2017-2018学年广东省深圳市高二下学期期中数学试卷(理科)Word版含解析
广东省深圳市普通高中2017_2018学年高二数学11月月考试题(Word版 含答案)08

上学期高二数学11月月考试题08一、选择题(每小题4分,共40分)1.在空间中,下列命题正确的是( )A 平行直线的平行投影是平行直线B 平行于同一直线的两个平面平行C 垂直于同一平面的两个平面平行D 垂直于同一平面的两条直线平行2.在△ABC 中,若a = 2 ,b =030A = , 则B 等于A .60B .60 或 120C .30D .30 或1503.命题“对任意的R x ∈,123+-x x ≤0”的否定是( )A.不存在R x ∈,123+-x x ≤0B.存在R x ∈,123+-x x ≤0C.存在R x ∈,123+-x x >0D.对任意的R x ∈,123+-x x >04.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( )A . 81B .120C .168D .1925.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2 a 10-a 12的值为 ( )(A)20 (B)22 (C)24 (D)286.设数列{}n a 是首项大于零的等比数列,则“1a >2a ”是“数列{}n a 是递减数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7. 设b a >,d c >,则下列不等式成立的是( )。
A.d b c a ->-B.bd ac >C.bd c a > D.c a d b +<+ 8.已知函数x x f )21()(=,a 、+∈R b ,A=)2(b a f +,B=)(ab f ,C=)2(b a ab f +,则A 、B 、C 的大小关系是( )A.A ≤B ≤CB.A ≤C ≤BC.B ≤C ≤AD.C ≤B ≤A9.设p,q 是两个命题,则 “p q ∧”为假是“p q ∨”为假的( )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分不必要条件10.若“p q ∧”与“p q ⌝∨”均为假命题,则( )A. p 真q 假B. p 假q 真C. p 真q 真D. p 假q 假二、填空题(每小题4分,共16分)11.在ABC ∆中, 若21cos ,3-==A a ,则ABC ∆的外接圆的半径为 . 12.若不等式022>++bx ax 的解集是⎪⎭⎫ ⎝⎛-31,21,则b a +的值________。
广东省深圳市普通高中2017_2018学年高二数学下学期4月月考试题3201805241395

广东省深圳市普通高中 2017-2018学年高二数学下学期 4月月考试题一、选择题:本大题共 12小题,每小题 5分,共 60分;在每小题给出的四个选项中,只有一 项符合题目要求。
1. 函数 y ln x 1 的导数是()A.1 xB.x 1 1C.ln xD. e x2.已知复数 z 的实部是 1,虚部是 2 ,其中i 为虚数单位,则 z 为() A .1 2iB . 1 2iC .12iD .12ia ,b ,c3.用反证法证明命题时,对结论: “自然数中至少有一个是偶数”正确的假设为 a ,b ,c a ,b ,cA .都是奇数B .都是偶数a ,b ,ca ,b ,cC .中至少有两个偶数 D .中至少有两个偶数或都是奇数4.在各项都为正数的等比数列a 中,首项 a 13,前三项和为 21,则na=3a a45() A .33B .72C .84D .1895.圆 x 2y 2 1与直线 y kx 2没有公共点的充分不必要条件是()A.k ( 2, 2)B.k (, 2) (2,) C.k(3, 3)D.k(,3) (3,)6.在正三棱柱ABC A B C 中,若 AB=2,1 1 1AA 1则点 A 到平面1A BC 的距离为()1A .3 4B .3 2C .3 3 4D . 37.设, ,为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,则 || ;②若 m, n, m || , n || ,则 || ;③若 || ,l,则l || ;④若l ,m,n ,l || ,则 m || n 其中真命题的个数是 ()A .1B .2C .3D .418. 设抛物线 yx 2 上一点 P 到 y 轴的距离为 4,则点 P 到该抛物线焦点的距离是( )8A.4B.6C.8D.12- 1 -9. 已知函数 fxx 2x a ln x 在 0,1上单调,则实数 a 的取值范围是()2A.a0 B.a4 C. a4 或 a0 D. 4 a0 10.设椭圆的两个焦点分别为 F , F ,过12F 作椭圆长轴的垂线交椭圆于点 P ,若 F PF△ 为等 212腰直角三角形,则椭圆的离心率是 ( )A .2 2B .2 12C . 2 2D . 2111.下列有关命题的说法中错误的是()A.命题“若 x 23 2 0,则 x 1“的逆否命题为:“若 x 1, 则 x 2 3x 2 0 ”B.“x 1”是“x 2 3x 2 0”的充分不必要条件C.若 p q 为假命题,则 p 、q 均为假命题D.对于命题 p :x R , 使得 x 2 x 1 0 ,则 p :x R ,均有 x 2x1 0x 012.已知 x 、y 满足约束条件y 0 2x y1 ,则 (x 1)2 y 2 的最小值为( )A . 2B .2C .3 5 5D .二、填空题:本大题共 4个小题,每小题 4分,共 16分 13.若 z2 3i ,则 z。
广东省深圳市高级中学2017-2018学年高一下学期期中数学试卷(文科) Word版含解析

2017-2018学年广东省深圳市高级中学高一(下)期中数学试卷(文科)一.选择题:共4小题,每小题5分,共20分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(∁U B)=()A.{2}B.{2,3}C.{3}D.{1,3}2.一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.3.过点A(2,3)且垂直于直线2x+y﹣5=0的直线方程为()A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=04.在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图象,可能正确的是()A.B.C.D.二.填空题:共2小题,每小题5分,共10分.5.函数f(x)=的定义域为______.6.已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0,当直线l被C截得弦长为时,则a=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.7.如图,矩形ABCD中,对角线AC、BD的交点为G,AD⊥平面ABE,AE⊥EB,AE=EB=BC=2,F为CE上的点,且BF⊥CE.(Ⅰ)求证:AE⊥平面BCE;(Ⅱ)求三棱锥C﹣GBF的体积.第二部分本学期知识和能力部分一.选择题:共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.8.下列函数中,周期为π,且在上为减函数的是()A.B.C.D.9.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣ B.0 C.3 D.10.已知tanθ=,θ∈(0,),则cos(﹣θ)=()A.B.﹣C.D.11.设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.512.已知函数f(x)=sin(2x+φ)(|φ|<π)的图象过点P(0,),如图,则φ的值为()A.B. C.或D.﹣或13.已知函数y=f(x),将f(x)的图象上的每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿着x轴向左平移个单位,这样得到的是的图象,那么函数y=f(x)的解析式是()A.B.C.D.14.已知,O为平面内任意一点,则下列各式成立的是()A.B.C.D.15.函数是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数二.填空题:共2小题,每小题5分,共10分.16.已知tanα=﹣,则=______.17.已知为非零向量,且夹角为,若向量=,则||=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.18.已知,且cos(α﹣β)=,sin(α+β)=﹣,求:cos2α的值.19.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.20.已知函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)若f(α)=,α∈(,),求sin(﹣2α)的值.21.已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.22.已知向量=(2cos(﹣θ),2sin(﹣θ)),=(cos(90°﹣θ),sin(90°﹣θ))(1)求证:⊥;(2)若存在不等于0的实数k和t,使=+(t2﹣3),=﹣k+t满足⊥.试求此时的最小值.2017-2018学年广东省深圳市高级中学高一(下)期中数学试卷(文科)参考答案与试题解析一.选择题:共4小题,每小题5分,共20分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A∩(∁U B)=()A.{2}B.{2,3}C.{3}D.{1,3}【考点】交、并、补集的混合运算.【分析】由题意全集U={1,2,3,4,5},B={2,5},可以求出集合C U B,然后根据交集的定义和运算法则进行计算.【解答】解:∵U={1,2,3,4,5},B={2,5},∴C U B={1,3,4}∵A={3,1,2}∴A∩(C U B)={1,3}故选D.2.一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.【考点】由三视图求面积、体积.【分析】三视图复原的几何体是四棱锥,结合三视图的数据利用几何体的体积,求出高h 即可.【解答】解:三视图复原的几何体是底面为边长5,6的矩形,一条侧棱垂直底面高为h,所以四棱锥的体积为:,所以h=.故选B.3.过点A(2,3)且垂直于直线2x+y﹣5=0的直线方程为()A.x﹣2y+4=0 B.2x+y﹣7=0 C.x﹣2y+3=0 D.x﹣2y+5=0【考点】直线的一般式方程与直线的垂直关系.【分析】过点A(2,3)且垂直于直线2x+y﹣5=0的直线的斜率为,由点斜式求得直线的方程,并化为一般式.【解答】解:过点A(2,3)且垂直于直线2x+y﹣5=0的直线的斜率为,由点斜式求得直线的方程为y﹣3=(x﹣2),化简可得x﹣2y+4=0,故选A.4.在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图象,可能正确的是()A.B.C.D.【考点】函数的图象.【分析】根据指数函数和对数的函数的单调性,和一次函数的纵截距所得的a的范围是否一致.故可判断.【解答】解:当0<a<1,y=log a x,y=a x均为减函数,且y=x+a与y轴的交点纵坐标小于1,当a>1,y=log a x,y=a x均为增函数,且y=x+a与y轴的交点纵坐标大于于1,观察图象知,A,B,C均错,只有D正确.故选:D二.填空题:共2小题,每小题5分,共10分.5.函数f(x)=的定义域为{x|0<x≤2且x≠1} .【考点】函数的定义域及其求法.【分析】根据函数f(x)的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:函数f(x)=,∴,解得,∴f(x)的定义域为{x|0<x≤2且x≠1}.故答案为:{x|0<x≤2且x≠1}.6.已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0,当直线l被C截得弦长为时,则a=.【考点】直线与圆相交的性质.【分析】由题意可得圆心C(a,2)半径r=2,则圆心(a,2)到直线x﹣y+3=0得距离d==,在Rt△CBM中由勾股定理可得,d2+BM2=BC2结合a>0可求【解答】解:由题意可得圆心C(a,2)半径r=2则圆心(a,2)到直线x﹣y+3=0的距离d==Rt△CBM中由勾股定理可得,d2+BM2=BC2∵a>0∴或a=(舍去)故答案为:三、解答题:解答应写出文字说明,证明过程或演算步骤.7.如图,矩形ABCD中,对角线AC、BD的交点为G,AD⊥平面ABE,AE⊥EB,AE=EB=BC=2,F为CE上的点,且BF⊥CE.(Ⅰ)求证:AE⊥平面BCE;(Ⅱ)求三棱锥C﹣GBF的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(Ⅰ)利用线面垂直的性质及判定可得BC ⊥平面ABE ,可得BC ⊥AE .再利用线面垂直的判定定理可得AE ⊥平面BCE ; (Ⅱ)由三角形的中位线定理可得:FG ∥AE ,.利用线面垂直的性质可得FG⊥平面BCE .再利用“等体积变形”即可得出V C ﹣GBF =V G ﹣BCF 计算出即可. 【解答】(I )证明:∵AD ⊥面ABE ,AD ∥BC , ∴BC ⊥面ABE ,AE ⊂平面ABE , ∴AE ⊥BC .…又∵AE ⊥EB ,且BC ∩EB=B ,∴AE ⊥面BCE .