形的一些本质特征,因此我利用几何画板软件设计了几个带有竞争意识的游戏活动,使他们在游戏中学到数学知识,在活动中掌握知识,从而在快乐中感受知识的来龙去脉。
教材分析:本节内容选于苏科版教材八年级(下),本章在已学习“全等图形”的基础上,以认识相似图形(即形态相同图形)为核心内容,在本节课的学习过程中,通过几何画板软件,让学生充分感受到相似图形的魅力,通过动手操作画出相似图形,体会相似图形在现实中的应用,进一步增强学生的数学应用意识,通过几个小游戏让学生充分领略到学习的乐趣。
本节课重在学生自己动脑、动手,培养创造精神和探究意识,因而在教学中,教师要热情鼓励学生自主探究和大胆创新,对每一位同学作品给予鼓励和足够的重视。
教学重点:学生自主探索出相似图形的基本特征;利用坐标的变化放大(或缩小)图形。
教学难点:正确地运用相似图形的特征解决生活中实际问题。
教学目标:使学生联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似图形的规律;引导学生经历探索、发现、创造、交流等丰富多彩的数学游戏活动,发展学生的数学能力和审美观,使学生学会从数学的角度认识世界,解释生活、逐步形成“数学地思维”的习惯;以“生活中的数学”为载体,使学生体会相似图形的神奇,养成“学数学、用数学”的意识,培养学生的动手操作能力和创新精神。
图形的相似教案含课时

.图形的相似教案(含.课时)————————————————————————————————作者:————————————————————————————————日期:2(九年级数学图形的相似集体备课教案陈 军27.1 图形的相似(第 1 课时)【教学任务分析】知识 1.理解并掌握两个图形相似的概念. 技能2.会判断相似图形.教 学 目 标重点 1.联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似过程 图形的规律;方法 2.经历探索、发现、创造、交流等丰富多彩的数学游戏活动,发展学生的数学能力和审美观.使学生学会从数学的角度认识世界,解释生活、逐步形成“数学地思维”的习惯;以 情感 “生活中的数学”为载体,使学生体会相似图形的神奇,养成“学数学、用数学”的 态度意识,培养学生的动手操作能力和创新精神.学生自主探索出相似图形的基本特征.难点 正确地运用相似图形的特征解决生活中实际问题.【教学环节安排】环节教 学 问 题 设 计请同学们看黑板正上方的五星红旗,和下图的两个画面,感受它们的形状、大小的关系. 还可以再举教学活动设计教师出示问题从几 个图 片 (如问题最佳 解决方案情境 引 入自主 探究几个例子)问题 1. 五星红旗上的大五角星与小五角星他们的形状、大小有什么关系? 问题 2.什么是相似图形?【教师点评】在实际生活中,我们见到过许多大小 不一但形状相同的图形,我们把这种形状相同的图 形叫做相似图形.问题 3.请同学们举出一些相似的几何图形的例子. 观察课本上的相似图片,图)引入相似图形, 学生自己动手、动脑, 亲身体会相似图形与 我们的生活有着密切 的关系,孕育良好的 学习心境,教师放映图片,并 提出问题.学生通过观察,感 性认识形状相同大小 不同的含义,并解决 教师提出的问题学 生 通过 观察 图 片,感受形状相同, 大小不同的含义,并 得到相似定义.同学们思考、讨论、 交换意见给出实例 教师赞扬举例子比较好的同学.合作交流尝例1如图27.1—1,下面右边的四个图形中,与左边的图形相似的是()【分析】图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C与左图相似.练习:1.下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.教师出示以下图片让学生感受生活中和数学中的相似教师出示题目.学生观察并回答教师规范解答明确图形相似与它们的位置没关系教师出示练习题组学生尝试练习试应用B.商店新买来的一副三角板是相似的.师巡视,个别指导. C.所有的课本都是相似的.D.国旗的五角星都是相似的.2.下列说法中,错误的是()A.放大镜下看到的图象与原图象的形状相同B.哈哈镜中人像与真人的形状是相同的C.显微镜下看到的图象与原图象的形状相同D.放大一万倍的物体与它本身的形状是相同的3.图27.1—2中的相似图形有几组?()A.一组B.二组C.三组D.四组距离是 5cm ,那么这张平面地图的比例尺是多少?成果展示1.有条件的可利用多媒体,在几何画板上学生自己 操作电脑,同时画出几个相似图形,且具有个性的图 画,充分展示学生的个性特点,培养学生的的审美 情趣2.通过本节课的学习,你有哪些收获?通过所看、所知、所想概括出相似图形的定义、判 断相似图形以及相似多边形的性质特征等概念.1.如图 27.1—3 中,相似图形共有几组? ( )师引导学生动手能 力训练,培养学生的 基本技能.