蛋白质的折叠

蛋白质的折叠
蛋白质的折叠

蛋白质的折叠

赵顺喆

摘要:蛋白质是生命机体的基本组成部分,它是连接分子运作和生物功能的一个主要组成部分, 在生物体内占有特殊的地位。而蛋白质作为生命信息的表达载体,它折叠所形成的特定空间结构是其具有生物学功能的基础。然而,蛋白质通过什么方式折叠的问题却由于理论和实践的种种困难成为当今科学界的一大难题。本文简要介绍了蛋白质折叠的基础知识,折叠机理研究的几个理论模型,以及研究的进展。

关键词:组织层次、理论模型、天然态、去折叠态、熔球态

前言:蛋白质分子的折叠过程是指蛋白质分子从一般的状态变化到基态的复杂过程.它能使我们了解氨基酸序列是如何决定蛋白质分子结构,预测其结构及结构所表现出来的蛋白质分子的性能.在这个过程中氨基酸与氨基酸紧密接触(Residue -residue contact)的相互作用起着十分重要的作用。

蛋白质在生物体内,生命信息的流动可以分为两个部分:第一部分是储存于DNA序列中的遗传信息通过转录和翻译传入蛋白质的一级序列中,这是一维信息之间的传递,三联子密码介导了这一传递过程;第二部分是肽链经过疏水塌缩、空间盘曲、侧链叠集等折叠过程形成非常特定的复杂的空间结构,同时获得生物活性,从而将生命信息表达出来;因此这个一维信息向三维信息的转化过程是表现生命活力所必需的。

1.蛋白质的组织层次

蛋白质有着各异的三维空间结构,这种结构称之为天然态结构,并且其内部结构组织具有层次性,因此我们引入组织层次的概念。蛋白质结构可以分为四个组织层次,即一级结构、二

级结构、三级结构和四级结构。

1.1一级结构

一级结构又称初级结构(primary structure),指形成肽链的氨基酸序列,即指蛋白质分子中氨基酸残基的顺序,包括肽链中氨基酸的数目、种类和顺序。肽键是蛋白质中氨基

酸之间的主要连接方式,肽键具有部分双键的性质,所以整个肽单位是一个刚性的平面结

构。

蛋白质的一级结构是由编码它的基因确定的,不同生物同种(或同源)蛋白质一级结构之间的差别可以反映出进化关系。

1.2二级结构

二级结构是指多肽链骨架盘绕折叠所形成的有规律性的结构。最基本的二级结构类型有α-螺旋结构和β-折叠结构,两种构象均由氢键维持。此外还有β-转角和自由回转(指没

有一定规律的松散肽链结构)。蛋白质分子主链的紧密填埋使α 螺旋和β 片层结构更加稳

定; 同时, 也只有α 螺旋和β 片层结构这样的规则结构才能使氨基酸多肽链在空间排布

更紧密。

α-螺旋是蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基氧与

多肽链C端方向的第4个残基(第n+4个)的酰胺氮形成氢键。螺旋中的每个肽键均参与

氢键的形成以维持螺旋的稳定。

α-螺旋β-折叠

β-折叠也是蛋白质中的常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持

的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(走向都是由N到C方向);

或者是反平行排列(肽链反向排列)。

1.3三级结构

蛋白质的三级结构是整个多肽链的三维构象,它是在二级结构的基础上,多肽链进一步折叠卷曲形成复杂的球状分子结构。具有三级结构的蛋白质一般都是球蛋白,这类蛋白

质的多肽链在三维空间中沿多个方向进行盘绕折叠,形成十分紧密的近似球形的结构,分

子内部的空间只能容纳少数水分子,几乎所有的极性R基都分布在分子外表面,形成亲水

的分子外壳,而非极性的基团则被埋在分子内部,不与水接触。

1.4四级结构

蛋白质的四级结构指数条具有独立的三级结构的多肽链通过非共价键(盐键、氢键、疏水键作用和范德华力等)相互连接而成的聚合体结构。在具有四级结构的蛋白质中,每

一条具有三级结构的皑链称为亚基或亚单位,缺少一个亚基或亚基单独存在都不具有活性。

四级结构涉及亚基在整个分子中的空间排布以及亚基之间的相互关系。

2.折叠时测定的状态

2.1天然态结构

2.2熔球态结构

熔球态是大多大分子蛋白质的折叠中间态,具有一定稳定性。

该态整体大小接近折叠态;其二级结构含量与天然态相仿;由于体系内部一定程度的分散,使得内部氨基酸侧链的空间分布更均匀;中间态结构的焓与去折叠态结构十分接近,

与折叠态结构相去甚远;

2.3去折叠态结构

去折叠态结构与天然态结构相对应,理想状态的去折叠态蛋白质结构呈现无规卷曲状态, 没有形成规则的二级结构。但研究表明,去折叠蛋白质也不是真正的无规卷曲结构,去

折叠态的蛋白质结构比无规卷曲结构更加紧密, 更加有规则。

3.蛋白质折叠的影响因素

在蛋白质的折叠过程中,有多种复杂的因素对它产生影响,包括溶剂的作用,温度的作用,酸碱度的作用,分子伴侣(一种引导蛋白质正确折叠的蛋白质)的作用等等。其中,分子伴侣的存在至关重要。

4.研究进展

正是因为蛋白质折叠问题如此复杂,所以,至今还没有人提出大家都信服的蛋白质折叠机制.过去人们普遍认为蛋白质的折叠过程是由肽链到蛋白质的瞬间转变,但随着测量仪器和手段的不断改进,人们发现了越来越多的部分折叠态,并最终承认蛋白质的折叠过程是一个包含了许多步骤的序变过程,是一个快相过程与慢相过程相结合的过程.

经过人们长期的努力,已经找到了蛋白质折叠的部分规律,例如通过二级结构预测和计算机模拟方法,研究者们找到一些由几个氨基酸残基组成的一级序列决定二级结构的规律;不同的作用力在蛋白质折叠过程所起的作用已被阐明;许多具体的蛋白质的折叠过程也已经被研究者们分析得十分清楚.

