2011年—2018年新课标全国卷Ⅰ文科数学分类汇编9.立体几何
2018-2022五年全国高考数学立体几何真题分类汇编(试卷版)

2018-2022五年全国各省份高考数学真题分类汇编专题21立体几何解答题一、解答题1.(2022高考北京卷·第17题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN ∥平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB 与平面BMN 所成角的正弦值.条件①:AB MN ⊥;条件②:BM MN =.注:如果选择条件①和条件②分别解答,按第一个解答计分.2.(2022年高考全国甲卷数学(理)·第18题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.3.(2022年浙江省高考数学试题·第19题)如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE ∠=∠=︒,二面角F DC B --的平面角为60︒.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ⊥;(2)求直线BM 与平面ADE 所成角的正弦值.4.(2022新高考全国II 卷·第20题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.5.(2022新高考全国I 卷·第19题)如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为.(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.6.(2022年高考全国乙卷数学(理)·第18题)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.-中,底面ABCD是平行四边7.(2021年高考浙江卷·第19题)如图,在四棱锥P ABCDBC PC的中点,形,120,1,4,∠=︒===M,N分别为,ABC AB BC PA⊥⊥.PD DC PM MD,(1)证明:AB PM⊥;(2)求直线AN与平面PDM所成角的正弦值.-中,底面ABCD是正方形,若8.(2021年新高考全国Ⅱ卷·第19题)在四棱锥Q ABCD===.AD QD QA QC2,3(1)证明:平面QAD⊥平面ABCD;--的平面角的余弦值.(2)求二面角B QD A9.(2021年新高考Ⅰ卷·第20题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.10.(2021年高考全国乙卷理科·第18题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.11.(2021年高考全国甲卷理科·第19题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?12.(2021高考北京·第17题)如图:在正方体1111ABCD A B C D -中,E 为11A D 中点,11B C 与平面CDE 交于点F.(1)求证:F 为11B C 的中点;(2)点M 是棱11A B 上一点,且二面角M FC E --的余弦值为53,求111A M A B 的值.13.(2020年高考课标Ⅰ卷理科·第18题)如图,D为圆锥的顶点,O是圆锥底面的圆心,=.ABC是底面的内接正三角形,P为DO上一点,AE为底面直径,AE ADPO=.(1)证明:PA⊥平面PBC;--的余弦值.(2)求二面角B PC E14.(2020年高考课标Ⅱ卷理科·第20题)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.15.(2020年高考课标Ⅲ卷理科·第19题)如图,在长方体1111ABCD A B C D -中,点,E F分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.16.(2020年新高考全国Ⅰ卷(山东)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.17.(2020年新高考全国卷Ⅱ数学(海南)·第20题)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,QB,求PB与平面QCD所成角的正弦值.18.(2020年浙江省高考数学试卷·第19题)如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC=2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.19.(2020天津高考·第17题)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且12,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.20.(2020江苏高考·第24题)在三棱锥A BCD -中,已知CB CD ==,2BD =,O 为BD的中点,AO ⊥平面BCD ,2AO =,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足14BF BC =,设二面角F DE C --的大小为θ,求sin θ的值.21.(2020江苏高考·第15题)在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,,E F分别是1,AC B C 的中点.(1)求证:EF 平面11AB C ;(2)求证:平面1AB C ⊥平面1ABB .22.(2020北京高考·第16题)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.23.(2019年高考浙江·第19题)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,30BAC ∠=︒,11A A A C AC ==,E ,F 分别是AC ,11A B 的中点.(Ⅰ)证明:EF BC ⊥;(Ⅱ)求直线EF 与平面1A BC 所成角的余弦值.24.(2019年高考天津理·第17题)如图,AE ⊥平面ABCD ,//,//CF AE AD BC ,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长.25.(2019年高考上海·第17题)如图,在长方体1111ABCD A BC D -中,M 为1BB 上一点,已知2BM =,4AD =,3CD =,15AA =.(1)求直线1AC 与平面ABCD 的夹角;(2)求点A 到平面1AMC 的距离.26.(2019年高考全国Ⅲ理·第19题)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的二面角B−CG−A 的大小.27.(2019年高考全国Ⅱ理·第17题)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.()1证明:BE ⊥平面11EB C ;()2若1AE A E =,求二面角1B EC C --的正弦值.28.(2019年高考全国Ⅰ理·第18题)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60,,,AA AB BAD E M N ==∠=︒分别是BC ,1BB ,1A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.29.(2019年高考江苏·第16题)如图,在直三棱柱111ABC A B C -中,,D E 分别为BC ,AC 的中点,AB BC =.求证:(1)11A B ∥平面1DEC ;(2)1BE C E ⊥.30.(2019年高考北京理·第16题)如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F–AE–P 的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.31.(2018年高考数学江苏卷·第25题)(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值;(2)求直线CC 1与平面AQC 1所成角的正弦值.32.