… (II )解:∵在△BCE 中,EB=BC=2,BF ⊥CE , ∴点F 是EC 的中点,且点G 是AC 的中点,… ∴FG ∥AE 且. …∵AE ⊥面BCE ,∴FG ⊥面BCE . ∴GF 是三棱锥G ﹣BFC 的高 …在Rt △BCE 中,EB=BC=2,且F 是EC 的中点.…∴.…第二部分本学期知识和能力部分一.选择题:共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项. 8.下列函数中,周期为π,且在上为减函数的是( ) A .B .C .D .【考点】函数y=Asin (ωx +φ)的图象变换;正弦函数的单调性;余弦函数的单调性. 【分析】先根据周期排除C ,D ,再由x 的范围求出2x +的范围,再由正余弦函数的单调性可判断A 和B ,从而得到答案.【解答】解:C 、D 中函数周期为2π,所以错误 当时,,函数为减函数而函数为增函数,故选A.9.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣ B.0 C.3 D.【考点】平面向量的坐标运算.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2﹣3=(2k﹣3,﹣6),∵(2﹣3)⊥,∴(2﹣3)•=0'∴2(2k﹣3)+1×(﹣6)=0,解得,k=3.故选:C.10.已知tanθ=,θ∈(0,),则cos(﹣θ)=()A.B.﹣C.D.【考点】两角和与差的余弦函数.【分析】利用同角三角函数的基本关系,求出cosθ和sinθ的值,再根据两角差的余弦公式即可求出.【解答】解:∵tanθ=,θ∈(0,),∴=又sin2θ+cos2θ=1,∴sinθ=,cosθ=,∴cos(﹣θ)=cos cosθ+sin sinθ=×(﹣)+×=,故选:C.11.设向量,满足|+|=,|﹣|=,则•=()A.1 B.2 C.3 D.5【考点】平面向量数量积的运算.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.12.已知函数f(x)=sin(2x+φ)(|φ|<π)的图象过点P(0,),如图,则φ的值为()A.B. C.或D.﹣或【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】将P点坐标代入f(x)即可求得φ的值.【解答】解:由函数图象可知,将P(0,)坐标代入,φ∴φ=,由函数的周期为π∴φ=故答案选A13.已知函数y=f(x),将f(x)的图象上的每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿着x轴向左平移个单位,这样得到的是的图象,那么函数y=f(x)的解析式是()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】利用逆向思维寻求应有的结论,注意结合函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:对函数的图象作相反的变换,利用逆向思维寻求应有的结论.把的图象沿x轴向右平移个单位,得到解析式的图象,再使它的图象上各点的纵坐标不变,横坐标缩小到原来的倍,就得到解析式的图象,故函数y=f(x)的解析式是,故选D.14.已知,O为平面内任意一点,则下列各式成立的是()A.B.C.D.【考点】向量数乘的运算及其几何意义.【分析】用表示出,则.【解答】解:∵,∴=,∴==﹣+.故选:A.15.函数是()A.周期为π的奇函数 B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数【考点】二倍角的正弦;同角三角函数间的基本关系;三角函数的周期性及其求法;正弦函数的对称性.【分析】函数f(x)解析式利用二倍角的余弦函数公式化简,整理后再利用诱导公式化简得到结果,找出ω的值代入周期公式求出最小正周期,根据正弦函数为奇函数确定出函数的奇偶性,即可得到结果.【解答】解:f(x)=+﹣1= [cos(x﹣)﹣cos(x+)]=(sinx+sinx)=sinx,∵ω=1,∴T=2π,∵正弦函数为奇函数,∴函数f(x)为周期为2π的奇函数.故选C二.填空题:共2小题,每小题5分,共10分.16.已知tanα=﹣,则=.【考点】同角三角函数基本关系的运用.【分析】将1=sin2α+cos2α代入,分子分母同时除以cos2α可得到关于tanα的关系式,即可得到答案.【解答】解:∵==又∵tanα=﹣∴原式=故答案为:.17.已知为非零向量,且夹角为,若向量=,则||=.【考点】平面向量数量积的运算.【分析】将向量=平方,转化为向量的数量积解答.【解答】解:因为为非零向量,且夹角为,向量=,所以||2=()2=()2+()2+2=1+1+2cos=1+1+1=3,所以||=;故答案为:.三、解答题:解答应写出文字说明,证明过程或演算步骤.18.已知,且cos(α﹣β)=,sin(α+β)=﹣,求:cos2α的值.【考点】二倍角的余弦;两角和与差的余弦函数.【分析】由α与β的范围求出α﹣β与α+β的范围,利用同角三角函数间的基本关系求出sin (α﹣β)与cos(α+β)的值,所求式子角度变形后利用两角和与差的余弦函数公式化简,将各自的值代入计算即可求出值.【解答】解:∵<β<α<,∴0<α﹣β<,π<α+β<,∵cos(α﹣β)=,sin(α+β)=﹣,∴sin(α﹣β)==,cos(α+β)=﹣=﹣,则cos2α=cos[(α﹣β)+(α+β)]=cos(α﹣β)cos(α+β)﹣sin(α﹣β)sin(α+β)=×(﹣)﹣(﹣)×=﹣.19.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.【考点】平面向量共线(平行)的坐标表示;数量积判断两个平面向量的垂直关系.【分析】(1)根据三点构成三角形的条件,即只要三点不共线,根据共线的条件确定出m 的值,从而解出A、B、C能构成三角形时,实数m满足的条件;(2)将几何中的角为直角转化为向量的语言,通过向量的数量积为零列出关于实数m的方程,求解出实数m.【解答】解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.20.已知函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)若f(α)=,α∈(,),求sin(﹣2α)的值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(1)由已知可得:T=π,A=2.利用=π,解得ω=1,f(x)=2sin(2x+φ),由于在x=时取最大值,可得+φ=+2kπ,(k∈Z),0<φ<π),解得φ即可得出.(2)由f(α)=,可得sin=,又sin(﹣2α)=cos,利用三角函数的平方关系即可得出.【解答】解:(1)由x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.得:T=π.函数f(x)=A(2ωx+φ)(A>0,ω>0,0<φ<π)在x=时取最大值2,∴A=2.∴=π,解得ω=1,∴f(x)=2sin(2x+φ),∵在x=时取最大值,∴+φ=+2kπ,(k∈Z),0<φ<π),∴φ=,∴f(x)=2sin.(2)∵f(α)=,∴2sin=,∴sin=,∵sin(﹣2α)=cos,∵<2<π,∴==﹣,∴sin(﹣2α)=﹣.21.已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.【考点】两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)先利用和角公式再通过二倍角公式,将次升角,化为一个角的一个三角函数的形式,通过函数的周期,求实数ω的值;(2)由于x是[0,]范围内的角,得到2x+的范围,然后通过正弦函数的单调性求出f(x)在区间[0,]上的单调性.【解答】解:(1)f(x)=4cosωxsin(ωx+)=2sinωx•cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin(2ωx+)+,所以T==π,∴ω=1.(2)由(1)知,f(x)=2sin(2x+)+,因为0≤x≤,所以≤2x+≤,当≤2x+≤时,即0≤x≤时,f(x)是增函数,当≤2x+≤时,即≤x≤时,f(x)是减函数,所以f(x)在区间[0,]上单调增,在区间[,]上单调减.22.已知向量=(2cos(﹣θ),2sin(﹣θ)),=(cos(90°﹣θ),sin(90°﹣θ))(1)求证:⊥;(2)若存在不等于0的实数k和t,使=+(t2﹣3),=﹣k+t满足⊥.试求此时的最小值.【考点】平面向量数量积的运算.【分析】(1)利用诱导公式和数量积运算,只要证明=0即可;(2)由⊥,可得=0,解得k与t的关系,代入,再利用二次函数的单调性即可得出.【解答】解:(1)∵=2cos(﹣θ)cos(90°﹣θ)+2sin(﹣θ)sin(90°﹣θ)=2cosθsinθ﹣2sinθcosθ=0,∴.(2)=4cos2θ+4sin2θ=4,=1,∵⊥,∴=[+(t2﹣3)]•(﹣k+t)=+=﹣4k+t(t2﹣3)=0,(k≠0,t≠0).∴,∴==﹣.2018年9月28日。
2018-2019广东省深圳市高二下学期期中考试数学(文)试题 解析版

绝密★启用前广东省深圳市高级中学2018-2019学年高二下学期期中考试数学(文)试题一、单选题1.已知集合A={x|x >0},B={x|-1<x <1},则A∪B=( ) A .()1,1- B .()1,-+∞C .()0,1D .()0,+∞【答案】B 【解析】 【分析】运用集合的并集的定义与运算,即可求解,得到答案. 【详解】由题意,集合A={x|x >0},B={x|-1<x <1},根据集合的并集的运算可得A∪B={x|x>-1}=(-1,+∞), 故选:B . 【点睛】本题主要考查了集合的并集的运算,其中解答中熟记集合的并集的概念与运算是解答的关键,着重考查了推理与运算能力,属于基础题。
2.i 是虚数单位,则复数2iiz -=在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】C 【解析】22i (2i)i 2i 112i i i 1z --+====---,在复平面上对应的点()1,2--位于第三象限.故选C .3.“1x >”是“21x >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】判断充分条件还是必要条件,就看由题设能否推出结论,和结论能否推出题设,本着这个原则,显然1x >能推出21x >,但是21x >不一定能推出1x >,有可能1x <-,所以可以判断“1x >”是“21x >”的充分不必要条件. 【详解】因为由1x >⇒21x >,由21x >推不出1x >,有可能1x <-, 所以“1x >”是“21x >”的充分不必要条件,故本题选A. 【点睛】本题考查了充分条件和必要条件的判定,解题的关键是理解掌握它们定义,对于本题正确求解不等式也很关键.4.已知向量()()2,1,,1a b m ==-,且()a ab ⊥-,则实数m =( ) A .3 B .1 C .4 D .2 【答案】A【解析】()2,2a b m -=-,根据()a ab ⊥-得()()2220a a b m ⋅-=-+=,解得3m =,故选A.5.已知曲线关于直线对称,则的最小值为( )A .B .C .D . 【答案】D 【解析】 【分析】三角函数在对称轴的位置取得最大值或者最小值,即,对选项逐一排除,可得到正确选项. 【详解】由于三角函数在对称轴的位置取得最大值或者最小值,即,显然,当时,符合题意,其它选项不符合.故选D.【点睛】本小题主要考查三角函数的对称轴,三角函数在对称轴的位置取得最大值或者最小值.属于基础题.6.直线l :3x +4y +5=0被圆M :(x –2)2+(y –1)2=16截得的弦长为( ) A .B .5C .D .10【答案】C【解析】 【分析】求出圆心到直线l 的距离,再利用弦长公式进行求解即可. 【详解】∵圆(x –2)2+(y –1)2=16,∴圆心(2,1),半径r =4,圆心到直线l :3x +4y +5=0的距离d ==3,∴直线3x +4y +5=0被圆(x –2)2+(y –1)2=16截得的弦长l =2=2.故选:C . 【点睛】本题考查了直线被圆截得的弦长公式,主要用到了点到直线的距离公式.7.已知在极坐标系中,点A ,B ,O (0,0),则△ABO 为( )A .正三角形B .直角三角形C .等腰锐角三角形D .等腰直角三角形 【答案】D 【解析】()2222222cos24AB π=+-⨯⨯⨯=,可得222AB OB OA +=,∴AB OB ⊥, 又4AOB π∠=,∴ABO 为等腰直角三角形,故选D.8.下列函数求导运算正确的个数为( ) ①(3x)′=3xlog 3e ;②(log 2x)′=1ln 2x ⋅;③(e x )′=e x ;④(1ln x)′=x ;⑤(x·e x)′=e x +1.A .1B .2C .3D .4 【答案】B 【解析】试题分析:x x x x x e x e e x x xx x ⋅+='⋅-='='='--)(,)(ln 1))((ln )ln 1(,3ln 3)3(21,所以正确的有②③. 考点:函数导数的运算.9.已知流程图如图所示,该程序运行后,若输出的a 值为16,则循环体的判断框内①处应填( )A .2B .3C .4D .5【答案】C 【解析】1,1i a ==,(1)2,2a i ==; (2)4,3a i ==;(3)16,4a i ==,输出16a =,即4i =不满足循环条件, 所以①处应填3。
广东省深圳市高级中学2017-2018学年高一下学期期中数学试卷(文科) Word版含解析