目前,已经有一些小组采用全原子分子动力学模拟来研究小蛋白和多肽的从头折叠过程,但是,采用全原子的分子动力学来模拟蛋白质折叠过程需要耗费巨大的计算资源.就目前的计算机处理能力来说,对于大的蛋白质,其模拟时间尺度相对于蛋白质整个折叠过程来说,还存在一定差距.为了克服这些困难,蛋白质从头折叠研究常用的做法是采用简化模型,以减少体系的自由度,从而加快计算速度.对于简化模型,需要解决的关键问题是如何设计适用于该简化模型的势函数以及如何快速有效的找到自由能最低的状态.目前,已经有很多简化模型被用于蛋白质从头折叠的研究。

5.应用前景

①利用DNA重组技术可以将外源基因导入宿主细胞.但重组基因的表达产物往往形成无活

性的、不溶解的包涵体.折叠机制的阐明对包涵体的复性会有重要帮助.

②研究预防由于一些细胞内的重要蛋白发生突变,导致蛋白质聚沉或错误折叠而造成的疾

病。

[参考文献]

[1] 唐兵.蛋白质的折叠[J].氨基酸和生物资源, 1997, 19 (3): 51 -54.

[2] 翟中和,等.细胞生物学[M]北京;高等教育出版社,2000

[3]张西平,等.核酸与基因表达调控哪j.武汉:武汉大学出版社,2002.

【核心知识】蛋白质折叠的热力学和动力学

蛋白质折叠的热力学和动力学 药学院 10489629 苟宝迪 蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。诺贝尔奖得主Anfinsen认为每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序,由这种氨基酸排列顺序决定它的特定的空间结构。具有完整一级结构的多肽或蛋白质, 只有当其折叠形成正确的三维空间结构才可能具有正常的生物学功能. 如果这些生物大分子的折叠在体内发生了故障, 形成错误的空间结构, 不但将丧失其生物学功能, 甚至会引起疾病.蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。 蛋白质折叠的研究(图1[1]),是生命科学领域的前沿课题之一。不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。 图1 蛋白质折叠的热力学研究 蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?X-射线晶体衍射是至今为止研究蛋白质结构最有效的方法, 所能达到的精度是其它任何方法所不能比拟的. 但是, 蛋白质分离纯化技术要求高, 蛋白质晶体难以培养,

晶体结构测定的周期较长, 从而制约了蛋白质工程的进展. 随着近代物理学、数学和分子生物学的发展, 特别是计算机技术的进步, 人们开始用理论计算的方法, 利用计算机来预测蛋白质的结构. 同源模建方法是最常用、最有效的蛋白质结构预测方法. 但是, 利用同源模建方法预测蛋白质结构时, 需用同源蛋白质的已知结构作为模板. 当缺乏这种模板结构时, 预测则很难奏效. 这是该方法的天生缺陷. 是否能从蛋白质序列出发, 直接预测蛋白质的结构? 从理论上最直接地去解决蛋白质的折叠问题,就是根据测得的蛋白质的一级序列预测由Anfinsen原理决定的特定的空间结构。蛋白质氨基酸序列,特别是编码蛋白质的核苷酸序列的测定现在几乎已经成为常规技术,利用分子生物学技术可以从互补DNA(cDNA)序列可以推定氨基酸序列,大大加速了蛋白质一级结构的测定。目前蛋白质数据库中已经存有大约17万个蛋白的一级结构,但是测定了空间结构的蛋白大约只有1.2万个,这中间有许多是很相似的同源蛋白,已经有人根据基因组的数据用统计方法重新估计了蛋白质折叠类型数目大约为1000种。 “蛋白质结构预测”属于理论方面的热力学问题,蛋白质分子结构本身的复杂性决定了结构预测的复杂性。目前结构预测的方法大致可分为两大类。一类是假设蛋白质分子天然构象处于热力学最稳定,能量最低状态,考虑蛋白质分子中所有原子间的相互作用以及蛋白质分子与溶剂之间的相互作用,采用分子力学的能量极小化方法,计算出蛋白质分子的天然空间结构。第二类方法是利用存入蛋白质数据库的数据进行预测相比,基于同源性的重复循环技术非常可靠地灵敏地进行结构预测。找出数据库中已有的蛋白质的空间结构与其一级序列之间的联系总结出一定的规律,逐级从一级序列预测二级结构,再建立可能的三维模型,根据总结出的空间结构与其一级序列之间的规律,排除不合理的模型,再根据能量最低原理得到修正的结构。但是,第一类方法遇到在数学上难以解决的多重极小值问题,而逐级预测又受到二级结构预测精度的限制。 图2[2]为蛋白质折叠研究的漏斗模型。从能量的角度看,漏斗表面上的每一个点代表蛋白质的一种可能的构象,变性状态的蛋白质构象位于漏斗顶面,漏斗最底部的点表示用X-射线单晶衍射或NMR测定的蛋白质天然构象,而漏斗侧面的斜率用来说明蛋白质折叠路径(图3[1])。 图2