师引导学生进行展 示交流学生对本节课内容 进行归纳总结.教师出示题目.补偿 提高A .5 组B .6 组C .7 组D .8 组 第 1 题、第 2 题由学生独立完成 . 教 师巡视,个别辅导.师生共同评析.存 在的共性问题共同讨论解决.2. 在平面坐标系中,一个图形各点的横坐标、纵坐 第 3 题鼓励学生独立 标都乘以或除以同一个非零数,得到一组新的对应 思考后解决 . 感觉有 用点,则连接所得到点的图形与原图形形状 困难的学生可以寻求 ( ) 同学的帮助,然后完 A .能够互相重合 B .形状相同,大小也一定相同 成.小组交流内. C .形状不一样 D .形状相同,大小不一定相同3. 例尺是 1:8000000 的“中国政区”地图上,量得 福州与上海之间的距离时 7.5cm ,那么福州与上海 之间的实际距离是多少?作必做题:(1)27.1 第 1 题.教师布置作业,并提 出要求.业设计(2)AB 两地的实际距离为 2500m ,在一张平面图上的 学生课下独立完成,延续课堂.选做题:P 55 习题 27·2 题 4,5.教后 反思☺☹✶✷→↑【当堂达标自测题】一、填空题1.观察下列图形,指出是相似图形.2.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的.3、下面各组中的两个图形,是形状相同的图形,是形状不同的图形.二、选择题1.(1);(2);(3);(4).在上述各种符号中,形状相同的符号有几组?()A.一组B.二组C.三组D.四组2.下列说法中,正确的是()A.正方形与矩形的形状一定相同B.两个直角三角形的形状一定相同C.形状相同的两个图形的面积一定相等D.两个等腰直角三角形的形状一定相同3.经历平移、旋转、轴对称变化前后的两个图形()A.形状大小都一样B.形状一样,大小不一样C.形状不一样,大小一样D.形状大小都不一样4.在平面坐标系中,一个图形各点的横坐标、纵坐标都加上或减去同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()A.不能够互相重合B.形状相同,大小也一定相同C.形状不一样D.形状相同,大小不一定相同三、解答题画一个三角形,然后把它的各边扩大2倍,画出图形,观察新图形与原图形的关系.)九年级数学图形的相似集体备课教案陈 军27.1 图形的相似(第 2 课时)【教学任务分析】1.了解比例线段的定义.教 知识 技能2.掌握相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.3.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计学 目 标算.过程 经历相似图形的认识过程,观察相似图形的关系,得到相似多边形对应边成比例, 方法 对应角相等的性质情感 态度通过学生从图形相似的角度识别现实生活中存在的规律,培养合作交流意识.重点相似多边形的性质.难点 运用相似多边形的特征进行相关的计算.【教学环节安排】环节教 学 问 题 设 计问题:如果把老师手中的教鞭与铅笔,分别看教学活动设计教师出示问题问题最佳 解决方案成是两条线段 AB 和 CD ,那么这两条线段的长度比 上节课学习了图形的是多少?相似的定义,并且能判断一些简单图形是归纳:两条线段的比,就是两条线段长度的比. 否相似,今天继续探情境 引入问题:成比例线段:对于四条线段 a,b,c,d ,如果 其中两条线段的比与另两条线段的比相等,如a c= (即 ad=bc ,我们就说这四条线段是成比例 b d线段,简称比例线段.【注意】 (1)两条线段的比与所采用的长度 单位没有关系,在计算时要注意统一单位;(2)线 段的比是一个没有单位的正数; ( 3 )四条线段a ca,b,c,d 成比例,记作 = 或 a:b=c:d ;(4)若四b da c条线段满足 = ,则有 ad=bc .b d讨相似图形的特征, 及判断方法.请同学们完成左边的 问题.引入新课自主如图 27.1—4 的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形. 教师出示问题,学生作图,并观察思考 下面的问题探究合作交流教师巡视指导学生作图,并了解学生在作图中是不是出现全等的情况学生小组讨论,得出结论.问题1.对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.【结论】:师生共同总结探究结(1)相似多边形的特征:相似多边形的对应角相等,论对应边的比相等.教师板演反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题2:相似比为1时,相似的两个图形有什么关系?【结论】:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.尝试应用例1下列说法正确的是()A.所有的平行四边形都相似B.所有的矩形都相似C.所有的菱形都相似D.所有的正方形都相似【分析】:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似.例2如图27.1—5,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x。