广东省深圳市高级中学2017-2018学年高一下学期期中数学试卷(文科)一、选择题:(本大题共10题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式(3x+1)(2x﹣1)>0的解集是()A.B.C.D.2.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是()A.15 B.30 C.31 D.643.过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=04.已知等比数列{a n}的公比为正数,且a3•a9=2a52,a2=1,则a1=()A.B.C.D.25.在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.6.在△ABC中,AB=3,AC=2,BC=,则=()A.B.C.D.7.等差数列{a n}中,a1>0,d≠0,S3=S11,则S n中的最大值是()A.S7B.S7或S8C.S14D.S88.已知点A n(n,a n)(n∈N*)都在函数y=a x(a>0,a≠1)的图象上,则a3+a7与2a5的大小关系是()A.a3+a7>2a5B.a3+a7<2a5C.a3+a7=2a5D.a3+a7与2a5的大小与a有关9.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin∠CED=()A.B.C.D.10.已知整数按如下规律排成一列:(1,1)、(1,2)、(2,1)、(1,3)、(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个数对是()A.(2,11)B.(3,10)C.(4,9)D.(5,8)二、填空题:(本大题共4小题,每小题5分,共20分)11.已知两条直线l1:ax+3y﹣3=0,l2:4x+6y﹣1=0.若l1∥l2,则a=.12.在△ABC中,若∠A=120°,AB=5,BC=7,则△ABC的面积S=.13.在等比数列{a n}中,a3=7,前3项之和S3=21,则公比q的值为.14.若<<0,则下列不等式中,①a+b<ab;②|a|<|b|;③a<b;④+>2,正确的不等式有.(写出所有正确不等式的序号)三、解答题:(本大题共7小题,共80分,解答应写出文字说明,证明过程,或演算步骤)15.求以下不等式的解集:(1)2x2﹣x﹣15<0(2)>﹣3.16.若关于x的不等式﹣x2+2x>mx的解集为(0,2),求实数m的值.18.在△ABC中,角A、B、C的对边分别为a、b、c,已知B=60°,cos(B+C)=﹣.(Ⅰ)求cosC的值;(Ⅱ)若a=5,求△ABC的面积.19.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.20.如图所示,某海岛上一观察哨A上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5km的E港口,如果轮船始终匀速直线前进,问船速多少?21.已知点P(1,1)到直线l:y=3x+b(b>0)的距离为.数列{a n}的首项a1=1,且点列(a n,a n+1)n∈N*均在直线l上.(Ⅰ)求b的值;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)求数列{na n}的前n项和S n.22.已知数列{a n}是等差数列,S n为其前n项和,且满足S2=4,S5=25,数列{b n}满足b n=,T n为数列{b n}的前n项和.(1)求数列{a n}的通项公式;(2)若对任意的n∈N*,不等式λT n<n+8•(﹣1)n恒成立,求实数λ的取值范围;(3)是否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.广东省深圳市高级中学2014-2015学年高一下学期期中数学试卷(文科)一、选择题:(本大题共10题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式(3x+1)(2x﹣1)>0的解集是()A.B.C.D.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:根据一元二次不等式的解集与方程根的关系,结合二次函数可得不等式的解集解答:解:∵(3x+1)(2x﹣1)=0的两个根为x=﹣,和x=,∴不等式(3x+1)(2x﹣1)>0的解集是{x|x<﹣或x>};故选:A.点评:本题考查了一元二次不等式的解法,利用了因式分解法,找到与对应方程和二次函数的关系容易得到;属于基础题2.已知等差数列{a n}中,a7+a9=16,a4=1,则a12的值是()A.15 B.30 C.31 D.64考点:等差数列.专题:计算题.分析:利用通项公式求出首项a1与公差d,或利用等差数列的性质求解.解答:解:解法1:∵{a n}为等差数列,设首项为a1,公差为d,∴a7+a9=a1+6d+a1+8d=2a1+14d=16 ①;a4=a1+3d=1 ②;由①﹣②得a1+11d=15,即a12=15.解法2:由等差数列的性质得,a7+a9=a4+a12,∵a7+a9=16,a4=1,∴a12=a7+a9﹣a4=15.故选:A.点评:解法1用到了基本量a1与d,还用到了整体代入思想;解法2应用了等差数列的性质:{a n}为等差数列,当m+n=p+q(m,n,p,q∈N+)时,a m+a n=a p+a q.特例:若m+n=2p(m,n,p∈N+),则a m+a n=2a p.3.过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=0考点:直线的点斜式方程;两条直线垂直与倾斜角、斜率的关系.专题:计算题.分析:根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过定点坐标,由点斜式得所求直线方程.解答:解:根据题意,易得直线x﹣2y+3=0的斜率为,由直线垂直的斜率关系,可得所求直线的斜率为﹣2,又知其过点(﹣1,3),由点斜式得所求直线方程为2x+y﹣1=0.点评:本题考查直线垂直与斜率的相互关系,注意斜率不存在的特殊情况.4.已知等比数列{a n}的公比为正数,且a3•a9=2a52,a2=1,则a1=()A.B.C.D.2考点:等比数列的性质.专题:等差数列与等比数列.分析:设等比数列的公比为q,根据等比数列的通项公式把a3•a9=2a25化简得到关于q的方程,由此数列的公比为正数求出q的值,然后根据等比数列的性质,由等比q的值和a2=1即可求出a1的值.解答:解:设公比为q,由已知得a1q2•a1q8=2(a1q4)2,即q2=2,又因为等比数列{a n}的公比为正数,所以q=,故a1=.故选B.点评:此题考查学生灵活运用等比数列的性质及等比数列的通项公式化简求值,是一道中档题.5.在△ABC中,若∠A=60°,∠B=45°,,则AC=()A.B.C.D.考点:正弦定理.专题:解三角形.分析:结合已知,根据正弦定理,可求AC解答:解:根据正弦定理,,则故选B点评:本题主要考查了正弦定理在解三角形中的应用,属于基础试题6.在△ABC中,AB=3,AC=2,BC=,则=()A.B.C.D.考点:平面向量数量积的含义与物理意义.分析:在三角形中以两边为向量,求两向量的数量积,夹角不知,所以要先用余弦定理求三角形一个内角的余弦,再用数量积的定义来求出结果.解答:解:∵由余弦定理得cosA=,∴,∴,故选D点评:由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系,所以本题能考虑到需要先求向量夹角的余弦值,有时数量积用坐标形式来表达.7.等差数列{a n}中,a1>0,d≠0,S3=S11,则S n中的最大值是()A.S7B.S7或S8C.S14D.S8考点:等差数列的前n项和.专题:等差数列与等比数列.分析:根据等差数列的前n项和公式以及性质进行求解即可.解答:解:∵a1>0,d≠0,S3=S11,∴3a1+=11a1+,即3a1+3d=11a1+55d,则8a1=﹣52d,得d=﹣a1,则S n=na1+d=na1+×(﹣a1)=[(n﹣7)2﹣49],∴当n=7时,S n取得最大值,故选:A点评:本题主要考查等差数列的性质,根据条件求出等差数列的公差以及利用等差数列的前n项和的性质是解决本题的关键.8.已知点A n(n,a n)(n∈N*)都在函数y=a x(a>0,a≠1)的图象上,则a3+a7与2a5的大小关系是()A.a3+a7>2a5B.a3+a7<2a5C.a3+a7=2a5D.a3+a7与2a5的大小与a有关考点:有理数指数幂的运算性质.分析:先表示出a3+a7,再根据基本不等式直接可得答案.解答:解:由题意可知a3+a7=a3+a7≥2=2a5又因为a>0,a≠1,所以上式等号取不到即a3+a7>2a5故选A.点评:本题主要考查基本不等式以及其成立的条件.9.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED则sin∠CED=()A.B.C.D.考点:两角和与差的正切函数;任意角的三角函数的定义.专题:三角函数的图像与性质.分析:法一:用余弦定理在三角形CED中直接求角的余弦,再由同角三角关系求正弦;法二:在三角形CED中用正弦定理直接求正弦.解答:解:法一:利用余弦定理在△CED中,根据图形可求得ED=,CE=,由余弦定理得cos∠CED=,∴sin∠CED==.故选B.法二:在△CED中,根据图形可求得ED=,CE=,∠CDE=135°,由正弦定理得,即.故选B.点评:本题综合考查了正弦定理和余弦定理,属于基础题,题后要注意总结做题的规律.10.已知整数按如下规律排成一列:(1,1)、(1,2)、(2,1)、(1,3)、(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个数对是()A.(2,11)B.(3,10)C.(4,9)D.(5,8)考点:归纳推理.专题:推理和证明.分析:由已知可知:其点列的排列规律是(m,n)(m,n∈N*)m+n的和从2开始,依次是3,4…增大,其中m也是依次增大.据此即可得出.解答:解:由已知可知:其点列的排列规律是(m,n)(m,n∈N*)m+n的和从2开始,依次是3,4…增大,其中m也是依次增大.而m+n=2只有一个(1,1);m+n=3有两个(1,2),(2,1);m+n=4有3个(1,3),(2,2),(3,1);…m+n=11有10个(1,10),(2,9),…,(10,1);m+n=12有11个(1,11),(2,10),…,(11,1);其上面共有1+2+…+11=66个;m+n=13的有(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(7,6)…故第70个数对是(4,9).故选:C点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性(猜想).二、填空题:(本大题共4小题,每小题5分,共20分)11.已知两条直线l1:ax+3y﹣3=0,l2:4x+6y﹣1=0.若l1∥l2,则a=2.考点:两条直线平行与倾斜角、斜率的关系.分析:两条不重合的直线平行,则对应的斜率相等.解答:解:已知两条直线l1:ax+3y﹣3=0,l2:4x+6y﹣1=0.l1∥l2,,则a=2点评:在判断两条直线位置关系的时候,要注意重合的这种情况.12.在△ABC中,若∠A=120°,AB=5,BC=7,则△ABC的面积S=.考点:正弦定理.专题:计算题.分析:用余弦定理求出边AC的值,再用面积公式求面积即可.解答:解:据题设条件由余弦定理得|BC|2=|AB|2+|AC|2﹣2|AB||AC|cosA即49=25+|AC|2﹣2×5×|AC|×(﹣),即AC|2+5×|AC|﹣24=0解得|AC|=3故△ABC的面积S=×5×3×sin120°=故应填点评:考查用余弦定理建立方程求值及用三角形的面积公式求三角形的面积,训练公式的熟练使用.13.在等比数列{a n}中,a3=7,前3项之和S3=21,则公比q的值为1或.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:当等比数列{a n}的公比q=1时,满足题意;当q≠1时,可得S3=++7=21,解方程可得q值.解答:解:当等比数列{a n}的公比q=1时,显然满足题意;当q≠1时,S3=++7=21,解得q=,或q=1(舍去)综合可得q=1或故答案为:1或.点评:本题考查等比数列的通项公式和求和公式,涉及分类讨论的思想,属基础题.14.若<<0,则下列不等式中,①a+b<ab;②|a|<|b|;③a<b;④+>2,正确的不等式有①②④.(写出所有正确不等式的序号)考点:不等关系与不等式.分析:利用赋值法,先排除错误选项③,再利用不等式的性质证明①②④,从而确定正确答案.解答:解:取a=﹣,b=﹣1代入验证知③错误.①证明:∵<<0,∴a<0,b<0,∴ab>0,a+b<0,∴a+b<ab,故①正确;②由题意可得b<a<0,则|a|<|b|,故②正确;④证明:∵>0,>0,且a≠b,由均值不等式得+>2,故④正确;故答案为①②④.点评:这是一道基础题,直接考查不等式的基本性质,注意赋值法的灵活应用可有效地简化解题过程.三、解答题:(本大题共7小题,共80分,解答应写出文字说明,证明过程,或演算步骤)15.求以下不等式的解集:(1)2x2﹣x﹣15<0(2)>﹣3.考点:其他不等式的解法.专题:不等式的解法及应用.分析:首先把一元二次不等式转化为标准形式,进一步利用一元二次方程的根确定一元二次不等式的解集.解答:解:(1)∵2x2﹣x﹣15<0,∴2x2﹣x﹣15=0的两个根为x=,和x=3,因为二次函数开口向上,∴2x2﹣x﹣15<0的解集为,(2)∵>﹣3,∴+3>0,∴>0,∴x(3x+2)>0,解得x>0,或x<﹣,故的解集为(﹣∞,﹣)∪(0,+∞).点评:本题考查一元二次方程与一元二次不等式的关系,属于基础题.16.若关于x的不等式﹣x2+2x>mx的解集为(0,2),求实数m的值.