蛋白质折叠与朊病毒

·综述·朊蛋白和蛋白质折叠病 1343820 郝梦娇 摘要肽链在空间卷曲折叠成为特定的三维空间结构, 包括二级结构和三级结构两个主要层次。正确的三维空间结构, 对其生物活性的表达是至关重要的。三维空间结构出现错误使机体产生的疾病为“折叠病”,本文主要讲述了“折叠病”中具有代表性的朊蛋白病的分类、临床表现以及致病机理。 关键词蛋白质折叠病朊蛋白生化特性机制 1前言 蛋白质分子只有处于它自己特定的三维空间结构的情况下,才能获得它特定的生物活性;三维空间结构稍有破坏,就很可能会导致蛋白质生物活性的降低乃至丧失,蛋白质功能也会随之改变,甚至使机体产生疾病,我们称这类蛋白质分子的氨基酸序列没有改变, 只是其结构或者说构象有所改变而引起的疾病为“折叠病”。朊蛋白病(prion disease)便是其中一类由于朊蛋白错误折叠而引起的致死性神经变性疾病。其特征是细胞内正常朊蛋白变构成致病性朊蛋白,在神经元及非神经细胞中异常聚集,进而引起大脑皮质、基底节等处神经细胞脱失,呈海绵状改变,因此也称此病为可传播性海绵状脑病(TSE)。朊蛋白病包括人类朊蛋白病和动物朊蛋白病。根据人类朊蛋白病的流行病学特点可分为3种类型,分别是散发性(85%-90%)、遗传性(10%-15%)及获得性(<1%),包括Creutzfeldt-Jakob病、Kuru 病、Gerstmann-Strussler综合征和致死性家族性失眠症等。动物朊蛋白病包括羊瘙痒病、牛海绵状脑病、传染性水貂脑病、鹿的慢性消损病、猫海绵状脑病等。动物朊蛋白病均由接触感染动物或喂食被感染的饲料引起。目前朊蛋白病仍没有延缓疾病进展的有效治疗手段。 2 蛋白质折叠与“折叠病” 2.1 蛋白质折叠蛋白质是生命机体的基本组成部分,它是连接分子运作和生物功能的一个主要组成部分。蛋白质是由氨基酸组成的链状生物大分子,氨基酸与氨基酸之间通过缩水作用而形成肽键,进而形成多肽链。众所周知,蛋白质在生物体内占有特殊的地位。在生物体内,生命信息的流动可以分为两个部分:第一部分是储存于DNA序列中的遗传信息通过转录和翻译传入蛋白质的一级序列中,这是一维信息之间的传递,三联子密码介导了这一传递过程;第二部分是肽链经过疏水塌缩、空间盘曲、侧链叠集等折叠过程形成非常特定的复杂的空间结构,同时获得生物活性,从而将生命信息表达出来;而蛋白质作为生命信息的表达载体,它折叠所形成的特定空间结构是其具有生物学功能的基础,也就是说,这个一维信息向三维信息的转化过程是表现生命活力所必需的。根据安芬森(Anfinsen)原理,每一种蛋白质分子都有自己特定的氨基酸组成和排列顺序,蛋白质一级结构的氨基酸序列包含和确定了其三维折叠结构的全部信息,即一级结构决定了蛋白质的高级结构。蛋白质的折叠就是指一个蛋白质从它的变性状态转变到它的特定的生物学天然构象的过程。在这一过程中,除了共价二硫键之外,主要是氢键、范德华力和盐键等一些非共价键的断裂和形成。蛋白质折叠包含以下两个

蛋白质折叠机理的研究进展

蛋白质折叠机理的研究进展 凌发忠 (专业:生物化学与分子生物学学号:D201002034) 摘要:研究蛋白质的折叠,是生命科学领域的前沿课题之一。蛋白质是一种生物大分子,多是由20种氨基酸以肽键连接成肽链。肽链在进一步空间卷曲折叠成为特定的空间结构,包括二级结构和三级结构。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。因此蛋白质分子往往具有特定的复杂的空间结构。但这并没有停止人类的探索,反而激励人们尝试寻找类似遗传密码子的蛋白质密码。本文将对蛋白质折叠的研究概况以及意义进行综述,并在此基础之上对今后蛋白质折叠的研究提出了一些自己的看法。 关键词:蛋白质折叠机理分子伴侣 1.引言 蛋白质折叠是生物学中心法则中至今尚未解决的一个重大生物学问题。[1]蛋白质像是一个微小而精密的机器。在蛋白质实现它的生物功能之前,它们会把自己装配起来。虽然蛋白质折叠是对所有的生物体系来说最重要的和最基本的过程,但这个过程对人类而言仍然是个未解之谜。此外,如果蛋白质没有正确的折叠会导致严重的后果,包括许多知名的疾病,比方阿兹海默症(Alzheimer's),疯牛病(Mad Cow, BSE),可传播性海绵状脑病(CJD),肌萎缩性脊髓侧索硬化症(ALS)和其他多种癌症及其相关的综合病症。这也成为近年来刺激人们探索蛋白质结构机理的一个重要原因之一。 2.蛋白质折叠研究概括 2.1分子生物学的中心法则 根据分子生物学中心法则,生物遗传信息的传递是由 DNA 到 RNA、RNA 到蛋白质多肽链、再由多肽链形成具有生物活性的蛋白质进行的。目前对前两者的过程已有相当深入和清晰的了解,但对后者尚不十分清楚。因此可以说蛋白质折叠是生物学中心法则中至今尚未解决的一个重大生物学问题。 通过蛋白质折叠的研究发现一级结构和空间结构之间存在某种确定的关系,那么是否像核苷酸通过“三联密码”决定氨基酸顺序那样有一套密码呢?有人把这设想的一级结构决定空间结构的密码叫作“第二遗传密码”。如果存在的话,那就可以直接从理论上去解决蛋白质的折叠问题,这是蛋白质研究最后几个尚未揭示的奥秘之一。现已经观察出 mRNA 的二级结构单元数与其编码的蛋白质二级结构(α-螺旋与β-折叠)单元数之间存在明显的相关性,二者的总符合率为 97.3%,相关系数达 0.99;其次,mRNA二级结构中5ˊ端至3ˊ端的每一发夹或复合发夹与PDB数据库所提供的蛋白质N端至C端的每一个α-螺旋或β-折叠之间存在几乎是一一对应的现象。通过上述数据可以看出,mRNA的三维结构和蛋白质的三维结构中确实存在某种相关。[2] 2.2蛋白质折叠的热力学和动力学 蛋白质折叠根本的科学问题是具有完整一级结构的多肽链又是如何折叠成为它特定的高级结构?这是一个折叠的动力学的问题,长期以来,主要用体外的实验方法研究,虽然已有四五十年,但至今尚未解决。 由 Anfinsen等[3]根据对 RNase 复性研究的经典实验提出的“热力学假说”认为一级结构决定高级结构。他们认为天然蛋白质多肽链所采取的构象是在一定环境条件下热力学上最