(2018年高考数学江苏卷·第15题)(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)11AB A B C 平面∥;(2)111ABB A A BC ⊥平面平面.33.(2018年高考数学浙江卷·第19题)(本题满分15分)如图,已知多面体111ABCA B C ,111,,A A B B C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===.(1)证明:1AB ⊥平面111A B C ;(2)求直线1AC 与平面1ABB 所成角的正弦值.34.(2018年高考数学上海·第17题)(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2,(1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA OB 、是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.35.(2018年高考数学天津(理)·第17题)(本小题满分13分)如图,//AD BC 且2AD BC =,AD CD ⊥,//EG AD 且EG AD =,//CD FG ,且2CD FG =,DG ⊥平面ABCD ,2DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ;(2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60︒,求线段DP 的长.36.(2018年高考数学课标Ⅲ卷(理)·第19题)(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD 所在的平面垂直,M 是弧CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.37.(2018年高考数学课标Ⅱ卷(理)·第20题)(12分)如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.PAB M CO 38.(2018年高考数学课标卷Ⅰ(理)·第18题)(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DCF ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.39.(2018年高考数学北京(理)·第16题)(本小题14分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,,,,D E F G 分别为1111,,,AA AC A C BB 的中点,AB BC ==,12AC AA ==.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角1B CD C --的余弦值;(Ⅲ)证明:直线FG 与平面BCD 相交.。
专题12:文科立体几何高考真题大题(全国卷)赏析(解析版)

专题12:文科立体几何高考真题大题(全国卷)赏析(解析版) 题型一:求体积1,2018年全国卷Ⅲ文数高考试题如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)证明见解析 (2)存在,理由见解析 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.2,2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析. (2)1. 【解析】分析:(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A =,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE = 13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin451332Q ABP ABPV QE S-=⨯⨯=⨯⨯⨯⨯︒=. 点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可. 3.2019年全国统一高考数学试卷(文科)(新课标Ⅱ)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18 【分析】(1)先由长方体得,11B C ⊥平面11AA B B ,得到11B C BE ⊥,再由1BE EC ⊥,根据线面垂直的判定定理,即可证明结论成立;(2)先设长方体侧棱长为2a ,根据题中条件求出3a =;再取1BB 中点F ,连结EF ,证明EF ⊥平面11BB C C ,根据四棱锥的体积公式,即可求出结果. 【详解】(1)因为在长方体1111ABCD A B C D -中,11B C ⊥平面11AA B B ;BE ⊂平面11AA B B ,所以11B C BE ⊥,又1BE EC ⊥,1111B C EC C ⋂=,且1EC ⊂平面11EB C ,11B C ⊂平面11EB C ,所以BE ⊥平面11EB C ;(2)设长方体侧棱长为2a ,则1AE A E a ==,由(1)可得1EB BE ⊥;所以22211EB BE BB +=,即2212BE BB =, 又3AB =,所以222122AE AB BB +=,即222184a a +=,解得3a =;取1BB 中点F ,连结EF ,因为1AE A E =,则EF AB ∥; 所以EF ⊥平面11BB C C , 所以四棱锥11E BB C C -的体积为1111111136318333E BB C C BB C C V S EF BC BB EF -=⋅=⋅⋅⋅=⨯⨯⨯=矩形.【点睛】本题主要考查线面垂直的判定,依据四棱锥的体积,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.4.2017年全国普通高等学校招生统一考试文科数学(新课标2卷) 四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,01,90.2AB BC AD BAD ABC ==∠=∠= (1)证明:直线//BC 平面PAD ;(2)若△PCD 面积为27,求四棱锥P ABCD -的体积.【答案】(Ⅰ)见解析(Ⅱ)43【分析】试题分析:证明线面平有两种思路,一是寻求线线平行,二是寻求面面平行;取AD 中点M ,由于平面PAD 为等边三角形,则PM AD ⊥,利用面面垂直的性质定理可推出PM ⊥底面ABCD ,设BC x =,表示相关的长度,利用PCD ∆的面积为27.试题解析:(1)在平面内,因为,所以又平面平面故平面(2)取的中点,连接由及得四边形为正方形,则.因为侧面为等边三角形且垂直于底面,平面平面,所以底面因为底面,所以,设,则,取的中点,连接,则,所以,因为的面积为,所以,解得(舍去),于是所以四棱锥的体积【详解】题型二:求距离5.2018年全国普通高等学校招生统一考试文数(全国卷II )如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)详见解析(245【解析】分析:(1)连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;(2)过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可.详解:(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =3 连结OB .因为AB =BC 2AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=12AC=2,CM=23BC=423,∠ACB=45°.所以OM=25,CH=sinOC MC ACBOM⋅⋅∠=45.所以点C到平面POM的距离为45.点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.6.2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图,三棱柱中,侧面为菱形,的中点为,且平面.(1)证明:(2)若,求三棱柱的高.【答案】(1)详见解析;(2)三棱柱111ABC A B C -的高为21. 