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:利用不等式的解集为(0,2)得到二次不等式所对应的方程的根,求方程的根即可得到m的值.解答:解:若关于x的不等式的解集为(0,2),则0,2是的根.即为x2+2(m﹣2)x=0的根,∴0+2=2(2﹣m),解得m=1,所以m=1.点评:本题考查了一元二次不等式的解法,考查了“三个二次”的结合,是基础题.18.在△ABC中,角A、B、C的对边分别为a、b、c,已知B=60°,cos(B+C)=﹣.(Ⅰ)求cosC的值;(Ⅱ)若a=5,求△ABC的面积.考点:正弦定理;两角和与差的余弦函数.专题:计算题.分析:(Ⅰ)由B和C为三角形的内角,得到sin(B+C)大于0,由cos(B+C)的值,利用同角三角函数间的基本关系求出sin(B+C)的值,然后将C变形为(B+C)﹣B,利用两角和与差的余弦函数公式化简cos[(B+C)﹣B]后,根据B的度数,利用特殊角的三角函数值求出sinB和cosB的值,将各自的值代入求出cos[(B+C)﹣B]的值,即为cosC的值;(Ⅱ)由C为三角形的内角及第一问求出的cosC的值,利用同角三角函数间的基本关系求出sinC的值,再由三角形的内角和定理及诱导公式得到sinA=sin(B+C),由sin(B+C)的值得到sinA的值,由sinC,sinA及a的值,利用正弦定理求出c的值,进而由a,c及sinB 的值,利用三角形的面积公式即可求出三角形ABC的面积.解答:(本小题满分12分)解:(Ⅰ)在△ABC中,由cos(B+C)=﹣,得sin(B+C)===,又B=60°,∴cosC=cos[(B+C)﹣B]=cos(B+C)cosB+sin(B+C)sinB=﹣×+×=;…(Ⅱ)∵cosC=,C为三角形的内角,sin(B+C)=,∴sinC===,sinA=sin(B+C)=.在△ABC中,由正弦定理=得:=,∴c=8,又a=5,sinB=,则△ABC的面积为S=acsinB=×5×8×=10.…点评:此题考查了正弦定理,三角形的面积公式,两角和与差的余弦函数公式,同角三角函数间的基本关系,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.19.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.考点:等比数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;(Ⅱ)把(Ⅰ)求出数列{a n}的通项公式代入设bn=log3a1+log3a2+…+log3a n,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到b n的通项公式,求出倒数即为的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{}的前n 项和.解答:解:(Ⅰ)设数列{a n}的公比为q,由a32=9a2a6得a32=9a42,所以q2=.由条件可知各项均为正数,故q=.由2a1+3a2=1得2a1+3a1q=1,所以a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,所以数列{}的前n项和为﹣.点评:此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.20.如图所示,某海岛上一观察哨A上午11时测得一轮船在海岛北偏东60°的C处,12时20分测得船在海岛北偏西60°的B处,12时40分轮船到达位于海岛正西方且距海岛5km的E港口,如果轮船始终匀速直线前进,问船速多少?考点:解三角形的实际应用.专题:计算题;应用题.分析:依题意得,设EB=x,则BC=4x,由已知得∠BAE=30°,∠EAC=150°.在△AEC 中,利用正弦定理求出sinC;在△ABC中,在△ABC中,由正弦定理求出AB;在△ABE 中,由余弦定理得BE.最后得到结果.解答:解:轮船从C到B用时80分钟,从B到E用时20分钟,而船始终匀速前进,由此可见:BC=4EB,设EB=x,则BC=4x,由已知得∠BAE=30°,∠EAC=150°在△AEC中,由正弦定理得:sinC==在△ABC中,由正弦定理得:AB===在△ABE中,由余弦定理得:BE2=AB2+AE2﹣2AB•AEcos30°=所以船速v=答:该船的速度km/h点评:本题是中档题,考查利用正弦定理、余弦定理在实际问题中的应用,注意选择正确的三角形以及合理的定理解答是解好题目的关键,考查计算能力.21.已知点P(1,1)到直线l:y=3x+b(b>0)的距离为.数列{a n}的首项a1=1,且点列(a n,a n+1)n∈N*均在直线l上.(Ⅰ)求b的值;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)求数列{na n}的前n项和S n.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:(Ⅰ)根据题意和点到直线的距离公式列出方程,求出b的值;(Ⅱ)把(a n,a n+1)代入直线l的方程得到递推公式,再构造新的等比数列,利用等比数列的通项公式求出a n;(Ⅲ)由(Ⅱ)数列{na n}的通项公式,再分组求和法、错位相减求和法,等比(等差)数列的前n项和公式求出S n.解答:解:(Ⅰ)∵由点P(1,1)到直线l:y=3x+b(b>0)的距离为,∴,解得b=2(Ⅱ)∵点列(a n,a n+1)n∈N*均在直线l上,∴a n+1=3a n+2,即a n+1+1=3(a n+1),∴{a n+1}是以2为首项,公比为3的等比数列,∴,即(Ⅲ)由(Ⅱ)得,数列{na n}的通项,设S=1•30+2•31+3•32+…+n•3n﹣1,①则3S=1•31+2•32+3•33+…+n•3n,②,①﹣②得,﹣2S=1+31+32+33+…+3n﹣1﹣n•3n=﹣n•3n=,则S=,即2S=,∴=.点评:本题考查等比数列的通项公式,等比、等差数列的前n项和公式,裂项相消法求数列的和,以及利用恰当的放缩法证明不等式成立,属于中档题.22.已知数列{a n}是等差数列,S n为其前n项和,且满足S2=4,S5=25,数列{b n}满足b n=,T n为数列{b n}的前n项和.(1)求数列{a n}的通项公式;(2)若对任意的n∈N*,不等式λT n<n+8•(﹣1)n恒成立,求实数λ的取值范围;(3)是否存在正整数m,n(1<m<n),使得T1,T m,T n成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.考点:数列与不等式的综合;等比关系的确定;数列的求和.专题:点列、递归数列与数学归纳法.分析:(1)设数列的首项为a1,公差为d,利用S2=4,S5=25,建立方程组,即可求数列{a n}的通项公式;(2)分类讨论,分离参数,利用基本不等式及数列的单调性,即可求实数λ的取值范围;(3)利用等比数列的性质,建立方程,求出m的值,从而可求n的值.解答:解:(1)设数列的首项为a1,公差为d,则∵S2=4,S5=25,∴∴a1=1,d=2∴a n=2n﹣1;(2)①当n为偶数时,要使不等式λT n<n+8•(﹣1)n恒成立,即需不等式λ<恒成立.∵,等号在n=2时取得.∴此时λ需满足λ<25.②当n为奇数时,要使不等式λT n<n+8•(﹣1)n恒成立,即需不等式λ<﹣15恒成立.∵是随n的增大而增大,∴n=1时,取得最小值﹣6.∴此时λ需满足λ<﹣21.综合①、②可得λ的取值范围是λ<﹣21.(3),若T1,T m,T n成等比数列,则,即.…12分∴,即﹣2m2+4m+1>0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣14分∴.又m∈N,且m>1,所以m=2,此时n=12.因此,当且仅当m=2,n=12时,数列{T n}中的T1,T m,T n成等比数列.﹣﹣﹣﹣﹣﹣﹣﹣16分点评:本题考查数列的通项,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.。
广东省深圳大学附属中学2017-2018学年高二上学期期中考试数学试题 Word版含解析

深大附中2017-2018学年第一学期期中考试高二数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间:120分钟. 注意事项:(1)答卷前将密封线内的项目填写清楚:班级、学号、姓名。
(2)答第Ⅰ卷前,务必将自己的姓名、学号、考试科目用2B 铅笔涂写在答题卡上。
第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案用2B 铅笔涂写在答题卡上。
1.命题“所有能被2整除的整数都是偶数”的否定是( ) A .所有不能被2整除的整数都是偶数 B .所有能被2整除的整数都不是偶数 C .存在一个不能被2整除的整数是偶数 D .存在一个能被2整除的整数不是偶数 2.有下列四个命题:①“若0y +=,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“不等边三角形的三个内角相等”的逆命题; 其中真命题为( ) A .①②B .②③C .①③D .③④3.右边的框图的功能是计算表达式2111222n+++的值,则在①,②两处应填入( ) A .0n =和10n ≤ B .1n =和10n ≤ C .0n =和10n <D .1n =和10n <4.若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用两人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A .23B .79C .710D .9105.在区间[]0 , 1内随机取两个数分别记为a ,b .则使得方程220x ax b ++=有实根的概率为( )A .13B .14C .12D .346.平面内有两定点A 、B 及动点P ,设命题甲是:“PA PB +是定值”,命题乙是:“点P 的轨迹是以A ,B 为焦点的椭圆”,那么甲是乙成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件7.抛物线24y x =的焦点坐标是( ) A .(0,1) B .(1,0)C .10 , 16⎛⎫ ⎪⎝⎭D .1 , 016⎛⎫⎪⎝⎭8.已知双曲线22221x y a b -=(0a >,0b >)的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53B .43C .54D .329.椭圆的短轴长、焦距长,长轴长组成等差数列,则此椭圆的离心率为( )A B .45C .35D 10.已知抛物线()220y px p =>上一点()1 , M m 到期焦点的距离为5,双曲线221y x b -=的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数b 的值为( )A .14B .12 C .38D .516第Ⅱ卷(非选择题共100分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中横线上. 11.已知命题:{}:|1 , p x A x a x a x R ∈=-<<∈,命题{}2:|430q x x x x ∈=-+≥.若q ⌝是p 的必要条件,则实数a 的取值范围是________.12.椭圆2214x y a+=与双曲线2212x y a -=的焦点相同,则a =________. 13.已知点P 在抛物线24y x =上,那么点P 到点()2 , 1Q -的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为________.14.过抛物线24y x =的焦点的直线交抛物线于A ,B 两点,O 为坐标原点,则O A O B ⋅=________.三、解答题:本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分12分)已知命题p :“[]1, 2x ∀∈,20x a -≥”,命题q :“0x ∃∈R ,200220x ax a ++-=”,若命题“p q ∧”是真命题,求实数a 的取值范围. 16.(本小题满分12分)为了对2015年深圳市中考成绩进行分析,各科在60分以上的全体同学中随机抽出8位,他们的数学(已折算为百分制)、物理分数对应如下表:(1)若规定85分(包括85分)以上为优秀,求这8位同学中数学和物理分数均为优秀的概率;(2)在给出的坐标系中画出散点图,求y 与x 的线性回归方程(精确到0.01);并估计数学成绩100分的同学物理分数是多少?参考数据:77.5x =,85y =,()82i i 11050x x =-≈∑,()28i i 1456y y =-≈∑,()()8i i i 1688x x y y =--≈∑.参考公式:回归系数()()()8iii 12ii 1nx x yy b x x ==--=-∑∑,a y bx =-.17.(本小题满分14分)学校为了解学生对食堂伙食的满意程度,组织学生给食堂打分(分数为整数,满分为100分),从中随机抽取一个容量为120的样本,发现所有数据均在[]40 , 100内.现将这些分数分成以下6组:[)40 , 50,[)50 , 60,[)60 , 70,[)70 , 80,[)80 , 90,[]90 , 100,并画出了样本的频率分布直方图,部分图形如图所示,观察图形,回答下列问题: (1)求第三组[)60 , 70的频数,并补全频率分布直方图; (2)请根据频率分布直方图,估计样本的平均数;(3)若在120人中抽取10人参加座谈会,给食堂打分在[)70 , 80分的人中要抽出多少人?18.(本小题满分14分)已知椭圆E 的焦点在x 轴上,长轴长为4. (Ⅰ)求椭圆E 的标准方程;(Ⅱ)已知1F ,2F 为椭圆E 的左、右焦点,P 是椭圆上一点。