错误折叠与蛋白质构象病

错误折叠与蛋白质构象病 生物物理系 2005级硕士研究生刘莹 摘要:许多疾病的发生是由蛋白质错误折叠引起的,这类疾病被称为蛋白质错误折叠病。蛋白质突变、泛素-蛋白酶和自噬功能的失常与蛋白质错误折叠的发生,异常蓄积和聚集有关。本文综述了蛋白质错误折叠和聚集的机制和部分蛋白质构象病产生的机理。 关键词:蛋白质错误折叠;分子伴侣;泛素-蛋白酶系统;溶酶体途径;Prion; 蛋白质是生物体的组成成分之一,在物质代谢、机体防御、血液凝固、肌肉收缩、细胞信息传递、个体生长发育、组织修复等方面均有不可替代的重要作用。具有完整一级结构的多肽或蛋白质,只有当其折叠形成正确的三维空间结构才可能具有正常的生物学功能。一旦蛋白质形成了错误的空间结构,将丧失其生物学功能,还会引起相关疾病,迄今已发现20 多种蛋白质的错误折叠与疾病相关,神经退行性疾病如阿尔茨海默病’s disease , AD) , 帕金森病(Parkinson’s disease , PD) ,亨廷顿舞蹈病(Huntington’sdisease ,HD) ,朊蛋白病(prion disease) ,家族性肌萎缩侧索硬化症(familial amyotrophic lateral sclerosis ,ALS) 等均与错误折叠的蛋白质聚合和沉积有关。 一蛋白质折叠与降解的机制 蛋白质的一级结构是其特定空间结构的基础,此外,肽链还需经过与翻译同时进行的和翻译完成后的化学加工,如形成二硫键,完成糖基化、羟基化、磷酸化等化学修饰。这些化学修饰以及蛋白质亚基的非共价键聚合、蛋白质的靶向输送等均与肽链的折叠密切相关。在细胞内大多数天然蛋白质能自发形成比较稳定的天然结构, 或被配体和代谢因子所稳定。但约10 %~20 %新合成的多肽链需要分子伴侣的帮助才能正确折叠。此外,约有20 %新合成的多肽链不能形成正确的三维结构而被蛋白酶降解,包括由于错误转录和翻译形成的不完全蛋白质,翻译后受到化学损伤或其他因素引起的失活、去折叠或折叠错误的蛋白质。在真核细胞中,多余的蛋白质主要通过泛素化(ubiquitination) 过程降解。分子伴侣和蛋白酶系统是保证蛋白质正常功能的两大质量控制系统。 1)分子伴侣:分子伴侣是与其他蛋白不稳定构象相结合并使之稳定的蛋白,它们通过控制结合和释放来帮助被结合多肽在体内的折叠、组装、转运或降解等。在真核细胞中,许多蛋白质在胞内合成后分泌至细胞外。在经高尔基体分泌之前这些蛋白质先转移至内质网中(endoplamic reticulum , ER) 。ER 中含有大量的分子伴侣和蛋白折叠的催化剂以促进有效的折叠。这些蛋白质均严格遵守内质网质量控制机制来进行折叠。该机制包含了一系列糖基化和脱糖基化的过程,可以防止错误折叠的蛋白质从细胞中分泌出来。分子伴侣可逆地与未折叠肽段的疏水部分结合随后松开,如此反复进行可防止错误的聚集发生,使肽链正确折叠。分子伴侣也可与错误聚集的肽段结合,使之解聚后再诱导其正确折叠。分子伴侣主要分为伴侣素家族(chaperonin ,Cpn) 、应激蛋白70 家族(Stress270 family) 、应激蛋白90 家族(Stress290 family) 及核质素、T 受体结合蛋白(TRAP) 等。 2)蛋白酶系统:大部分细胞内蛋白降解均通过泛素2蛋白酶体途径。错误折叠或已损伤的蛋白质经泛素标记后被蛋白酶体所降解。泛素是由76 个氨基酸组成的蛋白质,在所有类型细胞中均有表达。蛋白质与泛素分子共价结合得以降解。第一个泛素分子与蛋白质结合后,可连接另一泛素分子,如此继而形成多泛素链。多泛素标记的蛋白质含4 个或更多的泛素,可被26 S 蛋白酶体识别并降解。Proteasome 是由多个亚单位组成的大分子复合物,是依赖于ATP 的蛋白质降解系统, 大约有40 种相对分子质量为20 000~110 000 的多肽组成两种具有相同酶解活性的复合物:20 S 和26 S proteasomes。

蛋白质分子自然构象和二级结构的计算分析及预测

蛋白质分子自然构象和二级结构的计算分析及预测本文是关于蛋白质分子的模拟计算,由两部分组成:一是计算蛋白质分子自然构象;一是蛋白质二级结构预测。对第一部分,提出了基于王朝更替策略的遗传算法来搜索蛋白质分子的自然构象。 二维toy模型是一种简化的蛋白质折叠的模型。随着环境的变化,一个王朝不能经久不衰,受这个的启发提出了王朝更替策略。 这个方法解决可能的早熟问题。为了测试这个方法,计算了蛋白质1AGT和1AHO,得到能量最小值分别为-20.8296、-21.0853,而这在文献中得到的最好结果是-19.6169和-15.1911,我们的值比文献中的值低了6-38%。 因此相信对应我们的最小自由能的构象是自然构象。在本文的第二部分,提出了基于氨基酸短序列的统计方法,用于预测蛋白质二级结构。 这是对基于单个氨基酸的传统统计方法的延伸。本文进行了大量的计算以确定最优短序列长度的选取,发现用3、4、5、6个氨基酸的短序列最好。 对于测试蛋白质组126 protein set、396 protein set、2180 protein set,得到的Q3二级结构预测准确度分别为89.9%、88.8%、89.2%,SOV准确度分别为84.3%、82.4%、84.1%。然后我们分析了新的蛋白质组153 protein set,这组蛋白质在PDB数据库中的发布日期晚于2007-11-15。 对这组新的蛋白质,本文计算结果的准确度Q3=73.7%、SOV=68.2%,好于常用的GORⅣ、GORⅤ、JPred这3个预测方法的平均结果Q3=69.7%、sov=66.9%。从计算结果看来所提出的短序列统计方法是一个很有希望的蛋白质二级结构预测方法。 随着已知蛋白质结构数据量的增加,这个方法的效果会更好。

浅谈蛋白质折叠的有关问题-最新范文

浅谈蛋白质折叠的有关问题 [摘要]本文对蛋白质折叠这一古老的领域的最新发展,尤其是分子伴侣的机理作了一番探讨,对一些新观点和新的实验事实作了介绍,并对一些实验实事作了一些思考,并提出了一些自己的看法。同时预测了结构生物学及技术手段的发展趋势。 生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而”结构与功能”又强调”动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 蛋白质折叠问题被列为”21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的

新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。 一、新生肽段折叠研究中的新观点 长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不