【解析】试题分析:(1)根据题意欲证明线线垂直通常可转化为证明线面垂直,又由题中四边形是菱形,故可想到连结1BC ,则O 为1B C 与1BC 的交点,又因为侧面11BB C C 为菱形,对角线相互垂直11B C BC ⊥;又AO ⊥平面11BB C C ,所以1B C AO ⊥,根据线面垂直的判定定理可得:1B C ⊥平面ABO ,结合线面垂直的性质:由于AB ⊂平面ABO ,故1B C AB ⊥;(2)要求三菱柱的高,根据题中已知条件可转化为先求点O 到平面ABC 的距离,即:作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H ,则由线面垂直的判定定理可得OH ⊥平面ABC ,再根据三角形面积相等:OH AD OD OA ⋅=⋅,可求出OH 的长度,最后由三棱柱111ABC A B C -的高为此距离的两倍即可确定出高. 试题解析:(1)连结1BC ,则O 为1B C 与1BC 的交点. 因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥, 故1B C ⊥平面ABO.由于AB ⊂平面ABO ,故1B C AB ⊥.(2)作OD BC ⊥,垂足为D ,连结AD ,作OH AD ⊥,垂足为H. 由于,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥, 又OH AD ⊥,所以OH ⊥平面ABC.因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得3OD. 由于1AC AB ⊥,所以11122OA B C ==,由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH , 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217. 故三棱柱111ABC A B C -的高为217. 考点:1.线线,线面垂直的转化;2.点到面的距离;3.等面积法的应用 7.2014年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥面ABCD ,E 为PD 的中点. (1)证明://PB 平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积 34V =,求A 到平面PBC 的距离.【答案】(1)证明见解析 (2) A 到平面PBC 的距离为31313【详解】试题分析:(1)连结BD 、AC 相交于O ,连结OE ,则PB ∥OE ,由此能证明PB ∥平面ACE .(2)以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出A 到平面PBD 的距离试题解析:(1)设BD 交AC 于点O ,连结EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB 又EO平面AEC ,PB平面AEC所以PB ∥平面AEC . (2)136V PA AB AD AB =⋅⋅=由,可得. 作交于. 由题设易知,所以故, 又31313PA AB AH PB ⋅==所以到平面的距离为法2:等体积法136V PA AB AD AB =⋅⋅= 由,可得.由题设易知,得BC假设到平面的距离为d ,又因为PB=所以又因为(或),,所以考点 :线面平行的判定及点到面的距离8.2019年全国统一高考数学试卷(文科)(新课标Ⅰ)如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)41717. 【分析】(1)利用三角形中位线和11//A D B C 可证得//ME ND ,证得四边形MNDE 为平行四边形,进而证得//MN DE ,根据线面平行判定定理可证得结论;(2)根据题意求得三棱锥1C CDE -的体积,再求出1C DE ∆的面积,利用11C CDE C C DE V V --=求得点C 到平面1C DE 的距离,得到结果.【详解】(1)连接ME ,1B CM ,E 分别为1BB ,BC 中点 ME ∴为1B BC ∆的中位线1//ME B C ∴且112ME B C = 又N 为1A D 中点,且11//A D B C 1//ND B C ∴且112ND B C = //ME ND ∴ ∴四边形MNDE 为平行四边形//MN DE ∴,又MN ⊄平面1C DE ,DE ⊂平面1C DE//MN ∴平面1C DE(2)在菱形ABCD 中,E 为BC 中点,所以DE BC ⊥, 根据题意有3DE =,117C E =,因为棱柱为直棱柱,所以有DE ⊥平面11BCC B ,所以1DE EC ⊥,所以113172DEC S ∆=⨯⨯, 设点C 到平面1C DE 的距离为d ,根据题意有11C CDE C C DE V V --=,则有11113171343232d ⨯⨯⨯⨯=⨯⨯⨯⨯, 解得41717d ==, 所以点C 到平面1C DE 的距离为417. 【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用等积法求点到平面的距离是文科生常考的内容.题型三:求面积9.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】 试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅ 21sin606232BC +︒=+10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.【答案】(1)见解析(2)5【分析】(1)由四边形ABCD 为菱形知AC ⊥BD ,由BE ⊥平面ABCD 知AC ⊥BE ,由线面垂直判定定理知AC ⊥平面BED ,由面面垂直的判定定理知平面AEC ⊥平面BED ;(2)设AB =x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt ∆AEC 中,用x 表示EG ,在Rt ∆EBG 中,用x 表示EB ,根据条件三棱锥E ACD -6求出x ,即可求出三棱锥E ACD -的侧面积.【详解】(1)因为四边形ABCD 为菱形,所以AC ⊥BD ,因为BE ⊥平面ABCD ,所以AC ⊥BE ,故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED(2)设AB =x ,在菱形ABCD 中,由 ∠ABC =120°,可得AG =GC =32x ,GB =GD =2x .因为AE ⊥EC ,所以在 Rt ∆AEC 中,可得EG =3x . 连接EG ,由BE ⊥平面ABCD ,知 ∆EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E -ACD 的体积3116632243E ACD V AC GD BE x -=⨯⋅⋅==.故 x =2 从而可得AE =EC =ED 6.所以∆EAC 的面积为3, ∆EAD 的面积与∆ECD 的面积均为 5故三棱锥E -ACD 的侧面积为3+25【点睛】本题考查线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力.11.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见详解;(2)4.【分析】(1)因为折纸和粘合不改变矩形ABED ,Rt ABC 和菱形BFGC 内部的夹角,所以//AD BE ,//BF CG 依然成立,又因E 和F 粘在一起,所以得证.因为AB 是平面BCGE 垂线,所以易证.(2) 欲求四边形ACGD 的面积,需求出CG 所对应的高,然后乘以CG 即可.【详解】(1)证://AD BE ,//BF CG ,又因为E 和F 粘在一起.∴//AD CG ,A ,C ,G ,D 四点共面.又,AB BE AB BC ⊥⊥.AB ∴⊥平面BCGE ,AB ⊂平面ABC ,∴平面ABC ⊥平面BCGE ,得证.(2)取CG 的中点M ,连结,EM DM .因为//AB DE ,AB ⊥平面BCGE ,所以DE ⊥平面BCGE ,故DE CG ⊥,由已知,四边形BCGE 是菱形,且60EBC ∠=得EM CG ⊥,故CG ⊥平面DEM . 因此DM CG ⊥.在Rt DEM △中,DE=1,3EM =,故2DM =.所以四边形ACGD 的面积为4.【点睛】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,最后将求四边形ACGD的面积考查考生的空间想象能力.。