广东省深圳中学2017-2018学年高二上学期期中考试数学试题 Word版含解析
深圳中学2017-2018学年第一学期期中试题 年级:高二(理科) 科目:数学(标准、实验、荣誉)考试时长:90分钟 卷面总分:100分注意事项:答案写在答题卡指定的位置上,写在试卷上无效,选择题作答必须用2B 铅笔,修改时用橡皮擦擦干净,解答题作答必须用黑色墨迹签字笔或钢笔填写,答题不得超过答题框. 一、选择题(8小题,每小题4分,共32分)1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知π3C =,2a =,1b =,则c 等于( ) ABCD .12.下列结论正确的是( ) A .若ab bc >,则a b >B .若88a b >,则a b >C .若a b >,0c <,则ac bc <Da b >3.在ABC △中,若sin 2cos sin C A B =⋅,则此三角形必为( ) A .等腰三角形 B .正三角形 C .直角三角形D .等腰直角三角形4.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( ) A .63B .45C .36D .275.数列{}n a 满足112 , 0212 1 , 12n n n n n a a a a a +⎧⎪⎪=⎨⎪-<⎪⎩≤≤≤,若135a =,则2015a =( )A .15B .25 C .35D .456.已知ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若22co s s i n s i n s i n B A C B =,则( )A .a ,b ,c 成等差数列 BC .2a ,2b ,2c 成等比数列D .2a ,2b ,2c 成等差数列7.已知函数()121f x x x =+--,则不等式()1f x >的解集为( ) A .2 , 23⎛⎫⎪⎝⎭B .1 , 23⎛⎫⎪⎝⎭C .2 , 33⎛⎫⎪⎝⎭D .1 , 33⎛⎫⎪⎝⎭8.在直角坐标系中,定义()1*1n n nn n n x y x n y y x ++=-⎧∈⎨=+⎩N 为点() , n n n P x y 到点()111 , n n n P x y +++的一个变换:深中变换.已知()10 , 1P ,()222 , P x y ,…,() , n n n P x y ,()111 , n n n P x y +++是经过“深中变换”得到的一列点,设1n n n a P P +=,数列{}n a 的前n 项和为n S ,那么10S 的值为( ) A.(312B.(312+C.)311D.)311二、填空题(6小题,每小题4分,共24分)9. 在ABC △中,135B =︒,15C =︒,5a =,则此三角形的最大边长为________. 10.已知等比数列{}n a 的公比13q =-,则13572468a a a a a a a a ++++++等于________.11.有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的前10项之和为________. 12.已知数列{}n a 满足13a =, 121n n a a +=+,则{}n a 的通项公式为n a =________. 13.已知实数x ,y 满足2102101x y x y x y -+⎧⎪--⎨⎪+⎩≥≤≤,则347x y +-的最大值是________.14.以()0 , m 间的整数()*1 , m m >∈N 为分子,以m 为分母组成分数集合1A ,其所有元素和为1a ;以()20 , m 间的整数()*1 , m m >∈N 为分子,以2m 为分母组成不属于集合A 的分数集合2A ,其所有元素和为2a ;……,依次类推,以()0 , n m 间的整数()*1 , m m >∈N 为分子,以n m 为分母组成不属于1A ,2A ,…,1n A -的分数集合n A ,其所有元素和为n a ,则12n a a a +++= ________.三、解答题(4大题,共44分)15.(本小题满分10分)ABC △中,7BC =,3AB =,且sin 3sin 5C B =. (1)求AC 的长; (2)求A ∠的大小; (3)求ABC △的面积. 16.(本小题满分10分)某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米,池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x 米. (1)用含x 的表达式表示池壁面积S ;(2)怎样设计水池能使总造价最低?最低造价是多少? 17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,12a =,()*12 1 , n n a S n n +=+∈N ≥,数列{}n b 满足21n nn b a -=. (1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和n T ; 若数列{}n c 满足()21nn n a c a =-,且{}n c 的前n 项和为n K ,求证:3n K <.18.(本小题满分12分)设二次函数()()()24f x k x kx k =-+∈R ,对任意实数x ,有()62f x x +≤恒成立;正项数列{}n a 满足()1n n a f a +=.数列{}n b ,{}n c 分别满足12n nb b +-=,2214n n c c +=.(1)若数列{}n b ,{}n c 为递增数列,且11b =,11c =-,求{}n b ,{}n c 的通项公式; (2)在(1)的条件下,若()()()*1 , 12n b g n n n f n =∈-N ≥,求()g n 的最小值;(3)已知113a =,是否存在非零整数λ,使得对任意*n ∈N ,都有()1333312111log log log 112log 2111222n n n a a a λ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+++>-+-+ ⎪ ⎪⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 恒成立,若存在,求之;若不存在,说明理由.深圳中学2015-2016学年第一学期期中试题解析——叶晋飞一、选择题 1.B 2.C 3.A解析:在ABC △中,()πC A B =-+∴sin 2cos sin C A B =()sin 2cos sin A B A B ⇒+=sin cos cos sin 2cos sin sin cos cos sin 0A B A B A B A B A B ⇒+=⇒-=()sin 0A B A B ⇒-=⇒=∴ABC △为等腰三角形4.B解析:{}n a 为等差数列3S ⇒,63S S -,96S S -也或等差关系 即9,27,789a a a ++为等差数列关系78945a a a ⇒++= 5.B解析:135a =代入到递推式中得215a =,同理可得325a =,445a =,535a =;因此{}n a 为一个周期为4的一个数列.∴201545033325a a a ⨯+=== 6.D解析:222222222cos sin sin sin 222Ba cb B A C ac b a c b ac+-=⇒⋅=⇒+=由等差中项定理可得2a ,2b ,2c 或等差数列. 7.A解析:当1x ≥时,()()()1121312f x x x x x >⇒+--=-+>⇒<∴12x <≤① 当11x -<≤时,()()()211211323f x x x x x >⇒+-->⇒>⇒>∴213x <<② 当1x <-时,()()()11211314f x x x x x >⇒-++->⇒->⇒>无解③ 综上,解集为2 , 23⎛⎫⎪⎝⎭.8.C .解析:由11n n nn n n x y x y y x ++=-⎧⎨=-⎩,()()120 , 1 1 , 1P P ⇒,()30 , 2P ,()4 2 , 2P ,()50 , 4P ,()6 4 , 4P . 1121a PP ==,2a =3a =4a =11n n a -=⋅数列{}n a 为首项11a =公比q()()105101112131112S ⋅--===-二、填空题9. 10.3- 11.560解析:等差数列2,6,10,…,190的通项为()21442n a n n =+-⋅=-等差数列2,8,10,14,…,200的通项为()21664n b n n =+-⋅=-数列{}n a 与数列{}n b 首项112a b ==,由这两个等差数列的公共项也是一个等差数列{}n c ,首项12C =,公差为4与6的最小公倍数,12d =,∴()21121210n C n n =+-⋅=- ()()11012101021056022n n C C nS S +⋅⨯-+⨯=⇒==12.121n +- 2解析:(){}11211211n n n n n a a a a a ++=+⇒+=+⇒+为首项为114a +=,公比2q =的等比数列11114242121n n n n n a a --+⇒+=⋅⇒=⋅-=-13.1414.12n m -解析:1121m a m m m -=+++221222121m a a m m m -=+++-()1231121n n n n n nm a a a a a m m m--=+++-++++ ()1231211121n nn n n n nm a a a a m m m m m -⇒++++=+++=+++- ()()1231111122n nn n n m m m a a a a m -+--⇒++++==三、解答题15.(1)由正弦定理所得sin 35535sin 533C AB AC AB B AC ==⇒=⋅=⋅=(2)由余弦定理所得222957151cos 2235302AB AC BC A ABAC 22+-+--∠====-⨯⨯又∵在ABC △中∴2π3A ∠=(3)11sin 3522ABC S AB AC A =⋅⋅∠=⨯⨯=△16.(1)由题意得水池底面积为480016003=(平方米) 池壁面积160096002336S x x x x ⎛⎫=+⋅=+⎪⎝⎭(平方米) (2)设水池总造价为y ,所以960061201600150120240000297600y x x ⎛⎫=+⨯+⨯+= ⎪⎝⎭≥ 当且仅当96006x x=即40x =米时,总造价最低为297600元. 17.(1)∵12n n a S +=+①∴12n n a S -=+② 当2n ≥时①-②112n n n n n a a a a a ++-=⇒= 数列{}n a 为公比2q =的等比数列当1n =时,2124a a =+= 2124a a =⨯=也满足12n n a a += ∴111222n n n n a a q --==⋅= (2)21212n nn n n b a --== 1223135212222n n n n T b b b n T =+++-⇒=++++ ③ 231113232122222n n n n n T +--=++++ ④ ③-④:2311122221222222n n n n T +-=++++-12311211112222232n n n n T +-⎛⎫⇒=-+⋅+++ ⎪⎝⎭111122213214312212n n nnn n T -⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥-+⎣⎦⇒=-+⋅=--∴3232n nnT +=-(3)由(2)所得()()()211221122121212121nn n n n n n n C --⎛⎫=<=-⨯ ⎪----⎝⎭- 123n n k C C C C =++++ ()2222248213721nn n k ⇒=++++- 214811111122229771515312121n n n k -⎛⎫⎛⎫⎛⎫⇒<+++⨯-+⨯-++⨯- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 1481111112294971515312121n n n k -⎛⎫⇒<+++⨯-+-++- ⎪--⎝⎭4221294921n n k <++-- ∵4192<,221149212n -<-∴1123322n n k k <++=⇒<证毕. 18.(1)数列{}n b 为递增数列,则112n n n n b b b b ++-=-= ∴{}n b 为公差2d =的等差数列11b =. ∴()11221n b n n =+-⨯=-(*n ∈N ) 由22211244n n nnC CC C ++=⇒= 又∵数列{}n C 为递增数列∴1122n n n nC C C C ++=⇒= ∴数列{}n C 公比2q =的等比数列,首先11C =- ∴()()11*122n n n C n --=-⋅=-∈N(2)()62f x x +≤恒成立,即()2462k x kx x -++≤恒成立()()24620k x k x ⇒-+--≤恒成立()()()224042684020k k k k k k -<<⎧⎧⎪⎪⇒⇒⇒=⎨⎨=-+-<-⎪⎪⎩⎩△≤ ∴()222f x x x =-+则()222f n n n =-+()()()2221422122441122112222n n n g n n n n n nn n ---====-+-----+-∴()212g n n=-为关于n 的单调递增函数,又∵1n ≥. ∴()()min 21212g n g ===-- (3)由(2)得()()22211222222f x x x x x x ⎛⎫=-+=--=--+ ⎪⎝⎭()1n n a f a +=又∵()12f x ⇒≤正项数列{}n a 满足10 , 2n a ⎛⎤∈ ⎥⎝⎦令12n n b a =-则()2211111222222n n nn n b a a a a ++⎛⎫=-=--+=- ⎪⎝⎭ 2111lg lg 2lg 22lg lg 22lg 22n n n n b a a b +⎛⎫⎛⎫⇒=-=+-=+ ⎪ ⎪⎝⎭⎝⎭()1lg lg22lg lg2n n b b +⇒+=+ 又∵1111lg lg 2lg lg 2lg 233b ⎛⎫+=-+= ⎪⎝⎭∴112211111lg lg 2lg 2lg 2lg 3323n n n n n n b b b ---⎛⎫⎛⎫⎛⎫+=⋅⇒=⇒=⋅ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭33312111log log log 111222n a a a ⎛⎫⎛⎫ ⎪ ⎪⇒+++ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭11222333log 23log 23log 23n -=⋅+⋅++⋅ 02113log 2322n n -=⋅+++()03212log 212n n -=+-3log 221n n =+-要证()133log 221112log 2n n n n λ-+->-+-⋅+恒成立即证()1212n n λ->-⋅恒成立当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1∴1λ< 当n 为偶数时,12n x ->-恒成立,当且仅当2n =时,12n --有最大值2-∴2λ>-. 又∵λ为非零整数∴1x =-.。