浅谈蛋白质折叠的有关问题

浅谈蛋白质折叠的有关问题 【摘要】:蛋白质折叠问题是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X 射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态。 【关键字】:生物大分子分子伴侣蛋白质的折叠识别结合 【正文】 一、新生肽段折叠研究中的新观点 长期以来关于蛋白质折叠,形成了自组装(self-assembly)的主导学说,因此,在研究新生肽段的折叠时,就很自然的把在体外蛋白质折叠研究中得到的规律推广到体内,用变性蛋白的复性作为新生肽段折叠的模型,并认为细胞中新合成的多肽链,不需要别的分子的帮助,不需要额外能量的补充,就应该能够自发的折叠而形成它的功能状态。 1988年,邹承鲁明确指出,新生肽段的折叠在合成早期业已开始,而不是合成完后才开始进行,随着肽段的延伸同时折叠,又不断进行构象的调整,先形成的结构会作用于后合成的肽段的折叠,而后合成的结构又会影响前面已形成的结构的调整。因此,在肽段延伸过程中形成的结构往往不一定是最终功能蛋白中的结构。这样,三维结构的形成是一个同时进行着的,协调的动态过程。九十年代一类具有新的生物功能的蛋白,分子伴侣(Molecularchaperone)的发现,以及在更广泛意义上说的帮助蛋白质折叠的辅助蛋白(Accessoryprotein)的提出,说明细胞内新生肽段的折叠一般意义上说是需要帮助的,而不是自发进行的。 二、蛋白质分子的折叠和分子伴侣的作用 蛋白质分子的三维结构,除了共价的肽键和二硫键,还靠大量极其复杂的弱次级键共同作用。因此新生肽段在一边合成一边折叠过程中有可能暂时形成在最终成熟蛋白中不存在不该有的结构,他们常常是一些疏水表面,它们之间很可能发生本不应该有的错误的相互作用而形成的非功能的分子,甚至造成分子的聚集和沉淀。按照自组装学说,每一步折叠都是正确的,充分的,必要的。实际上折叠过程是一个正确途径和错误途径相互竞争的过程,为了提高蛋白质生物合成的效率的,应该有帮助正确途径的竞争机制,分子伴侣就是这样通过进化应运而生的。

一种稳定蛋白质的全部原子结构预测和折叠模拟

AMBER教程8:研究案例——一种稳定蛋白质的全部原子结构预测和折叠模拟这段教程展示的是一个研究实例,像您演示如何重现下述文章中的研究工作: Simmerling, C., Strockbine, B., Roitberg, A.E., J. Am. Chem. Soc., 2002, 124, 11258-11259 (https://www.360docs.net/doc/f09590195.html,/10.1021/ja0273851) 我们建议您在开始本教程前首先阅读上述文章,获得该蛋白的氨基酸序列及其他有用信息。 警告1: 本教程中的一些计算耗时很长,我使用了由16个1.3GHz cup的SGI Altix进行了27小时计算才完成整个工作,因此如果您没有足够的计算能力,我强烈建议您在重复本教程的过程中使用我为您提供的out文件,以使得您能够流畅地完成整个教程。 警告2: 如果您重复本教程,我们并不能保证您能够精确地重现我的计算结果,在计算过程中,不同结构的计算机会产生不同的近似误差,从而使得计算过程搜索的是相空间的不同部位,但是模拟的平均结果是大致相同的。另外,尽管您完全重复了本教程也有可能无法获得论文中给出的结果,而且即便是我们自己也无法保证论文中的结果能够重现,这可能是因为我模拟的时间不够长,获取的仅仅是一个局部最小点,但是尽管如此,本教程的工作还是展示了蛋白折叠中一些有趣的行为。 背景 这篇论文应用AMBER FF99力场和经典的全原子动力学对一个肽的折叠过程进行了模拟。模拟的对象"trpcage"是一个由20个氨基酸构成的小肽,华盛顿大学的Andersen已经对这个蛋白做过了结构优化,它是现在已知最小的能够显示两种不同折叠状态的蛋白,而且这个蛋白在室温下可以稳定存在。该蛋白的小身量使得它成为模拟蛋白质折叠的绝嘉对象。当最早的关于这个蛋白的折叠的计算结果出炉时,对这个蛋白结构的实验测定还没有完成,所以整个模拟过程是在没有实验数据作为指导的情况下完成的。当蛋白的结构经由实验手段测定之后,人们惊喜地发现,计算机模拟的结果与实验测定的数值之间的RMSD值仅为1.4A。考虑到整个模拟过程是从蛋白的一级结构开始并且完全没有同源蛋白作为参考,这样的一个计算结果是非常精确的。 本教程中,我们试图重复论文中的结果,计算的设定都与论文非常接近,只是由于计算能力的限制,在教程中我们只进行一个50ns级的模拟。这已经足够重见蛋白质折叠的结果了。在这里必须提醒的是,由于模拟过程的长度所限,在不同的计算机,或在处理器数量不同的情况下,计算的结果将会是不同的。这是由分子动力学模拟的方法决定的,实施过程的细微变化或者浮点计算中舍入的变化都意味着由不同的计算机进行采样的动力学轨迹会随着时间的流逝发生不可预知的分化。这并非误差或者程序的bug,也并不意味着某一个模拟过程比其他的过程更合理。这仅仅意味着不同的模拟过程搜索的是相空间的不同区域,如果我们平均一下模拟的结果,或者运行更长时间的动力学过程,我们会在不同的机器上得到完全相同的结果,他们之间仅仅在过程上有所不同。因而我们说在本教程中我们很难精确的再现论文中的结果,但是我们试图重新创造那个重要的结果,即用AMBER程序来预测一个20氨基酸的小蛋白的空间结构是可以完成的。 那么记住这一点,让我们开始吧 第一步:构建起始结构 在以往的教程中,我们要么有一个可用的晶体结构,要么可以通过程序生成一个已经初步优化的结构。而在这个教程中我们要用的结构太复杂,没法通过手画的办法完成,同时我们也没有一个可用的PDB结构,因此我们就需要构建一个线形的肽链,非常幸运的是,在LEAP中有一个命令可以完成这个工作,就是sequence。 蛋白的一级结构序列在所列论文中可以查到,如下所示:

