初中数学锐角三角函数的经典测试题及答案解析

初中数学锐角三角函数的经典测试题及答案解析
初中数学锐角三角函数的经典测试题及答案解析

初中数学锐角三角函数的经典测试题及答案解析

一、选择题

1.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( )

A .(30)

B .(3,0)

C .(4035233

D .(30) 【答案】B

【解析】

【分析】

根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出.

【详解】

由题意知,111C A =,11160C A B ?∠=,

则11130C B A ?∠=,11222A B A B ==,1122333C B C B C B ===

结合图形可知,三角形在x 轴上的位置每三次为一个循环,

Q 20193673÷=, ∴2019673(123)20196733OC =+=+, ∴2019C (20196733,0)+,

故选B .

【点睛】

考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键.

2.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40?,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64?≈,cos400.77?≈,tan 400.84?≈)

A .78.6米

B .78.7米

C .78.8米

D .78.9米

【答案】C

【解析】

【分析】 如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度

【详解】

如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G

∵BC 的坡度为1:0.75

∴设CF 为xm ,则BF 为0.75xm

∵BC=140m

∴在Rt △BCF 中,()2220.75140x x +=,解得:x=112

∴CF=112m ,BF=84m

∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形

∵DE=55m ,CE=FG=36m

∴DG=167m ,BG=120m

设AB=ym

∵∠DAB=40°

∴tan40°=1670.84120

DG AG y ==+ 解得:y=78.8

故选:C

【点睛】

本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.

3.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =

30°.当双翼收起时,可以通过闸机的物体的最大宽度为()

A.(543+10) cm B.(542+10) cm C.64 cm D.54cm

【答案】C

【解析】

【分析】

过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.

【详解】

如图所示,

过A作AE⊥CP于E,过B作BF⊥DQ于F,则

Rt△ACE中,AE=1

2

AC=

1

2

×54=27(cm),

同理可得,BF=27cm,

又∵点A与B之间的距离为10cm,

∴通过闸机的物体的最大宽度为27+10+27=64(cm),

故选C.

【点睛】

本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.

4.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且AB=BD,则tan D的值为()

A .23

B .33

C .23+

D .23-

【答案】D

【解析】

【分析】 设AC =m ,解直角三角形求出AB ,BC ,BD 即可解决问题.

【详解】

设AC =m ,

在Rt △ABC 中,∵∠C =90°,∠ABC =30°,

∴AB =2AC =2m ,BC =3AC =3m ,

∴BD =AB =2m ,DC =2m+3m ,

∴tan ∠ADC =

AC CD =23m m

+=2﹣3. 故选:D .

【点睛】

本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

5.如图,已知圆O 的内接六边形ABCDEF 的边心距2OM =,则该圆的内接正三角形ACE 的面积为( )

A .2

B .4

C .63

D .43【答案】D

【解析】

【分析】 连接,OC OB ,过O 作ON CE ⊥于N ,证出COB ?是等边三角形,根据锐角三角函数的定义求解即可.

【详解】

解:如图所示,连接,OC OB ,过O 作ON CE ⊥于N ,

∵多边形ABCDEF 是正六边形,

∴60COB ∠=o ,

∵OC OB =,

∴COB ?是等边三角形,

∴60OCM ∠=o ,

∴sin OM OC OCM =?∠, ∴43()sin 60OM OC cm ?==. ∵30OCN ∠=o , ∴123,223

ON OC CN ===, ∴24CE CN ==, ∴该圆的内接正三角形ACE 的面积12334432=???=, 故选:D .

【点睛】

本题考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OC 是解决问题的关键.

6.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若∠A=30°,PC=3,则⊙O 的半径为( )

A 3

B .3

C .32

D 23 【答案】A

【解析】

连接OC ,

∵OA=OC,∠A=30°,

∴∠OCA=∠A=30°,

∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,

∴∠PCO=90°,∠P=30°,∵PC=3,

∴OC=PC?tan30°=3,

故选A

7.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=2

5

,则线段AC的长为()

A.1 B.2 C.4 D.5

【答案】C

【解析】

【分析】

首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由

⊙O的半径是5,sinB=2

5

,即可求得答案.