广东省深圳市高级中学2017_2018学年高一数学下学期期中试题理(含答案)
44 分; 106分1.112x x ⎧⎫≤≤⎨⎬⎩⎭2.3.若(1,3),(2,4),a b ==-则在方向上的投影是A. B. C.D.4. A5. 设A. C.6. 中,1AN NC=,上的一点,若2AP mAB AC=+,则实数m7.面积的最小值为A. C.8 D.28.若为第一象限角,且,则的值为9.A10.已知两个单位向量,a b的夹角为120a kb-的最小值为11.12.120,AB=2=,D是边上的一点,则DC BD⋅=__________AD BCf x在区间③()17.((2设两个向量a b 、,满足2a =,1b =. ()()21a b a b +⋅-=,求a b 、的夹角;)若a b 、夹角为607ta b +与a tb +的夹角为钝角,求实数t 的取值范围. 已知PA ⊥矩形ABCD 别为AB PC 、的中点,045,2,1A B A D ==. )ϕ(0A >,0ω>,ϕ)的部分图象如图所示. 的解析式; ()x 的图象向右平移π6个单位,再将所得图象的横坐标伸长到原来的2倍,纵坐标不变,得到()g x 的图象,求不等式()1g x ≥的解集.(本小题满分12分)上的最大值,并求出取得最大值时x 的值.22.a>。
为奇函数,且实数0(1)(2)的单调性,并写出证明过程;(3)恒成立,求实数m的取值范围.2017--2018学年第二学期期中考试高一数学(理科)命题人:彭仕主审题人:李媛雪第一部分:高一数学第一学期期末前的基础知识和能力考查,共44 分;第二部分:高一数学第一学期期末后的基础知识和能力考查,共 106分题,第10题.题,共20分题,共46分分.在每小题给出的四个选项中,只有一项1.D 2.A 3.C 4.C 5.A 6.B7.B8.B 9.B 10.B 11.D 12.D三.解答题:解答应写出文字说明,证明过程或演算步骤.sin αα=-()()21a b a b +⋅-=得,2221a a b b +⋅-=, 又24a =,21b =, 1a b ⋅=-∴1cos ,2a b a b a b⋅==-⋅,,180a b ≤︒,∴a b 、的夹角为120°)由已知得21cos601a b ⋅=⨯⨯︒=.)()()227227ta b a tb ta t a b +⋅+=++⋅227215tb t t +=+7ta b +与a tb +的夹角为钝角∴()()7,0ta b a tb λλ+=+<. 14=-. 142t =-时,向量7ta b +与a tb +的夹角为∴向量27ta b +与a tb +的夹角为钝角时,中点为E ,易得EN )证明:如图,取PD 2EN CD =, 是平行四边形.,MN ⊄平面PAD ,PAD ;所以,PC与面PAD减区间为。
2017-2018学年高一下学期期中数学试卷Word版含解析
2017-2018学年高一下学期期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+13.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量+++化简后等于()A.B.C.D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=412.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为.15.已知=, =, =, =, =,则+++﹣= .16.已知tan()=,tan()=﹣,则tan()= .三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.2017-2018学年高一下学期期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.下列说法中正确的是()A.共线向量的夹角为0°或180°B.长度相等的向量叫做相等向量C.共线向量就是向量所在的直线在同一直线上D.零向量没有方向【考点】向量的物理背景与概念.【分析】根据共线向量、平行向量、相等向量以及零向量的概念便可判断每个说法的正误,从而找出正确选项.【解答】解:A.共线向量的方向相同或相反;方向相同时,夹角为0°,相反时的夹角为180°,∴该说法正确;B.长度相等,方向相同的向量叫做相等向量,∴该说法错误;C.平行向量也叫共线向量,∴共线向量不是向量所在直线在同一直线上;∴该说法错误;D.零向量的方向任意,并不是没有方向,∴该说法错误.故选:A.2.下列函数中为奇函数的是()A.y=sin|x| B.y=sin2x C.y=﹣sinx+2 D.y=sinx+1【考点】函数奇偶性的判断.【分析】要探讨函数的奇偶性,先求函数的定义域,判断其是否关于原点对称,然后探讨f(﹣x)与f(x)的关系,即可得函数的奇偶性.【解答】解:选项A,定义域为R,sin|﹣x|=sin|x|,故y=sin|x|为偶函数.选项B,定义域为R,sin(﹣2x)=﹣sin2x,故y=sin2x为奇函数.选项C,定义域为R,﹣sin(﹣x)+2=sinx+2,故y=sinx+2为非奇非偶函数偶函数.选项D,定义域为R,sin(﹣x)+1=﹣sinx+1,故y=sinx+1为非奇非偶函数,故选:B.3.已知角的终边经过点(4,﹣3),则tanα=()A.B.﹣ C.D.﹣【考点】任意角的三角函数的定义.【分析】根据三角函数的定义进行求解即可.【解答】解:∵角α的终边经过点P(4,﹣3),∴tanα==,故选:B.4.函数y=cos(4x﹣π)的最小正周期是()A.4πB.2πC.πD.【考点】三角函数的周期性及其求法.【分析】根据余弦函数的最小正周期的求法,将ω=4代入T=即可得到答案.【解答】解:∵y=cos(4x﹣π),∴最小正周期T==.故选:D.5.在直角坐标系中,直线3x+y﹣3=0的倾斜角是()A.B.C. D.【考点】直线的倾斜角.【分析】由已知方程得到直线的斜率,根据斜率对于得到倾斜角.【解答】解:由已知直线的方程得到直线的斜率为﹣,设倾斜角为α,则tanα=﹣,α∈[0,π),所以α=;故选:D.6.函数的单调递减区间()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】正弦函数的单调性.【分析】利用y=sinx的单调性,求出函数的单调递减区间,进而可求函数的单调递减区间.【解答】解:利用y=sinx的单调递减区间,可得∴∴函数的单调递减区间(k∈Z)故选D.7.函数y=3sin(2x+)+2图象的一条对称轴方程是()A.x=﹣B.x=0 C.x=πD.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得y=3sin(2x+)+2图象的一条对称轴方程.【解答】解:∵对于函数y=3sin(2x+)+2图象,令2x+=kπ+,求得x=+,可得函数图象的一条对称轴方程为x=π,故选:C.8.下列选项中叙述正确的是()A.终边不同的角同一三角函数值可以相等B.三角形的内角是第一象限角或第二象限角C.第一象限是锐角D.第二象限的角比第一象限的角大【考点】命题的真假判断与应用.【分析】分别举例说明四个选项的正误得答案.【解答】解:对于A,终边不同的角同一三角函数值可以相等,正确,如;对于B,三角形的内角是第一象限角或第二象限角,错误,如是终边在坐标轴上的角;对于C,第一象限是锐角,错误,如是第一象限角,不是锐角;对于D,第二象限的角比第一象限的角大,错误,如是第二象限角,是第一象限角,但.故选:A.9.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】三角函数的化简求值.【分析】根据象限得出sinθ,cosθ的符号,得出θ的象限.【解答】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.10.向量+++化简后等于()A.B.C.D.【考点】向量加减混合运算及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解:向量+++=,故选:D.11.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4 B.ω=1 C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.12.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sinA=sinB,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是()A.1 B.2 C.3 D.4【考点】任意角的概念.【分析】由任意角的三角函数的定义,三角函数值与象限角的关系,即可得出结论.【解答】解:①由任意角的三角函数的定义知,终边相同的角的三角函数值相等,正确.②在三角形中,若sinA=sinB,则有A=B,故正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,正确,④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,故不正确.⑤若cosα<0,则α是第二或第三象限角或α的终边落在x轴的非正半轴上,故不正确.其中正确的个数为3个,故选:C.二、填空(本大题共4小题,每小题5分,共20分.)13.以点(0,2)和(4,0)为端点的线段的中垂线的方程是2x﹣y﹣3=0 .【考点】待定系数法求直线方程.【分析】先求出线段AB的中垂线的斜率,再求出线段AB的中点的坐标,点斜式写出AB的中垂线得方程,并化为一般式.【解答】解:设A(0,2)、B(4,0).=﹣,所以线段AB的中垂线得斜率k=2,又线段AB的中点为(2,1),直线AB的斜率 kAB所以线段AB的中垂线得方程为y﹣1=2(x﹣2)即2x﹣y﹣3=0,故答案为:2x﹣y﹣3=0.14.圆x2+y2=4上的点到直线3x+4y﹣25=0的距离最小值为 3 .【考点】直线与圆的位置关系.【分析】圆心(0,0)到直线3x+4y﹣25=0的距离d==5,圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r,从而可求.【解答】解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d==5,∴圆x2+y2=4上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣2=3故答案为:3.15.已知=, =, =, =, =,则+++﹣= .【考点】向量的加法及其几何意义.【分析】利用向量的三角形法则与多边形法则即可得出.【解答】解: +++﹣=+++﹣=﹣=,故答案为:.16.已知tan()=,tan()=﹣,则tan()= 1 .【考点】两角和与差的正切函数.【分析】观察三个函数中的角,发现=﹣(),故tan()的值可以用正切的差角公式求值【解答】解:∵=﹣(),∴tan()===1故答案为1三、解答题(本大题共6小题,17题10分其余每题12分共70分)17.已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.【考点】任意角的三角函数的定义.【分析】利用三角函数的定义可求得sinα与cosα,从而可得2sinα+cosα.【解答】解:由已知r==13a…∴sinα=﹣,cosα=,…∴2sinα+cosα=﹣…18.已知△ABC的三个顶点A(0,4),B(﹣2,6),C(8,2);(1)求AB边的中线所在直线方程.(2)求AC的中垂线方程.【考点】待定系数法求直线方程.【分析】(1)利用中点坐标公式、斜截式即可得出.(2)利用斜率计算公式、相互垂直的直线斜率之间的关系、斜截式即可得出.【解答】解:(1)∵线段AB的中点为(﹣1,5),∴AB边的中线所在直线方程是=,即x+3y﹣14=0.(2)AC的中点为(4.3)==﹣,∵KAC∴y﹣3=4(x﹣4)即y=4x﹣13,∴AC的中垂线方程为y=4x﹣13.19.若圆经过点A(2,0),B(4,0),C(1,2),求这个圆的方程.【考点】圆的一般方程.