蛋白质的折叠

中国科学院生物物理研究所生物大分子国家重点实验室王志珍 导读 您知道蛋白质折叠吗?这是一个很新的词。新到什么程度?您可以上网到著名的不列颠百科全书网站检索一下proteinfolding(即蛋白质折叠),还没有相应的解释。 您知道“蛋白质折叠病”吗?疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。就是相关蛋白质的三维空间结构异常。这种三维空间结构异常是由于致病蛋白质分子通过分子间作用感染正常蛋白质而造成的。请注意,致病蛋白质分子与正常蛋白质分子的构成完全相同,只是空间结构不同。 您知道蛋白质折叠有多复杂吗?美国“科学美国人”曾经载文称,用当今最快的计算机模拟计算蛋白质折叠,要花一百年!而当今最快的计算机已经达到每秒几万亿甚至十几万亿次浮点运算的高速了。 对于生命奥秘的探索,将贯穿新世纪乃至新千年人类的历史。而蛋白质折叠,就是其中的一大课题。 请您认真阅读王志珍研究员的这篇文章。不要害怕肽键、肽链、分子伴侣这类专业名词,因为它们与您、您的健康息息相关。读完这篇文章,这些专业名词将成为您的朋友。 提要 研究蛋白质的折叠,是生命科学领域的前沿课题之一。蛋白质是一种生物大分子,基本上是由20种氨基酸以肽键连接成肽链。肽链在空间卷曲折叠成为特定的三维空间结构,包括二级结构和三级结构二个主要层次。有的蛋白质由多条肽链组成,每条肽链称为亚基,亚基之间又有特定的空间关系,称为蛋白质的四级结构。所以蛋白质分子有非常特定的复杂的空间结构。 通过“蛋白质结构预测”破译“第二遗传密码”,是蛋白质研究最后几个尚未揭示的奥秘之一。天津大学和中国科学院生物物理所的科学家已经做出了优秀的研究成果。他们预测,蛋白质的种类虽然成千上万,但它们的折叠类型却只有有限的650种左右。我国科学家在分子伴侣和折叠酶方面有特色的研究成果,也已经赢得了国际同行的注意。 外界环境的变化可以导致蛋白质空间结构的破坏和生物活性的丧失,但却并不破坏它的一级结构(氨基酸序列),这称为蛋白质的变性。变性的蛋白质往往成为一条伸展的肽链,在一定的条件下可以重新折叠成原有的空间结构并恢复原有的活性。对蛋白质变性作用的认识是我国科学家吴宪在三十年代首先提出的。蛋白质异常的三维空间结构可以引发疾病,疯牛病、老年性痴呆症、囊性纤维病变、家族性高胆固醇症、家族性淀粉样蛋白症、某些肿瘤、白内障等等都是“折叠病”。造成疯牛病的Prion病蛋白可以感染正常蛋白而在蛋白质之间传染。研究蛋白质的折叠问题不仅具有重大的科学意义,而且在医学和在生物工程领域具有极大的应用价值。 1分子生物学的中心法则 五十年代初运用X射线衍射技术解出了生命遗传物质脱氧核糖核酸(DNA)分子的三维空间结构,阐明了生物遗传的分子基础,揭示了这个最主要的生命活动的本质,从而开创了在分子水平上认识生命现象的新学科———分子生物学。分子生物学的出现是经典生物学转变成近代生物学的里程碑。尽管自然界的生物物种千千万万,生命现象繁杂纷飞,在分子水平研究生命,使我们认识到各种生命现象的基本原理却是高度一致的!从最简单的单细胞生物到最高等的人类,它们最基本最重要的组成物质都是蛋白质和核酸。核酸是生物体遗传信息的携带者,所有生物体能世代相传,就是依靠核酸分子可以精确复制的性质。蛋白质则是

蛋白质折叠及其动力学研究

蛋白质折叠及其动力学研究 修鹏(浙江大学航空航天学院) 摘要:蛋白质在生物学中充当重要的角色,而蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题。本文简述了蛋白质定义、蛋白质折叠的机制、折叠病以及相关的一些研究,论述了蛋白质折叠成核的假设,并简要介绍了蛋白质的动力学研究。蛋白质折叠机制的阐明将揭示生命体内的第二套遗传密码,而折叠机制的深入研究将会促使人们发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。 关键词:蛋白质,蛋白质折叠,折叠病,分子动力学 引言 在现代生物化学、分子生物物理学领域中,蛋白质的折叠、解折叠问题是引起人们极大兴趣的一个研究课题,它也是生命科学领域的前沿课题之一。 蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系;在概念上有热力学问题和动力学问题,有蛋白质在体外折叠和在细胞内折叠的问题,有理论研究和实验研究的问题。这里最根本的科学问题就是多肽链的一级结构到底如何决定它的空间结构?既然前者决定后者,一级结构和空间结构之间肯定存在某种确定的关系,有人把这设想的一级结构决定空间结构的密码叫作“第二遗传密码”。蛋白质折叠机制的阐明将揭示生命体内的第二套遗传密码,这是它的理论意义。 蛋白质分子在行使生物功能时,必须具有特定的二维空间结构,蛋白质折叠问题就是研究蛋白质天然结构是如何形成的,即具有一定氨基酸序列的多肽链如何逐步形成蛋白质所特有的空间结构。目前许多“构象病”或称“折叠病”都是由蛋白质折叠异常造成分子集聚甚至沉淀引起的,因此深入理解蛋白质折叠机制这一需求已经变得更加迫切。随着蛋白质折叠研究的深入,人们会发现更多疾病的真正病因和更针对性的治疗方法,设计更有效的药物。这是蛋白质折叠研究的实践意义。 一、蛋白质的定义