第4章图形的相似(教案)

1.相似图形的定义与性质
-相似图形的判定方法
-相似图形的对应角相等,对应边成比例
-相似多边形的性质及其应用
2.位似图形
-位似图形的定义与判定
-位似图形的坐标表示
-位似变换的性质及其应用
3.相似多边形的面积比与周长比
-相似多边形面积比的求法
-相似多边形周长比的求法
1.讨论主题:学生将围绕“相似图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
1.培养学生的几何直观与空间想象能力,通过相似图形的学习,使学生能够观察、分析并构建几何图形,形成对几何图形特征的深刻理解。
2.提升学生的逻辑推理能力,使学生能够运用相似图形的性质与判定方法,进行严谨的几何证明与问题求解。
3.增强学生的数学建模能力,通过解决实际问题,让学生学会将现实问题抽象为数学模型,运用相似性原理进行求解。
-举例:判断两个三角形是否相似,需证明它们的对应角相等,对应边成比例。
-相似图形的性质:包括对应角相等、对应边成比例等,这些性质是解决相似图形问题的重要依据。
-举例:在相似三角形中,周长的比等于相似比,面积的比等于相似比的平方。
-位似图形及其坐标表示:位似图形是相似图形的特殊情况,掌握其坐标表示有助于解决实际问题。
2.在提问技巧上,我应该设计更多开放性和启发性的问题,引导学生深入思考和探索。
3.需要关注每个学生的学习情况,提供个性化的辅导,帮助他们克服难点。
图形的相似全章自制简易教案

图形的相似全章自制简易教案一、教学目标:知识与技能:1. 理解相似图形的概念,识别相似图形。
2. 学会用比例尺表示图形间的相似关系。
3. 掌握相似图形的性质,能够运用相似性质解决实际问题。
过程与方法:1. 通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。
2. 学会利用图形相似解决实际问题,提高学生的解决问题的能力。
情感态度价值观:1. 激发学生对数学的兴趣,培养学生的创新精神和团队合作意识。
2. 让学生体验到数学与生活的紧密联系,增强学生应用数学的意识。
二、教学内容:第一课时:相似图形的概念1. 通过观察、操作,让学生初步理解相似图形的概念。
2. 学会用比例尺表示图形间的相似关系。
第二课时:相似图形的性质1. 探索相似图形的性质,了解相似图形的对应边成比例、对应角相等。
2. 学会运用相似性质解决实际问题。
第三课时:相似图形的应用1. 利用相似图形的性质解决实际问题,如计算图形面积、长度等。
2. 培养学生的应用能力和解决问题的能力。
三、教学策略:1. 采用情境教学法,引导学生从实际问题中发现数学问题,培养学生的应用意识。
2. 运用操作教学法,让学生通过观察、操作、思考、交流等活动,掌握相似图形的性质。
3. 采用问题驱动法,激发学生的思考,培养学生解决问题的能力。
四、教学评价:1. 课堂问答:通过提问了解学生对相似图形概念、性质的理解程度。
2. 作业批改:检查学生运用相似性质解决问题的能力。
3. 小组讨论:评价学生在团队合作中的表现,以及创新精神和解决问题能力。
五、教学资源:1. 教学课件:制作课件,展示相似图形的概念、性质和应用。
2. 练习题:设计相关练习题,巩固学生对相似图形的理解和应用。
3. 教学素材:准备一些实际问题,供学生解决。
教学进度安排:1. 第一课时:相似图形的概念2. 第二课时:相似图形的性质3. 第三课时:相似图形的应用六、教学内容:第四课时:相似图形的绘制1. 学习如何根据已知图形绘制出相似图形。
人教版数学九年级下册27.1《图形的相似》教案

(3)相似变换的性质:相似变换是本节课的另一个难点,教师需要详细讲解相似变换的性质,如对应点、对应线段的比等,并通过实例使学生理解这些性质。
举例:讲解旋转变换、平移变换等相似变换的性质,让学生在实际操作中体会相似变换的特点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个形状看起来很相似的物体?”(如两个相似的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题,如相似三角形的周长比、面积比等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并比较它们的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