【详解】

解:连接CO并延长交⊙O于点D,连接AD,

由CD是⊙O的直径,可得∠CAD=90°,

∵∠B和∠D所对的弧都为弧AC,

∴∠B=∠D,即sinB=sinD=2

5

∵半径AO=5,

∴CD=10, ∴2sin 105

AC AC D CD ===, ∴AC=4,

故选:C.

【点睛】

本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.

8.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且3cos 5

α=,则AC 的长为( )

A .3

B .163

C .203

D .165

【答案】C

【解析】

【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC .

【详解】 解:∵DE ⊥AC ,

∴∠ADE+∠CAD=90°,

∵∠ACD+∠CAD=90°,

∴∠ACD=∠ADE=α,

∵矩形ABCD 的对边AB ∥CD ,

∴∠BAC=∠ACD ,

∵cos α=

35,35AB AC ∴=, ∴AC=520433

?=. 故选:C .

【点睛】

本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键.

9.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( )

A .1000sin α米

B .1000tan α米

C .1000tan α米

D .1000sin α

米 【答案】C

【解析】

【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB

α=

,即可解决问题. 【详解】 解:在Rt ABC ?中,∵90CAB ∠=o ,B α∠=,1000AC =米,

∴tan AC AB α=

, ∴1000tan tan AC AB αα

==米. 故选:C .

【点睛】

本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.

10.将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,则CD 的长为( )

A .3

B .12﹣3

C .12﹣3

D .3【答案】B

【解析】

【分析】 过点B 作BM ⊥FD 于点M ,根据题意可求出BC 的长度,然后在△EFD 中可求出∠EDF =

60°,进而可得出答案.

【详解】

解:过点B作BM⊥FD于点M,

在△ACB中,∠ACB=90°,∠A=45°,AC=122,∴BC=AC=122.

∵AB∥CF,

∴BM=BC×sin45°=

2 12212

2

?=

CM=BM=12,

在△EFD中,∠F=90°,∠E=30°,

∴∠EDF=60°,

∴MD=BM÷tan60°=43,

∴CD=CM﹣MD=12﹣43.

故选B.

【点睛】

本题考查了解直角三角形,难度较大,解答此类题目的关键根据题意建立直角三角形利用所学的三角函数的关系进行解答.

11.如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()

A.(16

3

,2)B.(

16

3

,1)C.(

8

3

,2)D.(

8

3

,1)

【答案】A

【解析】

【分析】

延长DC交y轴于F,过C作CG⊥OA于G,CE⊥AB于E,根据角平分线的性质得到FC=CG=CE,求得DH=CG=CF,设DH=3x,AH=4x,根据勾股定理得到AD=5x,根据平行线的性质得到∠DCA=∠CAG,求得∠DCA=∠DAC,得到CD=HG=AD=5x,列方程即可

得到结论.

【详解】

解:延长DC 交y 轴于F ,过C 作CG ⊥OA 于G ,CE ⊥AB 于E ,

∵CD ∥x 轴,

∴DF ⊥OB ,

∵∠BAO ,∠ABO 的平分线相交于点C ,

∴FC =CG =CE ,

∴DH =CG =CF ,

∵A (8,0),B (0,6),

∴OA =8,OB =6,

∴tan ∠OAB =DH AH =OB OA =34

, ∴设DH =3x ,AH =4x ,

∴AD =5x ,

∵CD ∥OA ,

∴∠DCA =∠CAG ,

∵∠DAC =∠GAC ,

∴∠DCA =∠DAC ,

∴CD =HG =AD =5x ,

∴3x +5x +4x =8,

∴x =23, ∴DH =2,OH =

163, ∴D (163

,2), 故选:A .