【分析】设出圆的一般式方程,把三个点的坐标代入,求解关于D、E、F的方程组得答案.【解答】解:设圆的方程为x2+y2+Dx+Ey+F=0,则,解得.∴圆的方程为:.20.已知cosα=,cos(α﹣β)=,且0<β<α<,(1)求tan2α的值;(2)求cosβ的值.【考点】二倍角的正切;两角和与差的余弦函数.【分析】(1)利用已知及同角三角函数基本关系式可求sinα,进而可求tanα,利用二倍角的正切函数公式可求tan2α的值.(2)由0<β<α<,得0<α﹣β<,利用同角三角函数基本关系式可求sin(α﹣β),由β=α﹣(α﹣β)利用两角差的余弦函数公式即可计算求值.【解答】解:(1)∵由cosα=,0<α<,得sinα===,∴得tan=∴于是tan2α==﹣.…(2)由0<β<α<,得0<α﹣β<,又∵cos(α﹣β)=,∴sin(α﹣β)==,由β=α﹣(α﹣β)得:cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)==.…21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示,(Ⅰ)求函数的解析式;(Ⅱ)求函数的对称轴方程和对称中心坐标.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(Ⅰ)由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(Ⅱ)利用正弦函数的图象的对称性,求得函数的对称轴方程和对称中心坐标.【解答】解:(Ⅰ)由函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象,可得A=2, ==+,∴ω=2.再根据五点法作图可得2•(﹣)+φ=,∴φ=,函数f(x)=2sin(2x+).(Ⅱ)由2x+=kπ+,求得x=﹣,可得函数的图象的对称轴方程为x=﹣,k∈Z.令2x+=kπ,求得x=﹣,可得函数的图象的对称轴中心为(﹣,0),k∈Z.22.已知函数f(x)=sin2ωx+sinωx•cosωx﹣1(ω>0)的周期为π.(1)当x∈[0,]时,求f(x)的取值范围;(2)求函数f(x)的单调递增区间.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)利用降幂公式降幂,再由辅助角公式化简,由x的范围求得相位的范围,则函数的取值范围可求;(2)利用复合函数的单调性求得原函数的单调区间.【解答】解:(1)f(x)=sin2ωx+sinωx•cosωx﹣1==.∵ω>0,∴T=,则ω=1.∴函数f(x)=sin(2x﹣)﹣.由0,得,∴,∴.∴f(x)的取值范围[﹣1,];(2)令,得:,(k∈Z),∴f(x)的单调递增区间为[kπ﹣,kπ+],(k∈Z).。
广东省深圳市普通高中2017_2018学年高二数学下学期5月月考试题(5)2018060101115
下学期高二数学 5月月考试题 05全卷共 150分,时间为 120分钟。
第 I 卷(共 10 题,满分 50 分)一、选择题(本大题共 10小题,每小题 6分,共 50分.在每小题给出的四个选项中,只有一 项是符合题目要求的)1.函数 y=2cos 2x+1(x∈R )的最小正周期为A π 2B πC 2πD 4π2.在平面直角坐标系 xOy 中,双曲线中心在原点,焦点在 y 轴上,一条渐近线方程为x 2y 0 ,则它的离心率为( ) A . 5B .5 2C . 3D . 23.某学校高一、高二、高三年级的学生人数之比为3: 3: 4 ,现用分层抽样的方法从该校高中三个年 级的学生中抽取容量为 50的样本,则应从高二年级抽取( ) 名学生A 20B 10C 25D 154.在各项都为正数的等比数列中,首项,前三项和为 21,则=a3 3a a a1an45( ) A .33 B .72 C .84 D .1895.圆 x 2 y 2 1与直线 y kx 2没有公共点的充分不必要条件是()A.k ( 2, 2)B.k (, 2) (2,) C.k(3, 3)D.k(,3) (3,)6.在正三棱柱ABC A B C 中,若 AB=2,1 1 1AA 1则点 A 到平面1A BC 的距离为()1A .3 4B .3 2C .3 3 4D . 37.设,,为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,则 || ;②若 m, n, m || , n || ,则 || ;③若 || ,l,则l || ;④若l ,m,n ,l || ,则 m || n 其中真命题的个数是 ( ) A .1 B .2 C .3 D .4 8.阅读右边的程序框图,运行相应的程序,则输出 s 的值为( ) A .-1 B .0 C .1 D . 3 9.下列有关命题的说法中错误的是( ) A.命题“若 x 232 0,则 x 1“的逆否命题为:“若 x 1, 则 x 2 3x 2 0 ”B.“x 1”是“x 2 3x 2 0”的充分不必要条件C.若 p q 为假命题,则 p 、q 均为假命题D.对于命题 p :x R , 使得 x 2 x 1 0 ,则 p :x R ,均有 x 2 x1 0x 010.已知 x 、y 满足约束条件,则 的最小值为( )y0 (x 1)y222x y 13 5A . 2B .2C .D .5第Ⅱ卷(共 11 题,满分 100 分)2 5 5二、填空题(本大题共 5小题,每小题 5分,共 25分.把答案填在题中的横线上)11.函数log 0 (4x 2 3x ) y的定义域为.512.平面向量 a ,b 中,已知 a =(4,-3), b =1,且 a b =5,则向量b =13.在平面直角坐标系 xoy 中,设 D 是横坐标与纵坐标的绝对值均不大于 2的点构成的区域,E 是到原点的距离不大于 1的点构成的区域,向 D 中随机投一点,则所投点在 E 中的概率是14.在平面直角坐标系 xOy 中,已知△ABC 顶点 A(4, 0) 和 C(4, 0) ,xy上,则 sin A sin C.22顶点 B 在椭圆1259 sin B15.已知双曲线中心在原点且一个焦点为 F ( 7 ,0),直线 yx1与其相交于 M 、N 两点,MN2中点的横坐标为,则此双曲线的方程是 .3三、解答题(本大题共 6小题,共 75分,解答应写出必要的文字说明、证明过程及演算步骤.)16.(12分)如图,在四棱锥 P-ABCD 中 ,PD⊥平 面 ABCD ,PD=DC=BC=1,AB=2,AB∥DC , ∠BCD=900。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年广东省深圳市高二下学期期中试卷(理科数学)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数Z=在复平面上( ) A .第一象限B .第二象限C .第三象限D .第四象限2.函数函数f (x )=(x ﹣3)e x 的单调递增区间是( ) A .(﹣∞,2)B .(0,3)C .(1,4)D .(2,+∞)3.下列各式中值为1的是( )A .B .C .D .4.在以下的类比推理中结论正确的是( ) A .若a •3=b •3,则a=b 类比推出 若a •0=b •0,则a=bB .若(a+b )c=ac+bc 类比推出(c ≠0)C .若(a+b )c=ac+bc 类比推出 (a •b )c=ac •bcD .若(ab )n =a n b n 类比推出 (a+b )n =a n +b n5.设P 为曲线C :y=x 2+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是,则点P 横坐标的取值范围是( )A .B .[﹣1,0]C .[0,1]D .[,1]6.用0,1,2,3,4,5 组成没有重复的三位数,其中偶数共有( ) A .24个 B .30个 C .52个D .60个7.设函数,则f (x )( ) A .有最小值B .有最大值C .是增函数D .是减函数8.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( ) A .三个内角都不大于60° B .三个内角都大于60°C .三个内角至多有一个大于60°D.三个内角至多有两个大于60°9.曲线y=x2与直线y=2x所围成图形的面积为()A.B.C.D.10.设a<b,函数y=(x﹣a)2(x﹣b)的图象可能是()A.B.C.D.11.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.19912.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在a,b)上,f″(x)<0恒成立,则称函数函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,在(﹣1,2)上是“凸函数”.则f(x)在(﹣1,2)上()A.既有极大值,也有极小值B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值二、填空题:本大题共4小题,每小题5分,满分20分.13.计算:(e x﹣)dx= .14.如图,用4种不同的颜色对图中5个区域涂色( 4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有种.(用数字作答)15.如图,它满足①第n行首尾两数均为n,②表中的递推关系类似杨辉三角,则第n行(n ≥2)第2个数是.16.对于定义在区间[a,b]上的函数f(x),给出下列命题:(1)若f(x)在多处取得极大值,那么f(x)的最大值一定是所有极大值中最大的一个值;(2)若函数f(x)的极大值为m,极小值为n,那么m>n;(3)若x0∈(a,b),在x左侧附近f′(x)<0,且f′(x)=0,则x是f(x)的极大值点;(4)若f′(x)在[a,b]上恒为正,则f(x)在[a,b]上为增函数,其中正确命题的序号是.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)已知x+y+z=m,证明:x2+y2+z2≥.18.(12分)已知m∈R,复数z=+(m2+2m﹣3)i,当m为何值时,(1)z为实数?(2)z为虚数?(3)z为纯虚数?19.(12分)已知数列{an }的前n项和Sn满足Sn+an=2n+1,(1)写出a1,a2,a3并猜想an的表达式;(2)用数学归纳法证明(1)中的猜想.20.(12分)已知x=3是函数f(x)=aln(1+x)+x2﹣10x的一个极值点.(Ⅰ)求a;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若直线y=b与函数y=f(x)的图象有3个交点,求b的取值范围.21.(12分)已知点A(﹣1,2)是抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切,直线l2:x=a(a≠﹣1)交抛物线C于点B,交直线l1于点D.(1)求直线l1的方程;(2)设△BAD的面积为S1,求|BD|及S1的值;(3)设由抛物线C,直线l1,l2所围成的图形的面积为S2,求证:S1:S2的值为与a无关的常数.22.(12分)已知函数.(1)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)在其定义域内为增函数,设函数,若在[1,e]上至少存在一点x,使得f(x0)>g(x)成立,求实数p的取值范围.2017-2018学年广东省深圳市高二下学期期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数Z=在复平面上()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】化简复数为a+bi的形式,得到对应点的坐标,判断即可.【解答】解:复数Z===,复数的对应点为()在第四象限.故选:D.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.2.函数函数f(x)=(x﹣3)e x的单调递增区间是()A.(﹣∞,2)B.(0,3)C.(1,4)D.(2,+∞)【考点】利用导数研究函数的单调性.【分析】首先对f(x)=(x﹣3)e x求导,可得f′(x)=(x﹣2)e x,令f′(x)>0,解可得答案.【解答】解:f′(x)=(x﹣3)′e x+(x﹣3)(e x)′=(x﹣2)e x,令f′(x)>0,解得x>2.故选:D.【点评】本题考查导数的计算与应用,注意导数计算公式的正确运用与导数与单调性的关系.3.下列各式中值为1的是()A. B.C. D.【考点】定积分.【分析】分别利用定积分求出各项的值,选择值为1的即可.【解答】解:A 选项∫01xdx=x 2|01=;B 选项∫01(x+1)dx=(x 2+x )|01=;D 选项=x|01=而C 选项.故选C【点评】此题是一道基础题,要求学生会求定积分的值.4.在以下的类比推理中结论正确的是( ) A .若a •3=b •3,则a=b 类比推出 若a •0=b •0,则a=bB .若(a+b )c=ac+bc 类比推出(c ≠0)C .若(a+b )c=ac+bc 类比推出 (a •b )c=ac •bcD .若(ab )n =a n b n 类比推出 (a+b )n =a n +b n 【考点】类比推理.【分析】根据等式的基本性质,可以分析①中结论的真假; 根据等式的基本性质,可以分析②中结论的真假; 根据指数的运算性质,可以分析③中结论的真假; 根据对数的运算性质,可以分析④中结论的真假.【解答】解:A 中“若a •3=b •3,则a=b”类推出“若a •0=b •0,则a=b”,结论不正确;B 中“若(a+b )c=ac+bc 类比推出(c ≠0)结论正确;C 中若(a+b )c=ac+bc”类比出“(a •b )c=ac •bc”,结论不正确;D 中“(ab )n =a n b n ”类推出“(a+b )n =a n +b n ”,结论不正确. 