2011—2018年新课标全国卷1理科数学分类汇编——8.立体几何

8.立体几何(含解析)一、选择题【2018,7】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B .C .3D .2【2018,12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为AB C D 【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为A .23 B .22 C .33 D .31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) A .π17 B .π18 C .π20 D .π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )A .1B .2C .4D .8【2015年,11题】 【2014年,12题】 【2013年,6题】【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .B .C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A .500π3cm 3 B .866π3cm 3 C .1372π3cm 3 D .2048π3cm 3【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2013年,8】 【2012年,7】 【2011年,6】【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .15 【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A .6B .6C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 .三、解答题【2018,18】如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.【2017,18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.【2016,18】 如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60.(Ⅰ)证明:平面⊥ABEF 平面EFDC ; (Ⅱ)求二面角A BC E --的余弦值.【2015,18】如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.【2014,19】如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥. (Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC ,求二面角111A A B C --的余弦值.ABCDE【2013,18】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.【2012,19】如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.【2011,18】如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.A 18.立体几何(解析版)一、选择题【2018,7】某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B .C .3D .2解:选B 。
专题9 立体几何中的表面积与侧面积问题(原卷版)-2021年高考数学立体几何中必考知识专练

专题9:立体几何中的表面积与侧面积问题(原卷版)⑴圆柱侧面积;lrS⋅⋅=π2侧面⑵圆锥侧面积:lrS⋅⋅=π侧面⑶圆台侧面积:lRlrS⋅⋅+⋅⋅=ππ侧面hSV⋅=柱体hSV⋅=31锥体()13V h S S S S=+⋅+下下台体上上球的表面积和体积32344RVRSππ==球球,.正三棱锥是底面是等边三角形,三个侧面是全等的等腰三角形的三棱锥。
正四面体是每个面都是全等的等边三角形的三棱锥。
一、解答题1.在底面半径为2,高为22的圆锥中内接一个圆柱,且圆柱的底面积与圆锥的底面积之比为1:4,求圆柱的表面积.2.已知圆锥的底面半径为13,求圆锥的表面积.3.已知圆台的上、下底面半径分别是2,6,且侧面面积等于两底面面积之和.(1)求圆台的母线长.(2)求圆台的表面积.4.现有一个底面是菱形的直四棱柱,它的体对角线长为9和15,高是5,求该直四棱柱的侧面积.5.若长方体的三个面的面积分别是2222cm ,3cm ,6cm ,求:(1)长方体的体对角线的长;(2)长方体的表面积.6.如图,四面体P ABC -的各棱长均为α,求它的表面积.7.已知一个正三棱锥的侧面都是等边三角形,侧棱长为4,求它的侧面积和全面积.8.正四棱台两底面边长分别为3和9.(1)若侧棱所在直线与上、下底面正方形中心的连线所成的角为45,求棱台的侧面积;(2)若棱台的侧面积等于两底面面积之和,求它的高.9.如图,四棱锥P ABCD -的底面是正方形,E 为AB 的中点,PD CE ⊥,1AE =,3PD =,13PC =.(1)证明:AD ⊥平面PCD .(2)求三棱锥B CEP -的侧面积. 10.如图四边形ABCD 为菱形,G 为AC 与BD 交点,面BDE ⊥平面ABCD . (1)证明:AC ⊥平面BDE ;(2)若ABD △为等边三角形,AE EC ⊥,EB BD ⊥,三棱锥E ACD -的体积为63,求四棱锥E ABCD -的侧面积.11.如图,在四棱锥S ﹣ABCD 中,底面ABCD 是边长为2的正方形,SA =SB =SC =SD 6=,点E ,M ,N 分别是BC ,CD ,SC 的中点,点P 是MN 上的一点.(1)证明:EP ∥平面SBD ;(2)求四棱锥S ﹣ABCD 的表面积.12.如图,在三棱柱111ABC A B C -中, 111,2,1,AC BC AB BC BC ====⊥平面ABC .(1)证明:平面11A ACC ⊥平面11BCC B(2)求三棱锥1B AB C -的表面积.13.A 、B 、C 是球O 表面上三点,AB =6㎝,∠ACB =30°,点O 到△ABC 所在截面的距离为5㎝,求球O 的表面积.14.已知,A B 是球O 的球面上两点,90AOB ︒∠=,C 为球面上的动点.若三棱锥O ABC -体积的最大值为36,求球O 的表面积.走进高考1.2017年全国普通高等学校招生统一考试文科数学(新课标1卷)如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.2.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ) 如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面, (I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面积.3.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)图1是由矩形,ADEB Rt ABC ∆和菱形BFGC 组成的一个平面图形,其中1,2AB BE BF ===, 60FBC ∠=,将其沿,AB BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明图2中的,,,A C G D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.。
2011年高考数学全国卷I试题精品解析