【点睛】

本题考查了等腰三角形的判定和性质,进行的判定和性质,解直角三角形,正确的作出辅助线构造矩形和直角三角形是解题的关键.

12.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ?与ADM ?关于AM 所在直线对称,将ADM ?按顺时针方向绕点A 旋转90°得到ABF ?,连

接EF ,则cos EFC ∠的值是 ( )

A 171365

B 61365

C 71525

D .617

【答案】A

【解析】

【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明

AEH EMG V :V ,则有13

EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求

,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF

∠=

即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则

90AHG MGE ∠=∠=?,

∵四边形ABCD 是正方形,

∴3,90AD AB ABC C D ==∠=∠=∠=? ,

∴四边形AHGD,BHEN,ENCG 都是矩形.

由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=?====,

90AEH MEG EMG MEG ∴∠+∠=∠+∠=? ,

AEH EMG ∴∠=∠,

AEH EMG ∴V :V ,

13

EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+

在Rt AEH V 中,

222AH EH AE +=Q ,

222(1)(3)3x x ∴++= , 解得45

x =或1x =-(舍去), 125EH BN ∴==,65

CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=

. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,

17cos 1365

FN EFC EF ∴∠=

=. 故选:A .

【点睛】

本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.

13.如图,在平面直角坐标系中,AOB ?的顶点B 在第一象限,点A 在y 轴的正半轴上,2AO AB ==,120OAB ∠=o ,将AOB ∠绕点O 逆时针旋转90o ,点B 的对应点'B 的坐标是( )

A .3(2,3)--

B .33(2,2)---

C .3(3,2)--

D .(3,3)- 【答案】D

【解析】

【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.

【详解】

解:过点'B 作x 轴的垂线,垂足为M ,

∵2AO AB ==,120OAB ∠=?,

∴'''2A O A B ==,''120OA B ∠=?,

∴'0'6M B A ∠=?,

在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==2

2=A'M A'M 'cos B A M B '''A ∠, ∴'3B M ='1A M =,

∴OM=2+1=3,

∴'B 的坐标为(3)-.

故选:D.

本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

14.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得60BAC ∠=?,70DAC ∠=?,则竹竿AB 与AD 的长度之比为( ).

A .2sin70?

B .2cos70?

C .2tan70?

D .2tan 70?

【答案】B

【解析】

【分析】 直接利用锐角三角函数关系分别表示出AB ,AD 的长,即可得出答案.

【详解】

解:∵∠BAC=60°,∠DAC=70°,

∴cos60°=

12

AC AB =, 则AB=2AC , ∴cos70°=AC AD

, ∴AC=AD ?cos70°, AD=cos70AC ?

, ∴2cos70AC AC AB AD

=?

=2cos70°. 故选:B .

【点睛】

此题主要考查了解直角三角形的应用,正确表示出各边长是解题关键.

15.已知在 Rt ABC 中, ∠C = 90°,AC = 8, BC = 15 ,那么下列等式正确的是( ) A .8sin 17A = B .cosA=815 C .tan A =817 D .cot A=815

【解析】

【分析】

根据锐角三角函数的定义进行作答.

【详解】

由勾股定理知,AB=17;A.15sin 17BC A AB == ,所以A 错误;B.8cos 17AC A AB ==,所以,B 错误;C.15tan 8BC A AC =

=,所以,C 错误;D.cot AC A BC ==815,所以选D. 【点睛】

本题考查了锐角三角函数的定义,熟练掌握锐角三角函数的定义是本题解题关键. 16.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD = 23.则?BC

的长为( )

A .3π

B .23π

C 3π

D 23π 【答案】B

【解析】

【分析】

根据垂径定理得到3CE DE ==

??BC BD = ,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答.

【详解】

如图:连接OD ,

∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23

∴3CE DE ==

??BC BD = ,∠A=30°, ∴∠DOE=60°,

∴OD=2sin 60DE =o

, ∴?BC

的长=?BD 的长=60221803ππ?=, 故选:B.