教学内容与课本紧密相关,旨在帮助学生掌握图形相似的相关知识,提高解决问题的能力。
二、核心素养目标
《图形的相似》章节的核心素养目标如下:
1.培养学生的空间观念,提高对图形相似性的认识,增强观察、分析图形的能力。
2.培养学生运用数学语言进行表达、交流、合作的能力,提高解决实际问题的能力。
3.培养学生逻辑思维和推理能力,能运用相似性质进行严密的论证。
举例:分析相似四边形的性质,解决面积、周长等与相似多边形相关的问题。
2.教学难点
(1)相似图形的识别:学生往往在识别相似图形时存在困难,需要教师通过丰富的实例和引导,帮助学生掌握识别相似图形的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学图形的相似集体备课教案陈军27.1图形的相似(第1课时)【教学任务分析】教学目标知识技能1.理解并掌握两个图形相似的概念.2.会判断相似图形.过程方法1.联系生活实际初步认识相似图形,在观察、操作、比较、交流中,探索并发现相似图形的规律;2.经历探索、发现、创造、交流等丰富多彩的数学游戏活动,发展学生的数学能力和审美观.情感态度使学生学会从数学的角度认识世界,解释生活、逐步形成“数学地思维”的习惯;以“生活中的数学”为载体,使学生体会相似图形的神奇,养成“学数学、用数学”的意识,培养学生的动手操作能力和创新精神.重点学生自主探索出相似图形的基本特征.难点正确地运用相似图形的特征解决生活中实际问题.【教学环节安排】环节教学问题设计教学活动设计问题最佳解决方案情境引入请同学们看黑板正上方的五星红旗,和下图的两个画面,感受它们的形状、大小的关系.(还可以再举几个例子)教师出示问题从几个图片(如图)引入相似图形,学生自己动手、动脑,亲身体会相似图形与我们的生活有着密切的关系,孕育良好的学习心境,教师放映图片,并提出问题.学生通过观察,感性认识形状相同大小不同的含义,并解决教师提出的问题自主探究问题 1.五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?问题2.什么是相似图形?【教师点评】在实际生活中,我们见到过许多大小不一但形状相同的图形,我们把这种形状相同的图形叫做相似图形.问题3.请同学们举出一些相似的几何图形的例子.观察课本上的相似图片,学生通过观察图片,感受形状相同,大小不同的含义,并得到相似定义.同学们思考、讨论、交换意见给出实例教师赞扬举例子比较好的同学.合作交流教师出示以下图片让学生感受生活中和数学中的相似尝试应用例1如图27.1—1,下面右边的四个图形中,与左边的图形相似的是()【分析】图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C与左图相似.练习:1.下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2.下列说法中,错误的是()A.放大镜下看到的图象与原图象的形状相同B.哈哈镜中人像与真人的形状是相同的C.显微镜下看到的图象与原图象的形状相同D.放大一万倍的物体与它本身的形状是相同的3. 图27.1—2中的相似图形有几组?()A.一组B.二组C.三组D.四组教师出示题目.学生观察并回答教师规范解答明确图形相似与它们的位置没关系教师出示练习题组学生尝试练习师巡视,个别指导.2 / 9成果展示1.有条件的可利用多媒体,在几何画板上学生自己操作电脑,同时画出几个相似图形,且具有个性的图画,充分展示学生的个性特点,培养学生的的审美情趣2.通过本节课的学习,你有哪些收获?通过所看、所知、所想概括出相似图形的定义、判断相似图形以及相似多边形的性质特征等概念.师引导学生动手能力训练,培养学生的基本技能.师引导学生进行展示交流学生对本节课内容进行归纳总结.补偿提高1.如图27.1—3中,相似图形共有几组?()A.5组B.6组C.7组D.8组2.在平面坐标系中,一个图形各点的横坐标、纵坐标都乘以或除以同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()A.能够互相重合B.形状相同,大小也一定相同C.形状不一样D.形状相同,大小不一定相同3. 例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?教师出示题目.第1题、第2题由学生独立完成.教师巡视,个别辅导.师生共同评析.存在的共性问题共同讨论解决.第3题鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.作业设计必做题:(1)27.1第1题.(2)AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?