2011年高考数学全国卷I 精品解析一. 选择题 (本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(1)复数1z i =+,z 为z 的共轭复数,则1zz z --=(A )2i - ( B )i - (C )i (D )2i 【正确答案】(B ) 【试题解析】1z i =-,1(1)(1)(1)1.zz z i i i i --=+--+-=-【命题意图】本小题主要考查的是共轭复数的概念及复数的基本运算,属于保分题.(2)函数0)y x =≥的反函数为.(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24yx =()x R ∈ (D )24(0)y x x =≥【正确答案】(B ) 【试题解析】,220)(0)(0).44y x y x x x y x =≥⇒=≥⇒=≥【命题意图】本小题考查的是由原函数求其反函数的基本运算,属于保分题.(3)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b>【正确答案】(A ) 【试题解析】,1a b a b +⇒>>, 1.a b a b >⇒>+而.【命题意图】本小题主要考查的是充要条件的的概念与判断,属于中档题. (4)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224K K S S +-=,则k =(A )8 (B )7 (C )6 (D )5 【正确答案】(D ) 【试题解析】212124242(21)24,k k k k S S a a a k d +++-=⇒+=⇒++=又11,2, 5.a d k ==∴=【命题意图】本小题主要考查的是等差数列的通项公式及前n 项公式的基本运算,属于中档题.(5)设函数()cos (0)f x x ωω=>,将的()y f x =图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9【正确答案】(C )【试题解析】cos ()cos ,cos()cos 33x x x x ππωωωωω-=-=由已知得即,min 20,1 6.3πωκπκωκω∴-=∈N >∴=-=,,又当时,【命题意图】本小题主要考查的是余弦函数的平移变换与其周期性的基础运用,属于中档题.(6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于(A)3 (B)3 (C)3(D) 1 【正确答案】(C )【试题解析】如图,连结CB,AD ,则由已知可得:BC CD AD ===设D 到平面ABC 的距离为h,由等积法可得:.3D ABC A BCDV V h --=⇒=【命题意图】本小题主要考查的直二面角的定义、二平面垂直的性质及勾股定理的运用,突出考查的是“等积转化”的数学思想。
2011_2018高考全国卷Ⅰ文科数学三角函数、解三角形汇编

新课标全国卷Ⅰ文科数学汇编三角函数、解三角形一、选择题【2018,8】已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4【2018,11】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=A .15B C D .1【2017,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a=2,,则C=( ) A .π12B .π6C .π4D .π3【2016,4】ABC △的内角A B C ,,的对边分别为a b c ,,.已知a =2c =,2cos 3A =,则b =( )A .B .2 D .3 【2016,6】若将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函数为( ). A .π2sin 24y x ⎛⎫=+⎪⎝⎭ B .π2sin 23y x ⎛⎫=+ ⎪⎝⎭ C .π2sin 24y x ⎛⎫=- ⎪⎝⎭D .π2sin 23y x ⎛⎫=- ⎪⎝⎭【2015,8】函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈【2014,7】在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【2014,2】若tan 0α>,则( )A . sin 0α>B . cos 0α>C . sin 20α>D . cos20α>【2013,10】已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .5 【2012,9】9.已知0ω>,0ϕπ<<,直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( ) A .4πB .3π C .2πD .34π 【2011,7】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( ).A .45-B .35-C .35D .45【2011,11】设函数ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则 ( ) A .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递增,其图象关于直线π4x =对称 B .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递增,其图象关于直线π2x =对称 C .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减,其图象关于直线π4x =对称 D .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减,其图象关于直线π2x =对称 二、填空题【2018,16】△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.【2017,15】已知0,2πα⎛⎫∈ ⎪⎝⎭,tan 2α=,则cos 4πα⎛⎫-= ⎪⎝⎭________.【2016,】14.已知θ是第四象限角,且π3sin 45θ⎛⎫+= ⎪⎝⎭,则πtan 4θ⎛⎫-= ⎪⎝⎭. 【2013,16】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.【2014,16】如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角 45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒. 已知山高100BC m =,则山高MN = m . 【2011,15】ABC △中,120B =,7AC =,5AB =,则ABC △的面积为 . 三、解答题【2015,17】已知,,a b c 分别为ABC △内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos B ;(2)设90B ∠=,且a =ABC △的面积.【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,sin cos c C c A =-.(1)求A ;(2)若2a =,△ABC ,求b ,c .解 析一、选择题【2018,8】已知函数()222cos sin 2f x x x =-+,则BA .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为4【2018,11】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=B A .15BCD .1【2017,11】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a=2,,则C=( ) A .π12B .π6C .π4D .π3【答案】B【解法】解法一:因为sin sin (sin cos )0B A C C +-=,sin sin()B A C =+,所以sin (sin cos )0C A A +=,又sin 0C >,所以sin cos A A =-,tan 1A =-,又0A π<<,所以34A π=,又a =2,c=即1sin 2C =.又02C π<<,所以6C π=,故选B .解法二:由解法一知sin cos 0A A +=)04A π+=,又0A π<<,所以34A π=.下同解法一.【2016,4】ABC △的内角A B C ,,的对边分别为a b c ,,.已知a =2c =,2cos 3A =,则b =( ) A .B.2 D .3解析:选D .由余弦定理得222cos 2b c a A bc +-=,即245243b b +-=, 整理得()28113033b b b b ⎛⎫--=-+= ⎪⎝⎭,解得3b =.故选D .【2016,6】若将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期后,所得图像对应的函数为( ). A .π2sin 24y x ⎛⎫=+⎪⎝⎭ B .