【点睛】

此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.

17.已知B 港口位于A 观测点北偏东45°方向,且其到A 观测点正北风向的距离BM 的长为102km ,一艘货轮从B 港口沿如图所示的BC 方向航行47km 到达C 处,测得C 处位于A 观测点北偏东75°方向,则此时货轮与A 观测点之间的距离AC 的长为( )km .

A .3

B .3

C .3

D .3【答案】A

【解析】

【分析】

【详解】 解:∵∠MAB=45°,BM=102,

∴22BM MA +22(102)(102)+,

过点B 作BD ⊥AC ,交AC 的延长线于D ,

在Rt △ADB 中,∠BAD=∠MAC ﹣∠MAB=75°﹣45°=30°,

tan ∠BAD=BD AD 3 ∴3,BD 2+AD 2=AB 2,即BD 2+3)2=202,

∴BD=10,∴3,

在Rt △BCD 中,BD 2+CD 2=BC 2,33,

∴AC=AD ﹣333km ,

答:此时货轮与A 观测点之间的距离AC 的长为3km .

故选A .

【考点】

解直角三角形的应用-方向角问题.

18.如图,在Rt △ABC 内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )

A .b=a+c

B .b=ac

C .b 2=a 2+c 2

D .b=2a=2c

【答案】A

【解析】

【分析】 利用解直角三角形知识.在边长为a 和b 两正方形上方的两直角三角形中由正切可得a b c b a c

-=-,化简得b =a +c ,故选A. 【详解】

请在此输入详解!

19.在Rt △ABC 中,∠C=90°,AC=3,BC=4,那么cosA 的值是( )

A .45

B .35

C .43

D .34

【答案】B

【解析】

【分析】

根据勾股定理,可得AB 的长,根据锐角的余弦等于邻边比斜边,可得答案.

【详解】

解:在Rt △ABC 中,∠C=90°,AC=3,BC=4,

由勾股定理,得22AC BC + cosA=AC AB =35

故选:B .

【点睛】

本题考查锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.

20.cos60tan45+o o 的值等于( )

A .32

B .2

C

D .1

【答案】A

【解析】

【分析】

根据特殊角的三角函数值计算即可.

【详解】 解:原式13122=

+=. 故选A .

【点睛】

本题考查了特殊角的三角函数值,解题的关键是熟练掌握特殊角的三角函数值.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

中考数学压轴题专题锐角三角函数的经典综合题

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ?≈?≈?≈,,.2 1.41,3 1.73≈≈) 【答案】AB 的长约为0.6m . 【解析】 【分析】 作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】 解:作BF CE ⊥于F , 在Rt BFC ?中, 3.20BF BC sin BCF ?∠≈=, 3.85CF BC cos BCF ?∠≈=, 在Rt ADE ?E 中,3 1.73tan 3 AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣= 由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .

【点睛】 考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键. 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(223. 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得33,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ?=6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30 CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴33∴3 ∴tan ∠A 'A D= tan ∠'A DC='A E DE 503235

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

(完整)初中锐角三角函数教案

锐角三角函数 中考主要考查点: 1. 锐角三角函数定义;特殊角的三角函数值; 2. 解直角三角形;解直角三角形的应用; 3. 直角三角形的边角关系的应用 ? 知识点1. 直角三角形中边与角的关系 中,∠C=90° (1)边的关系: (2)角的关系: (3)边与角的关系: sinA = cosA= tanA= cotA= sinA =cosB = a c , cosA =sinB = b c ,tanA ==a b , tanB =b a , cotA=b a ? 知识点2. 特殊角的三角函数值 特殊角30°,45°,60°的三角函数值列表如下: α sinα cosα tanα 30° 1 2 33 45° 22 22 1 60° 1 2 斜边 的对边 A ∠斜边 的邻边A ∠邻边的对边A ∠ 对边的邻边A ∠2 3 233