生物物理蛋白质空间构象

蛋白质空间构象:是指蛋白质多肽链主链在空间上的走向及所有原子和基团在空间中的排列与分布。蛋白质的空间结构包括二级结构、三级结构和四级结构。 X-射线晶体衍射和核磁共振光谱是研究大分子结构的主要方法。X-射线晶体衍射可用来研究处在晶体状态下的蛋白质的空间结构,核磁共振(NMR)光谱可用来研究处在溶液状态的蛋白质的结构。 蛋白质的一级结构是指蛋白质分子中氨基酸排列顺序 蛋白质的二级结构是:蛋白质分子中某一段肽链的局部空间结构,即该段 肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。 维系蛋白质二级结构的主要化学键是氢键。α-螺旋是多肽链的主链原子 沿一中心轴盘绕所形成的有规律的螺旋构象 结构特征:⑴为一右手螺旋,侧链伸向螺旋外侧 ⑵螺旋每圈包含3.6个氨基酸残基,螺距0.54nm;每个残基偏转100°; ⑶螺旋以氢键维系(氨基酸的N-H和相邻第四个氨基酸的羰基氧C=O 之间。氢键方向与螺旋轴基本平行) β-折叠是由若干肽段或肽链排列起来所形成的扇面状片层构象 结构特征: ⑴由若干条肽段或肽链平行或反平行排列组 成片状结构; ⑵主链骨架伸展呈锯齿状; ⑶涉及的肽段较短,一般为5~10个氨基酸 残基; ⑷借相邻主链之间的氢键维系 β-折叠包括平行式和反平行式两种类型 β-转角(U形转折,发夹结构):是多肽链180°回折部分所形成的一种二级结构,其结构特征为: ⑴主链骨架本身以大约180°回折; ⑵回折部分通常由四个氨基酸残基构成; ⑶构象依靠第一残基的-CO基与第四残基的-NH基之间形成氢键来维系。 (4)主要有两种类型:I 型和II型;二者主要差别是中央肽基旋转了1800,

蛋白质折叠问题探讨(一)

蛋白质折叠问题探讨(一) 摘要:生物大分子的结构与功能的研究是了解分子水平的先象的基础。没有对生物大分子的结构与功能的认识,就没有分子生物学。正如没有DNA双螺旋结构的发现,就没有遗传传达传递的中心法则,也就没有今天的分子生物学。结构分子以由第一分子进入对复和物乃至多亚基,多分子复和体结构研究。同时,过去难以研究的分子水平上的生命运动情况也随着研究的深入和技术手段的发展而逐渐由难点变为热点。蛋白质晶体学研究已从生物大分子静态(时间统计)的结构分析开始进入动态(时间分辨)的结构分析及动力学分析。第十三届国际生物物理大会的25个专题讨论会中有一半以上涉及蛋白质的结构与功能,而“结构与功能”又强调“动力学(Dynamics)”,即动态的结构或结构的运动与蛋白质分子功能的关系,以及对大分子相互作用的贡献。 关键字:蛋白质;生物大分子;分子伴侣;折叠问题 Abstract:Biologicalmacromolecule'sstructureandthefunctionresearchisunderstandsthemolecularl evelthefirstalikefoundation.Nottobiologicalmacromolecule'sstructureandthefunctionunderstandi ng,doesnothavethemolecularbiology.JustlikedoesnothavetheDNAdoublehelixstructurediscovery,h asnotinheritedthetransmissiontransmissionthecentraldogma,alsodoesnothavetoday'smolecularbi ology.Thestructurememberbyentersbythefirstmembertorestorespeacethethingandeventhemulti-Asianbase,themulti-membersrestorepeacethebodystructuralresearch.Atthesametime,studiedwit hdifficultyinthepastinmolecularlevellifemovementsituationalsoalongwithresearchthoroughandtec hnologicalmeansdevelopment,butbecamethehotspotgraduallybythedifficulty.Proteincrystallograp hyresearchalreadyfrombiologicalmacromoleculestaticstate(timestatistics)thestructureanalysisstar tsentersdynamic(timeresolution)thestructureanalysisanddynamicsanalysis.Inthe13thsessionofint ernationalbiophysicscongress's25symposiumhasmorethan50%toinvolvetheproteinthestructurean dthefunction,but“thestructureandthefunction”alsoemphasize“dynamics(Dynamics)”,namelydyna micstructureorstructuremovementandproteinmemberfunctionrelations,aswellastomacro-molecu leinteractioncontribution. keywords:Protein;Biologicalmacromolecule;Molecularcompanion;Foldingquestion前言 蛋白质折叠问题被列为“21世纪的生物物理学”的重要课题,它是分子生物学中心法则尚未解决的一个重大生物学问题。从一级序列预测蛋白质分子的三级结构并进一步预测其功能,是极富挑战性的工作。研究蛋白质折叠,尤其是折叠早期过程,即新生肽段的折叠过程是全面的最终阐明中心法则的一个根本问题,在这一领域中,近年来的新发现对新生肽段能够自发进行折叠的传统概念做了根本的修正。这其中,X射线晶体衍射和各种波谱技术以及电子显微镜技术等发挥了极其重要的作用。第十三届国际生物物理大会上,Nobel奖获得者Ernst 在报告中强调指出,NMR用于研究蛋白质的一个主要优点在于它能极为详细的研究蛋白质分子的动力学,即动态的结构或结构的运动与蛋白质分子功能的关系。目前的NMR技术已经能够在秒到皮秒的时间域上观察蛋白质结构的运动过程,其中包括主链和侧链的运动,以及在各种不同的温度和压力下蛋白质的折叠和去折叠过程。蛋白质大分子的结构分析也不仅仅只是解出某个具体的结构,而是更加关注结构的涨落和运动。例如,运输小分子的酶和蛋白质通常存在着两种构象,结合配体的和未结合配体的。一种构象内的结构涨落是构象转变所必需的前奏,因此需要把光谱学,波谱学和X射线结构分析结合起来研究结构涨落的平衡,构象改变和改变过程中形成的多种中间态,又如,为了了解蛋白质是如何折叠的,就必须知道折叠时几个基本过程的时间尺度和机制,包括二级结构(螺旋和折叠)的形成,卷曲,长程相互作用以及未折叠肽段的全面崩溃。多种技术用于研究次过程,如快速核磁共振,快速光谱技术(荧光,远紫外和近紫外圆二色)。 一、新生肽段折叠研究中的新观点