π2sin 23y x ⎛⎫=+ ⎪⎝⎭ C .π2sin 24y x ⎛⎫=- ⎪⎝⎭ D .π2sin 23y x ⎛⎫=- ⎪⎝⎭解析:选D .将函数π2sin 26y x ⎛⎫=+⎪⎝⎭的图像向右平移14个周期,即向右平移π4个单位, 故所得图像对应的函数为ππ2sin 246y x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦π2sin 23x ⎛⎫=- ⎪⎝⎭.故选D . 【2015,8】函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为( ) A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈ 解:选D .依图,153++4242ππωϕωϕ==且,解得ω=π,=4πϕ, ()cos()4f x x ππ∴=+, 224k x k πππππ<+<+由,,解得132244k x k -<<+,故选D . 【2014,7】在函数① y=cos|2x|,②y=|cos x |,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解:选A .由cos y x =是偶函数可知①y=cos|2x|=cos2x ,最小正周期为π;②y=|cos x |的最小正周期也是π;③中函数最小正周期也是π;正确答案为①②③,故选A【2014,2】若tan 0α>,则( )A . sin 0α>B . cos 0α>C . sin 20α>D . cos20α>解:选C .tan α>0,α在一或三象限,所以sin α与cos α同号,故选C【2013,10】已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .5解析:选D .由23cos 2A +cos 2A =0,得cos 2A =125.∵A ∈π0,2⎛⎫⎪⎝⎭,∴cos A =15.∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍).【2012,9】9.已知0ω>,0ϕπ<<,直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( ) A .4πB .3π C .2πD .34π【解析】选A .由直线4x π=和54x π=是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,得()sin()f x x ωϕ=+的最小正周期52()244T πππ=-=,从而1ω=.由此()sin()f x x ϕ=+,由已知4x π=处()sin()f x x ϕ=+取得最值,所以sin()14πϕ+=±,结合选项,知ϕ=4π,故选择A . 【2011,7】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( ).A .45-B .35-C .35D .45【解析】设(,2)(0)P t t t ≠为角θ终边上任意一点,则cosθ=当0t >时,cos 5θ=;当0t <时,cos 5θ=-.因此223cos 22cos 1155θθ=-=-=-.故选B .【2011,11】设函数ππ()sin 2cos 244f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则 ( ) A .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递增,其图象关于直线π4x =对称 B .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递增,其图象关于直线π2x =对称 C .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减,其图象关于直线π4x =对称 D .()f x 在π0,2⎛⎫ ⎪⎝⎭单调递减,其图象关于直线π2x =对称【解析】因为ππππ()sin 2cos 2224444f x x x x x ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当π02x <<时,02πx <<,故()f x x =在π0,2⎛⎫⎪⎝⎭单调递减.又当π2x =π22⎛⎫⨯= ⎪⎝⎭π2x =是()y f x =的一条对称轴.故选D .二、填空题【2018,16】△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________【2017,15】已知0,2πα⎛⎫∈ ⎪⎝⎭,tan 2α=,则cos 4πα⎛⎫-= ⎪⎝⎭________..0,2πα⎛⎫∈ ⎪⎝⎭,sin tan 22sin 2cos cos ααααα=⇒=⇒=,又22sin cos1αα+=,解得sin 5α=,cos 5α=,cos sin )4210πααα⎛⎫∴-=+= ⎪⎝⎭. 【基本解法2】0,2πα⎛⎫∈ ⎪⎝⎭Q ,tan 2α=,∴角α的终边过(1,2)P ,故sin 5y r α==,cos x r α==,其中r==cos (cos sin )42πααα⎛⎫∴-=+= ⎪⎝⎭ 【2016,】14.已知θ是第四象限角,且π3sin 45θ⎛⎫+= ⎪⎝⎭,则πtan 4θ⎛⎫-= ⎪⎝⎭ . 解析:43-.由题意sin sin 442θθπππ⎡⎤⎛⎫⎛⎫+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3cos 45θπ⎛⎫=-= ⎪⎝⎭.因为2222k k θ3ππ+<<π+π()k ∈Z ,所以722444k k θ5ππππ+<-<π+()k ∈Z , 从而4sin 45θπ⎛⎫-=- ⎪⎝⎭,因此4tan 43θπ⎛⎫-=- ⎪⎝⎭.故填43-. 方法2:还可利用ππtan tan 144θθ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭来进行处理,或者直接进行推演,即由题意4cos 45θπ⎛⎫+= ⎪⎝⎭,故3tan 44θπ⎛⎫+= ⎪⎝⎭,所以tan 4θπ⎛⎫-= ⎪⎝⎭143tan 4θ-=-π⎛⎫+ ⎪⎝⎭. 【2013,16】设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.答案:解析:. ∵f (x )=sin x -2cos x x-φ),其中sin φ,cos φ 当x -φ=2k π+π2(k ∈Z)时,f (x )取最大值.即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z).∴cos θ=πcos 2ϕ⎛⎫+⎪⎝⎭=-sin φ=5-. 【2014,16】16.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及 75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN = m .解:在RtΔABC中,由条件可得AC =, 在ΔMAC 中,∠MAC=45°;由正弦定理可得sin60sin 45AM AC =︒︒,故332AM =RtΔMAN 中,MN=AM sin60°=150.【2011,15】ABC △中,120B =,7AC =,5AB =,则ABC △的面积为 . 【解析】由余弦定理知2222cos120AC AB BC AB BC =+-⋅, 即249255BC BC =++,解得3BC =.故11sin1205322ABC S AB BC =⋅=⨯⨯=△..三、解答题【2015,17】已知,,a b c 分别为ABC △内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos B ;(2)设90B ∠=,且a =ABC △的面积.解析:(1)由正弦定理得,22b ac =.又a b =,所以22a ac =,即2a c =.则22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅.(2)解法一:因为90B ∠=,所以()2sin 12sin sin 2sin sin 90B A C A A ===-, 即2sin cos 1A A =,亦即sin 21A =.又因为在ABC △中,90B ∠=,所以090A <∠<, 则290A ∠=,得45A ∠=.