? 知识点3. 三角函数的增减性 已知∠A 为锐角,sinA 随着角度的增大而 增大 ,tanA 随着角度的增大而 增大 , cosA 随着角度的增大而 减小 。 例1. 已知∠A 为锐角,且cosA≤ 2 1 ,那么( ) (A ) 0°<A≤60°(B )60°≤A <90°(C )0°<A≤30°(D )30°≤A <90° ? 知识点4. 同角三角函数与互为余角的三角函数之间的关系。 1. 同角三角函数的关系 1cos sin 22=+A A A A A cos sin tan = 1cot tan =?A A 2. 互为余角的三角函数之间的关系90=+B A B A B A sin cos cos sin == ?=47cos 43sin ο 1tan tan =?B A ? 知识点5. 直角三角形的解法 直角三角形中各元素间的关系是解直角三角形的依据,因此,解直角三角形的关键是 正确选择直角三角形的边角关系式,使两个已知元素(其中至少有一个元素是边). 重要类型: 1.已知一边一角求其它。 2.已知两边求其它。 例2. 在中,∠C=90°,,∠A -∠B=30°,试求的值。 A C B

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

初中数学锐角三角函数定义大全

初中数学:锐角三角函数定义大全 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系:

sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1

sinα·cscα=1 cosα·secα=1 特殊的三角函数值 0°30°45°60°90° 01/2√2/2√3/21←sinA 1√3/2√2/21/20←cosA 0√3/31√3None←tanA None√31√3/30←cotA 诱导公式 sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotα

sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

初三数学锐角三角函数通用版

初三数学锐角三角函数通用版 【本讲主要内容】 锐角三角函数 包括:正弦、余弦、正切。 【知识掌握】 【知识点精析】 1. 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。 即 c a A A sin == 斜边的对边∠;把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c b A A cos =∠=斜边的邻边;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即 b a A A A t an =∠∠=的邻边的对边。 2. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。 3. 特殊角的三角函数值: 30° 45° 60° sin α 1 2 22 32 cos α 32 22 12 tan α 33 1 3 4. 记忆方法: 【解题方法指导】 例1. (2000年成都市)如图,在△ABC 中,∠C =90°,∠ABC =60°,D 是AC 的中点,那么tan ∠DBC 的值是________。 锐 角 α 三 角 函 数

分析:在Rt △ABC 中,由∠ABC =60°,可知3BC AC 60tan == ,即AC =3BC ,又CD = 1 2 AC ,tan ∠DBC 可求。 解:在△ABC 中, ∵∠C =90°,∠ABC =60°, ∴tan ∠ABC =tan60°=3BC AC =, ∴AC =3BC 。 又D 是AC 中点, ∴DC = 12AC =32 BC 。 ∴2 3 BC BC 23 BC DC DBC tan = ==∠。 评析:在解题中紧紧扣住tan α的定义。 例2. (2001年四川)在Rt △ABC 中 ,CD 是斜边AB 上的高,已知3 2 ACD sin = ∠,那么=AB BC ______。 分析:由Rt △ABC 中CD ⊥AB 于D ,可得∠ACD =∠B ,由sin ∠ACD = 2 3 ,那么sinB =23,设AC =2,AB =3,则BC =32522-=,则AB BC 可求。 解:∵∠ACB =90°,CD ⊥AB 于D , ∴∠ACD =∠B 。 又sin ∠ACD =sinB = 23 , 可设AC =2,AB =3, ∴BC =32522-=。