蛋白质折叠

蛋白质折叠 蛋白质折叠是生物化学和分子生物学的前沿课题之一,近年来蛋白质折叠的研究日益引起人们注意的原因是多方面的。其一,遗传信息由DNA 到RNA再到蛋白质的过程是分子生物学的核心,通常称作分子生物学的中心法则,经过多年的研究人们对由DNA到RNA再到多肽链的过程已基本清楚,但是蛋白质的功能不仅依赖于其一级结构而且与空间结构紧密相关;其二,虽然蛋白质中一定的氨基酸顺序决定了其特定的空间结构的假说已被人们广泛接受,但是怎样由一定的氨基酸排列的多肽链生成具有一定的空间结构的蛋白质的问题仍未解决。只有透彻地了解了多肽链是如何通过自身内在的信息及与周围环境(包括与各种蛋白质因子)的相互作用才能最终了解蛋白质的空间结构与功能的关系。 基因工程和蛋白质工程是近年来生物技术发展的产物和先导,但人们发现通过基因工程和蛋白质工程所获得的多肽链有时并不能自身卷曲成有一定空间结构和完整生物学功能的蛋白质,其原因在于在多肽链的折叠上出了问题。因此从基因工程和蛋白质工程产物的翻译后加工的角度也要求人们了解蛋白质折叠的机理。 一、蛋白质复杂的三级结构信息贮存于氨基酸序列中 关于氨基酸序列与蛋白质空间结构的关系研究最早的工作是由C.Anfinsen (1960)关于核糖核酸酶的研究工作。他研究了核糖核酸酶的去折叠和重折叠过程。该酶是由124 个氨基酸组成的蛋白质,有四对二硫键,其组合有 105{[(2×4)!/24×4!]=105}种的可能方式。当用还原剂如b-巯基乙醇 (HOCH2-CH2-SH)作用时,二硫键被部分还原。继续加大b-巯基乙醇的量,二

硫键可全部被还原。用8 M 的脲加b-巯基乙醇处理多肽链,分子内四对二硫键可全部被还原,肽链伸展为无规卷曲,酶活性完全丧失。但如果将脲和b-巯基乙醇透析掉并在空气中进行氧化,多肽链可又重新折叠为一个具有特定的三维结构和催化活性的酶,它与未经处理的酶具有相同的溶解度并可结晶并获得相同的X-射线衍射图,其吸收光谱也相同。这是一个很好的蛋白质一级结构序列决定其三维结构的例子,即顺序决定构象。Anfinsen因此而获得1972年诺贝尔化学奖。 二、关于蛋白质折叠的理论模型 各种实验及理论计算均证明蛋白质的天然构象在热力学上是最稳定的。那么一个具有特定的生物学活性和功能的蛋白质究竟是如何找到这样一种热力学稳定的构象的呢?这至今仍是一个未解决的问题。我们可以以一个由100 个氨基酸组成的小蛋白质来进行讨论和考虑:假设在这100 个氨基酸组成的小蛋白质中每个氨基酸残基有三种不同的构象的话,那么总的构象数将是3100 =5×1047 ,如果从一种构象变为另一种构象所需要的时间为10 -13秒,那么在上述的构象空间寻求一遍需要5×1047 ×10-13=5×1034 秒=1.6×1027 年!而实际上蛋白质的折叠是在10-1~10 3 秒内完成的。由此可见,蛋白质的折叠不是一个对各种可能构象进行随机采样的过程。 关于蛋白质的折叠人们提出了各种的折叠模型其主要有: 1. 框架模型(Framework model): P. S. Kim 和R. L. Baldwin 于1982 年提出了蛋白质折叠的框架模型,该模型认为在蛋白质折叠的过程中大约有15个氨基酸残基的多肽链首先折叠为瞬态的a螺旋或b片层结构的二级结构单元,然后这种瞬态的结构通过扩散彼此接近形成aa、ab 或bb的复合结构而获得稳定。这种复合结构又称为折叠单元。折叠单元作为一个核心吸引和稳定其它摆动着的二级结构单元,形成折叠框架,其它的侧链将适应这个框架。

蛋白质的折叠

蛋白质的折叠 赵顺喆 摘要:蛋白质是生命机体的基本组成部分,它是连接分子运作和生物功能的一个主要组成部分, 在生物体内占有特殊的地位。而蛋白质作为生命信息的表达载体,它折叠所形成的特定空间结构是其具有生物学功能的基础。然而,蛋白质通过什么方式折叠的问题却由于理论和实践的种种困难成为当今科学界的一大难题。本文简要介绍了蛋白质折叠的基础知识,折叠机理研究的几个理论模型,以及研究的进展。 关键词:组织层次、理论模型、天然态、去折叠态、熔球态 前言:蛋白质分子的折叠过程是指蛋白质分子从一般的状态变化到基态的复杂过程.它能使我们了解氨基酸序列是如何决定蛋白质分子结构,预测其结构及结构所表现出来的蛋白质分子的性能.在这个过程中氨基酸与氨基酸紧密接触(Residue -residue contact)的相互作用起着十分重要的作用。 蛋白质在生物体内,生命信息的流动可以分为两个部分:第一部分是储存于DNA序列中的遗传信息通过转录和翻译传入蛋白质的一级序列中,这是一维信息之间的传递,三联子密码介导了这一传递过程;第二部分是肽链经过疏水塌缩、空间盘曲、侧链叠集等折叠过程形成非常特定的复杂的空间结构,同时获得生物活性,从而将生命信息表达出来;因此这个一维信息向三维信息的转化过程是表现生命活力所必需的。 1.蛋白质的组织层次 蛋白质有着各异的三维空间结构,这种结构称之为天然态结构,并且其内部结构组织具有层次性,因此我们引入组织层次的概念。蛋白质结构可以分为四个组织层次,即一级结构、二 级结构、三级结构和四级结构。 1.1一级结构 一级结构又称初级结构(primary structure),指形成肽链的氨基酸序列,即指蛋白质分子中氨基酸残基的顺序,包括肽链中氨基酸的数目、种类和顺序。肽键是蛋白质中氨基 酸之间的主要连接方式,肽键具有部分双键的性质,所以整个肽单位是一个刚性的平面结 构。 蛋白质的一级结构是由编码它的基因确定的,不同生物同种(或同源)蛋白质一级结构之间的差别可以反映出进化关系。 1.2二级结构 二级结构是指多肽链骨架盘绕折叠所形成的有规律性的结构。最基本的二级结构类型有α-螺旋结构和β-折叠结构,两种构象均由氢键维持。此外还有β-转角和自由回转(指没 有一定规律的松散肽链结构)。蛋白质分子主链的紧密填埋使α 螺旋和β 片层结构更加稳 定; 同时, 也只有α 螺旋和β 片层结构这样的规则结构才能使氨基酸多肽链在空间排布 更紧密。 α-螺旋是蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基氧与 多肽链C端方向的第4个残基(第n+4个)的酰胺氮形成氢键。螺旋中的每个肽键均参与 氢键的形成以维持螺旋的稳定。 α-螺旋β-折叠

相关文档
最新文档