所以ABC △为等腰直角三角形,得a c ==112ABC S ==△.解法二:由(1)可知22b ac =,① 因为90B ∠=,所以222a c b +=,② 将②代入①得()20a c -=,则a c ==,所以112ABC S ==△. 解:(Ⅰ) 因为sin 2B =2sin A sinC . 由正弦定理可得b 2=2ac .又a =b ,可得a=2c , b=2c ,由余弦定理可得2221cos 24a cb B ac +-==. (Ⅱ)由(Ⅰ)知b 2=2ac . 因为B=90°,所以a 2+c 2=b 2=2ac . 解得a =. 所以ΔABC 的面积为1.【2012,17】已知a ,b ,c 分别为△ABC 三个内角A ,B ,C的对边,sin cos c C c A =-.(1)求A ;(2)若2a =,△ABC,求b ,c . 【解析】(1)根据正弦定理2sin sin a cR A C==,得A R a sin 2=, C R c sin 2=,因为sin cos c C c A =-,所以2sin sin )sin 2sin cos R C R A C R C A =-⋅, 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A . (2)若2a =,△ABC1)得3π=A ,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。
2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—13.坐标系与参数方程

2011年—2018年新课标全国卷文科数学试题分类汇编13.坐标系与参数方程(逐题解析版)(2018·新课标Ⅰ,文22)在直角坐标系xOy 中,曲线1C 的方程为2y k x =+。
以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=(I )求2C 的直角坐标方程;(II )若1C 与2C 有且仅有三个公共点,求1C 的方程。
(2018·新课标Ⅱ,文22)在直角坐标系xOy 中,曲线C 的参数方程为2cos 4sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为1cos 2sin x l ay l a =+⎧⎨=+⎩(l 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为()12,,求l 的斜率.(2018·新课标Ⅲ,文22) [选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点.(1)α的取值范围;⑵求AB 中点P 的轨迹的参数方程.(2017·新课标Ⅰ,22)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l a .(2017·新课标Ⅱ,22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.(2017·新课标Ⅲ,22)在直角坐标系xOy 中,直线1l 的参数方程为2+x t y kt =⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm m y k =-+⎧⎪⎨=⎪⎩(为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3cos sin 0l ρθθ+=:,M 为3l 与C 的交点,求M 的极径.(2016·新课标Ⅰ,23)在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C . (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .(2016·新课标Ⅱ,23)在直角坐标系xOy 中,圆C 的方程为22(+6)+=25x y .(Ⅰ)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A ,B 两点,10AB,求l 的斜率.(2016·新课标Ⅲ,23)在直线坐标系xoy 中,曲线C 1的参数方程为3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数)。
2011年—2017年新课标全国卷1理科数学分类汇编——8.立体几何

2011年—2017年新课标高考全国Ⅰ卷理科数学分类汇编(含答案)8.立体几何【2017,7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( ) A .10 B .12 C .14 D .16【2016,11】平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,αI 平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为( )(A )23 (B )22 (C )33 (D )31 【2016,6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是( ) (A )π17 (B )π18 (C )π20 (D )π28【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(A )14斛 (B )22斛 (C )36斛 (D )66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示. 若该几何体的表面积为1620π+,则r =( )(A )1 (B )2 (C )4 (D )8【2014,12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .B .C .6D .4【2013,6】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3B .866π3cm 3C .1372π3cm 3D .2048π3cm 3【2013,8】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,11】已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A .6B .6C .3D .2【2011,6】在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )二、填空题【2011,15】已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==,则棱锥O ABCD -的体积为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年一2018年新课标全国卷I 文科数学分类汇编
9.立体几何
的截面是面积为 8的正方形,则该圆柱的表面积为 :( )
、选择题
(2018 •新课标I,文5)已知圆柱的上、下底面的中心分别为
O i , O 2,过直线OO 的平面截该圆柱所得
A . 12 2 n
B . 12n
C. 8.2 n
D . 10n
(2018 •新课标I,文 9)某圆柱的高为2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在正视图
上的对应点为 A ,圆柱表面上的点 N 在左视
AB = BC =2,
AG 与平面BB 1C 1C 所成的角
为
30
,则该长方体的体积为:
A . 8
B . 6.2
C. 8,2
D. 8、3
【2017, 6】如图,在下列四个正方体中,
A ,
B 为正方体的两个顶点,
M ,
【2016, 7】如图所示,某几何体的三视图是三
【2016,11】平面[过正方体ABCD - A , B 1C 1D 1的顶点
A , : :7/ 平面
CB D
:
门平面ABCD ,
n 平面
ABB
B .迈
【2015, 6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问
题:今有委米依垣内角,下周八尺,高五尺,问
”积及为米几何? ”其意思为:
在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一) ,米堆底部的弧长
为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?