完整版锐角三角函数练习题及答案.doc

锐角三角函数 1 .把 Rt △ABC 各边的长度都扩大 3 倍得 Rt △A′B′C′,那么锐角 A , A ′的余弦值的关系为() A .cosA=cosA ′B. cosA=3cosA ′C. 3cosA=cosA ′ D .不能确定 2 .如图 1 ,已知 P 是射线 OB 上的任意一点, PM ⊥ OA 于 M ,且 PM :OM= 3 : 4 ,则 cos α的值等于() A .3 B. 4 C. 4 D . 3 4 3 5 5 图 1 图 2 图 3 图 4 图 5 3 .在△ABC 中,∠C=90 °,∠A ,∠B,∠C 的对边分别是a, b , c,则下列各项中正确的是() A .a=c ·sin B B. a=c ·cosB C.a=c ·tanB D.以上均不正确 4 .在 Rt △ABC 中,∠C=90 °,cosA= 2 ,则 tanB 等于()3 A .3 B. 5 C. 2 5 D . 5 5 3 5 2 5 .在 Rt △ABC 中,∠C=90 °,AC=5 ,AB=13 ,则 sinA=______ , cosA=______ , ?tanA=_______ . 6 .如图 2 ,在△ABC 中,∠C=90 °,BC: AC=1 : 2 ,则 sinA=_______ ,cosA=______ , tanB=______ . 7 .如图 3 ,在 Rt △ABC 中,∠C=90 °,b=20 , c=20 2 ,则∠B 的度数为 _______. 8 .如图 4 ,在△CDE 中,∠E=90 °,DE=6 , CD=10 ,求∠D 的三个三角函数值. 9 7 .已知:α是锐角, tan α=,则sinα=_____,cosα=_______. 24 10 .在 Rt △ABC 中,两边的长分别为 3 和 4 ,求最小角的正弦值为 10 .如图 5 ,角α的顶点在直角坐标系的原点,一边在x 轴上, ?另一边经过点 P( 2 ,2 3),求角α的三个三角 函数值. 12 .如图,在△ ABC 中,∠ABC=90 °,BD ⊥ AC 于 D,∠CBD= α,AB=3 ,?BC=4 ,?求 sin α,cos α,tan α的值. 解直角三角形 一、填空题 3 1.已知 cosA=,且∠B=900-∠A,则sinB=__________. 2

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

初三数学锐角三角函数含答案

锐角三角函数 中考要求 重难点 1.掌握锐角三角函数的概念,会熟练运用特殊三角函数值; 2.知道锐角三角函数的取值范围以及变化规律; 3.同角三角函数、互余角三角函数之间的关系; 4.将实际问题转化为数学问题,建立数学模型. 课前预习 “正弦”的由来 公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献.尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了.三角学中“正弦”和“余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表. 托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的.印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是“全弦表”,而是“正弦表”了.印度人称连结弧(AB)的两端的弦(AB)为“吉瓦”,是弓弦的意思;称AB的一半(AC) 为“阿尔哈吉瓦”.后来“吉瓦”这个词译成阿拉伯文时被误解为“弯曲”、“凹处”,阿拉伯语是“dschaib”.十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了“sinus”.三角学输入我国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学.在《大测》中,首先将sinus译为“正半弦”,简称“正弦”,这就成了正弦一词的由来.

例题精讲 模块一 三角函数基础 一、锐角三角函数的定义 如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边. (1)正弦:Rt ABC ?中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin a A c =. (2)余弦:Rt ABC ?中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ?中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b =. 注意: ① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、 cos 与A 、tan 与A 的乘积. ③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值. 二、特殊角三角函数 这些特殊角的三角函 数值一定要牢牢记住! 三、锐角三角函数的取值范围 在Rt ABC ?中,90C ∠=?,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan a A b =,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 a A

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

广州市初中数学锐角三角函数的解析

广州市初中数学锐角三角函数的解析 一、选择题 1.将直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB =4,则光盘表示的圆的直径是( ) A .4 B .83 C .6 D .43 【答案】B 【解析】 【分析】 设三角板与圆的切点为C ,连接OA 、OB ,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案. 【详解】 设三角板与圆的切点为C ,连接OA 、OB , 由切线长定理知,AB =AC =3,AO 平分∠BAC , ∴∠OAB =60°, 在Rt △ABO 中,OB =AB tan ∠OAB =43, ∴光盘的直径为83. 故选:B . 【点睛】 本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数. 2.如图,AB 是O e 的弦,直径CD 交AB 于点E ,若3AE EB ==,15C ∠=o ,则OE 的长为( ) A 3 B .4 C .6 D .33