选做题:P55习题27·2题4,5.教师布置作业,并提出要求.学生课下独立完成,延续课堂.教后反思3 / 9【当堂达标自测题】一、填空题1.观察下列图形,指出是相似图形.2.形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的.3、下面各组中的两个图形,是形状相同的图形,是形状不同的图形.二、选择题1.(1)☺☹;(2)✶✷;(3)→↑;(4) .在上述各种符号中,形状相同的符号有几组?()A.一组B.二组C.三组D.四组2.下列说法中,正确的是()A.正方形与矩形的形状一定相同B.两个直角三角形的形状一定相同C.形状相同的两个图形的面积一定相等D.两个等腰直角三角形的形状一定相同3.经历平移、旋转、轴对称变化前后的两个图形()A.形状大小都一样B.形状一样,大小不一样C.形状不一样,大小一样D.形状大小都不一样4.在平面坐标系中,一个图形各点的横坐标、纵坐标都加上或减去同一个非零数,得到一组新的对应用点,则连接所得到点的图形与原图形形状()A.不能够互相重合B.形状相同,大小也一定相同C.形状不一样D.形状相同,大小不一定相同三、解答题画一个三角形,然后把它的各边扩大2倍,画出图形,观察新图形与原图形的关系.4 / 9九年级数学图形的相似集体备课教案陈军27.1图形的相似(第2课时)【教学任务分析】【教学环节安排】主探究合作交流问题1. 对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.【结论】:(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等.反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.(2)相似比:相似多边形对应边的比称为相似比.问题2:相似比为1时,相似的两个图形有什么关系?【结论】:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.生作图,并观察思考下面的问题教师巡视指导学生作图,并了解学生在作图中是不是出现全等的情况学生小组讨论,得出结论.师生共同总结探究结论教师板演尝试应用例1下列说法正确的是()A.所有的平行四边形都相似 B.所有的矩形都相似C.所有的菱形都相似 D.所有的正方形都相似【分析】:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似.例2如图27.1—5,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x。
教师出示题目。
小组讨论分析:找出正确与错误的理由教师点拨教师出示例题学生独立思考,并列出相应的数量关系,写出解题过程找两名同学板书6 / 97 / 98 / 9【当堂达标自测题】一、填空题1. 矩形ABCD 中AB=CD=8,AD=BC=6,矩形EFGH 中,EF=GH=3,EH=FG=4,这两个矩形_____2.△ABC 的三条边之比为2:5:6,与其相似的另一个△A•′B•′C•′最大边长为18cm ,则另两边长的和为_______.3.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为63cm ,则这两个三角形的周长分别是________. 4. ΔABC 与△DEF 中,∠A=65°,∠B=42°,∠D=65°,∠F=73°,AB=3,AC=5,BC=6,DE=6,DF=10,EF=12,则△DEF 与△ABC_____ 二、选择题5.△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ). A .32 B .23 C .52 D .94 6.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A .3个 B .4个 C .5个 D .6个7.把mn=pq (mn ≠0)写成比例式,写错的是( )A .m q p n = B .p n m q= C .q n m p = D .m p n q =8.在一张比例尺为1:15000的平面图上,一块多边形地区的其中一边长为5cm ,那么这块地区实际上和这一边相对应的长度应为( )A .750cmB .75000cmC .3000cmD .300cm 三、解答题9.小红准备在一张宽16cm ,长20cm 的风景图片的四周镶上一条2cm 宽的金色纸边,如图27.1—6问金色纸边的内外边缘所成的矩形相似吗?为什么?10.如图27.1—7,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EFAB相似,求EF的长.9 / 9。