”已知1斛米的体
(2018 •新课标I,文
10)在长方体 ABCD -A J BQ J D J 中,
N , Q 为所在棱的中点,则在
这四个正方体中,直接 AB 与平面MNQ 不平行的是( )
D . 15
截球O 的球面所得圆的半径为 1,球心O 到平面〉的距离为,2,则此球的体积为()
A . ,6n
B . 4、3二
C . 4、. 6二
D . 6.3二
【2011, 8]在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )
:■、填空题
【2017, 16]已 知三棱锥s-ABC 的所有 顶点都 在球O 的球面上,SC 是球O 的直径.若 平面
SCA 丄平面SCB, SA=AC , SB=BC ,三棱锥S —ABC 的体积为9,则球O 的表面积为 ___________ .
【2013, 15]已知H 是球O 的直径AB 上一点,AH : HB = 1 : 2, AB 丄平面a, H 为垂足,a 截球O 所得 截面的面
积为 n,则球O 的表面积为 __________________ .
仅归
【2011, 16 ]已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面
3
积是这个球面面积的 —,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为
_________ .
16
积约为1. 62立方尺,圆周率约为 3,估算出堆放的米有(
)
A . 14 斛
B . 22 斛
C . 36 斛 D
. 66 斛 【2015, 11
]圆柱被一个平面截去一部分后与半球(半径为 正视图和俯视图如图所示,若该几何体的表面积为
r )组成一个几何体,该几何体的三视图中的 16+20n ,则 r=( )
t
I
【2014, 8]如图, A .三棱锥 【2013, A . 【2012, 【2013, 11]
网格纸的各小格都是正方形, 粗实线画出的一个几何体的三视图, B .三棱柱 C .四棱锥 D .四棱柱
11]某几何体的三视图如图所示,则该几何体的体积为 16+ 8 n
7]如图, B . 8 + 8 n 网格纸上小正方形的边长为 【2012, 7] 则这个几何体是(
( ).
C . 16 + 16 n
D . 8 + 16 n
1,粗线画出的是某几何体的三视图,则此几何体的体积为 12 【2012, 8】平面:■
D . 8 4 B . 2 C .
三、解答题
(2018 •新课标I,文18)如图,在平行四边形ABCM中,:AB=AC=3 , / ACM =90,以AC为折痕将△ ACM折起,使点M到达点D的位置,且AB丄DA .
(1)证明:平面ACD丄平面ABC ;
2
(2)Q为线段AD上一点,P为线段BC上一点,且BP二DQ DA,求三棱锥Q - ABP的体积.
3
【2017, 18】如图,在四棱锥P - ABCD 中,AB // CD,且.BAP 二CDP 二90 .
(1)证明:平面PAB _ 平面PAD ; (2)若PA 二PD 二AB 二DC, • APD = 90,且四棱锥
8
P-ABCD的体积为-,求该四棱锥的侧面积.
3
C
【2016, 18】如图所示,已知正三棱锥:P-ABC的侧面是直角三角形,PA = 6 ,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E •连结PE并延长交AB于点G .
(1)求证:G是AB的中点;
(2)在题图中作出点E在平面PAC内的正投影F (说明作法及理由),并求四面体PDEF的体积
.
【2015, 18】如图四边形ABCD为菱形,G为AC与BD交点,BE丄平面ABCD ,
(I )证明:平面AEC丄平面BED ;
(n )若/ ABC=120 ° AE丄EC, 三棱锥E- ACD
的体积为—,求该三棱锥的侧面积.
3
A
h c
【2014,19】如图,三棱柱ABC — AB i C i中,侧面BBGC为菱形,BQ的中点为O,且AO _平面BB1C1C.
(1)证明:BQ_AB;
(2)若AC _ AB「. CBB1 =60 ,BC =1,求三棱柱ABC-A^G 的高.
【2013, 19】如图,三棱柱ABC—A1B1C1 中,CA= CB , AB= AA1,/ BAA1 = 60°
(1)证明:AB丄A1C; (2)若AB= CB= 2,A1C = -. 6,求三棱柱ABC —A1B1C1 的体积.
1
【2011, 18】如图所示,四棱锥 P -ABCD 中,底面
【2012,19】如图,三棱柱ABC — A I B I C I 中,侧棱垂直底面, 的
中点. (1) 证明:平面 BDC 」平面BDC ;
(2) 平面BDC i 分此棱柱为两部分,求这两部分体积的比.
.ACB =90 , AC=BC=
AA 1, D 是棱 AA 1
2
C
1
1 PD _ 底面ABCD .
(1) 证明:PA _ BD ;
(2) 若PD =AD -1,求棱锥D-PBC的高.
ABCD 为平行四边形,.DAB =60:, AB = 2AD ,。