【答案】D 【解析】 【分析】 连接OA .证明OAB ?是等边三角形即可解决问题. 【详解】 如图,连接OA . ∵AE EB =, ∴CD AB ⊥, ∴??AD BD =, ∴230BOD AOD ACD ∠=∠=∠=o , ∴60AOB ∠=o , ∵OA OB =, ∴AOB ?是等边三角形, ∵3AE =, ∴tan 6033OE AE =?=o , 故选D . 【点睛】 本题考查圆周角定理,勾股定理,垂径定理,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.如图,在等腰直角△ABC 中,∠C =90°,D 为BC 的中点,将△ABC 折叠,使点A 与点D 重合,EF 为折痕,则sin ∠BED 的值是( ) A 5 B .35 C 2 D .23 【答案】B 【解析】 【分析】 先根据翻折变换的性质得到DEF AEF ???,再根据等腰三角形的性质及三角形外角的性

初三锐角三角函数知识点总结典型例题练习

三角函数专项复习 锐角三角函数知识点总结 1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。 2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、0°、30°、45°、60°、90°特殊角的三角函数值(重要) 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 6、正切的增减性: 当0°<α<90°时,tan α随α的增大而增大, A 90B 90∠-?=∠?=∠+∠得由B A 对 边 C

7、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。 依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注意:尽量避免使用中间数据和除法) 8、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。 仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做 坡度(坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东45°(东北方向) , 南偏东45°(东南方向), 南偏西45°(西南方向), 北偏西45°(西北方向)。 :i h l =h l α

锐角三角函数经典总结

锐角三角函数经典总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做 A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A =sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

新初中数学锐角三角函数的经典测试题及答案

新初中数学锐角三角函数的经典测试题及答案 一、选择题 1.如图,在Rt ABC V 中,90ACB ∠=?,3 tan 4 B =,CD 为AB 边上的中线,CE 平分ACB ∠,则 AE AD 的值( ) A . 35 B . 34 C . 45 D . 67 【答案】D 【解析】 【分析】 根据角平分线定理可得AE :BE =AC :BC =3:4,进而求得AE = 3 7 AB ,再由点D 为AB 中点得AD = 12AB ,进而可求得AE AD 的值. 【详解】 解:∵CE 平分ACB ∠, ∴点E 到ACB ∠的两边距离相等, 设点E 到ACB ∠的两边距离位h , 则S △ACE = 12AC·h ,S △BCE =12 BC·h , ∴S △ACE :S △BCE = 12AC·h :1 2 BC·h =AC :BC , 又∵S △ACE :S △BCE =AE :BE , ∴AE :BE =AC :BC , ∵在Rt ABC V 中,90ACB ∠=?,3tan 4 B =, ∴A C :BC =3:4, ∴AE :BE =3:4 ∴AE = 3 7 AB , ∵CD 为AB 边上的中线, ∴AD = 1 2 AB ,

∴ 3 6 717 2 AB AE AD AB ==, 故选:D . 【点睛】 本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE :BE =AC :BC 是解决本题的关键. 2.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( ) A .1000sin α米 B .1000tan α米 C . 1000 tan α 米 D . 1000 sin α 米 【答案】C 【解析】 【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB α=,即可解决问题. 【详解】 解:在Rt ABC ?中,∵90CAB ∠=o ,B α∠=,1000AC =米, ∴tan AC AB α=, ∴1000 tan tan AC AB αα = =米. 故选:C . 【点睛】 本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A′处,并使折痕经过点B ,得到折痕BM ,若矩形纸片的宽AB=4,则折痕BM 的长为( )

相关文档
最新文档