故选:B .【点评】本题考查类比推理,其中熟练掌握各种运算性质,是解答本题的关键.5.设P 为曲线C :y=x 2+2x+3上的点,且曲线C 在点P 处切线倾斜角的取值范围是,则点P 横坐标的取值范围是( )A .B .[﹣1,0]C .[0,1]D .[,1]【考点】导数的几何意义.【分析】根据题意知,倾斜角的取值范围,可以得到曲线C在点P处斜率的取值范围,进而得到点P横坐标的取值范围.,【解答】解:设点P的横坐标为x∵y=x2+2x+3,+2,∴y′=2x+2=tanα(α为点P处切线的倾斜角),利用导数的几何意义得2x又∵,∴0≤2x+2≤1,∴.故选:A.【点评】本小题主要考查利用导数的几何意义求切线斜率问题.6.用0,1,2,3,4,5 组成没有重复的三位数,其中偶数共有()A.24个B.30个C.52个D.60个【考点】排列、组合的实际应用.【分析】根据题意,按照个位数字的不同,分2种情况讨论:①、个位数字为0,在1、2、3、4、5 这5个数中任取2个,安排在十位、百位,由排列数公式可得其情况数目,②、个位数字为2或4,分析百位、十位数字的取法数目,由乘法原理可得此时的情况数目,进而由分类计数原理计算可得答案.【解答】解:根据题意,要求组成三位偶数,其个位数字为0、2、4,则分2种情况讨论:2=20①、个位数字为0,在1、2、3、4、5 这5个数中任取2个,安排在十位、百位,有A5种情况,②、个位数字为2或4,有2种情况,由于0不能在百位,百位数字在其余4个数字中任取1个,有4种情况,十位数字在剩下的4个数字中任取1个,有4种情况,则有2×4×4=32种情况,则有20+32=52种情况,即其中偶数有52个;故选:C.【点评】本题考查排列、组合的应用,需要注意特殊数位上的数,比如,最高位不能是0,偶数的个位必须是,0、2、4这些数,再根据乘法原理解答即可7.设函数,则f(x)()A.有最小值B.有最大值C.是增函数D.是减函数【考点】基本不等式.【分析】利用基本不等式的性质即可得出.【解答】解:∵x>0,∴函数f(x)=2x+﹣1≥2﹣1=2﹣1,当且仅当x=时取等号,∴f(x)有最小值,无最大值,故选:A【点评】本题考查了基本不等式的性质,属于基础题.8.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设()A.三个内角都不大于60°B.三个内角都大于60°C.三个内角至多有一个大于60°D.三个内角至多有两个大于60°【考点】反证法的应用.【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.【解答】解:∵用反证法证明在一个三角形中,至少有一个内角不大于60°,∴第一步应假设结论不成立,即假设三个内角都大于60°.故选:B.【点评】此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.9.曲线y=x2与直线y=2x所围成图形的面积为()A.B.C.D.【考点】定积分在求面积中的应用.【分析】联立解方程组,得到曲线y=x2及直线y=2x的交点是(0,0)和A(2,4),由此可得两个图象围成的面积等于函数y=2x﹣x2在[0,2]上的积分值,根据定积分计算公式加以计算,即可得到所求面积.【解答】解:由,解得曲线y=x2与直线y=2x的图象交点为(0,0),(2,4)因此,曲线y=x2及直线y=2x所围成的封闭图形的面积是S=(2x﹣x2)dx=(x2﹣x3)=;故选C.【点评】本题考查了定积分的几何意义和定积分计算公式等知识.10.设a<b,函数y=(x﹣a)2(x﹣b)的图象可能是()A.B.C.D.【考点】函数的图象.【分析】根据解析式判断y的取值范围,再结合四个选项中的图象位置即可得出正确答案.【解答】解:由题,=(x﹣a)2的值大于等于0,故当x>b时,y>0,x<b时,y≤0.对照四个选项,C选项中的图符合故选C.【点评】本题考查了高次函数的图象问题,利用特殊情况x>b,x<b时y的符号变化确定比较简单.11.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76 C.123 D.199【考点】归纳推理.【分析】观察可得各式的值构成数列1,3,4,7,11,…,所求值为数列中的第十项.根据数列的递推规律求解.【解答】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.【点评】本题考查归纳推理,实际上主要为数列的应用题.要充分寻找数值、数字的变化特征,构造出数列,从特殊到一般,进行归纳推理.12.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在a,b)上,f″(x)<0恒成立,则称函数函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,在(﹣1,2)上是“凸函数”.则f(x)在(﹣1,2)上()A.既有极大值,也有极小值B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值【考点】利用导数研究函数的极值.【分析】根据函数恒成立,得出m的值,利用函数单调性得出结果.【解答】解:因,f″(x)=x﹣m<0对于x∈(﹣1,2)恒成立.=2,又当m=2时也成立,有m≥2.而m≤2,∴m=2.∴m>(x)max于是,由f′(x)=0x=或x=2+(舍去),f(x)(﹣1,2﹣)上递增,在(2﹣,2)上递减,只有C正确.故选C【点评】本题主要考查导数和函数知识及利用导数判断函数单调性,属于基础知识,基本运算的考查.二、填空题:本大题共4小题,每小题5分,满分20分.13.计算:(e x﹣)dx= e2﹣e﹣ln2 .【考点】定积分.【分析】根据定积分的法则计算即可【解答】解:(e x﹣)dx=(e x﹣lnx)=e2﹣e﹣ln2,故答案为:e2﹣e﹣ln2.【点评】本题考查了定积分的计算,关键是求出原函数,属于基础题.14.如图,用4种不同的颜色对图中5个区域涂色( 4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有96 种.(用数字作答)【考点】排列、组合及简单计数问题.【分析】本题是一个分步计数问题,首先给最左边一块涂色,有24种结果,再给左边第二块涂色,最后涂第三块,根据分步计数原理得到结果.【解答】解:由题意知本题是一个分步计数问题,第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96种.故答案为:96.【点评】本题考查计数原理的应用,本题解题的关键是注意条件中所给的相同的区域不能用相同的颜色,因此在涂第二块时,要不和第一块同色.15.如图,它满足①第n行首尾两数均为n,②表中的递推关系类似杨辉三角,则第n行(n≥2)第2个数是.【考点】归纳推理.【分析】依据“中间的数从第三行起,每一个数等于它两肩上的数之和”则第二个数等于上一行第一个数与第二个数的和,即有an+1=an+n(n≥2),再由累加法求解即可.【解答】解:依题意an+1=an+n(n≥2),a2=2所以a3﹣a2=2,a4﹣a3=3,…,an﹣an﹣1=n累加得 an ﹣a2=2+3+…+(n﹣1)=∴故答案为:【点评】本题考查学生的读图能力,通过三角数表构造了一系列数列,考查了数列的通项及求和的方法,属于中档题.16.对于定义在区间[a,b]上的函数f(x),给出下列命题:(1)若f(x)在多处取得极大值,那么f(x)的最大值一定是所有极大值中最大的一个值;(2)若函数f(x)的极大值为m,极小值为n,那么m>n;(3)若x0∈(a,b),在x左侧附近f′(x)<0,且f′(x)=0,则x是f(x)的极大值点;(4)若f′(x)在[a,b]上恒为正,则f(x)在[a,b]上为增函数,其中正确命题的序号是(4).【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】对于定义在区间[a,b]上的函数f(x),给出下列命题:(1)若f(x)在多处取得极大值,那么f(x)的最大值不一定是所有极大值中最大的一个值,也可能是区间端点处的函数值;(2)若函数f(x)的极大值为m,极小值为n,那么m>n,m=n,m<n都有可能;(3)若x0∈(a,b),在x左侧附近f′(x)<0,且f′(x)=0,还必须要求在x右侧附近f′(x)>0则x是f(x)的极大值点;(4)利用闭区间上的导数与函数的单调性的关系即可得出.【解答】解:对于定义在区间[a,b]上的函数f(x),给出下列命题:(1)若f(x)在多处取得极大值,那么f(x)的最大值不一定是所有极大值中最大的一个值,也可能是区间端点处的函数值,因此不正确;(2)若函数f(x)的极大值为m,极小值为n,那么m>n,m=n,m<n都有可能,因此不正确;(3)若x0∈(a,b),在x左侧附近f′(x)<0,且f′(x)=0,还必须要求在x右侧附近f′(x)>0则x是f(x)的极大值点,因此不正确;(4)若f′(x)在[a,b]上恒为正,则f(x)在[a,b]上为增函数,正确.综上可得:只有(4)正确.故答案为:(4).【点评】本题考查了闭区间上的导数与函数的单调性的关系极值与最值的关系,考查了推理能力与计算能力,属于难题.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)(2016春•宝安区校级期中)已知x+y+z=m,证明:x2+y2+z2≥.【考点】不等式的证明.【分析】运用重要不等式a2+b2≥2ab,和累加法,再由三个数的完全平方公式,即可得证.【解答】证明:由于x2+y2≥2xy,y2+z2≥2yz,z2+x2≥2zx,相加可得,2x2+2y2+2z2≥2xy+2yz+2zx,再同时加x2+y2+z2,即有3(x2+y2+z2)≥x2+y2+z2+2xy+2yz+2zx,即为3(x2+y2+z2)≥(x+y+z)2,即x2+y2+z2≥(当且仅当x=y=z取得等号).【点评】本题考查不等式的证明,主要考查重要不等式的运用,由累加法和完全平方公式是解题的关键.18.(12分)(2015春•海南校级期末)已知m ∈R ,复数z=+(m 2+2m ﹣3)i ,当m 为何值时, (1)z 为实数? (2)z 为虚数? (3)z 为纯虚数?【考点】复数的基本概念.【分析】(1)利用“z 为实数等价于z 的虚部为0”计算即得结论; (2)利用“z 为虚数等价于z 的实部为0”计算即得结论;(3)利用“z 为纯虚数等价于z 的实部为0且虚部不为0”计算即得结论. 【解答】解:(1)z 为实数⇔m 2+2m ﹣3=0且m ﹣1≠0, 解得:m=﹣3;(2)z 为虚数⇔m (m+2)=0且m ﹣1≠0, 解得:m=0或m=﹣2;(3)z 为纯虚数⇔m (m+2)=0、m ﹣1≠0且m 2+2m ﹣3≠0, 解得:m=0或m=﹣2.【点评】本题考查复数的基本概念,注意解题方法的积累,属于基础题.19.(12分)(2016春•宝安区校级期中)已知数列{a n }的前n 项和S n 满足S n +a n =2n+1, (1)写出a 1,a 2,a 3并猜想a n 的表达式; (2)用数学归纳法证明(1)中的猜想. 【考点】数学归纳法;归纳推理.【分析】(1)利用S n +a n =2n+1,代入计算,可得结论,猜想a n =2﹣(n ∈N *).(2)用归纳法进行证明,检验n=1时等式成立,假设n=k 时命题成立,证明当n=k+1时命题也成立.【解答】解:(1)由S n +a n =2n+1得a 1=,a 2=,a 3=,故猜想a n ==2﹣(n ∈N *).(2)证明①当n=1时a 1=,结论成立,②假设当n=k 时结论成立,即a k =2﹣,则当n=k+1时,a k+1=S k+1﹣S k =2(k+1)+1﹣a k+1﹣(2k+1﹣a (2k+1﹣a k ))∴2a k+1=a k +2=4﹣,∴a k+1=2﹣,即当n=k+1时结论成立.由①②知对于任何正整数n ,结论成立.【点评】此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k 成立;(3)利用已知条件证明n=k+1也成立,从而得证,这是数列的通项一种常用求解的方法20.(12分)(2008•四川)已知x=3是函数f (x )=aln (1+x )+x 2﹣10x 的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数f (x )的单调区间;(Ⅲ)若直线y=b 与函数y=f (x )的图象有3个交点,求b 的取值范围. 【考点】函数在某点取得极值的条件;利用导数研究函数的单调性.【分析】(Ⅰ)先求导,再由x=3是函数f (x )=aln (1+x )+x 2﹣10x 的一个极值点即求解.(Ⅱ)由(Ⅰ)确定f (x )=16ln (1+x )+x 2﹣10x ,x ∈(﹣1,+∞)再由f′(x )>0和f′(x )<0求得单调区间.(Ⅲ)由(Ⅱ)知,f (x )在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x )=0,可得f (x )的极大值为f (1),极小值为f (3)一,再由直线y=b 与函数y=f (x )的图象有3个交点则须有f (3)<b <f (1)求解,因此,b 的取值范围为(32ln2﹣21,16ln2﹣9).【解答】解:(Ⅰ)因为所以因此a=16(Ⅱ)由(Ⅰ)知,f (x )=16ln (1+x )+x 2﹣10x ,x ∈(﹣1,+∞)当x ∈(﹣1,1)∪(3,+∞)时,f′(x )>0 当x ∈(1,3)时,f′(x )<0所以f(x)的单调增区间是(﹣1,1),(3,+∞)f(x)的单调减区间是(1,3)(Ⅲ)由(Ⅱ)知,f(x)在(﹣1,1)内单调增加,在(1,3)内单调减少,在(3,+∞)上单调增加,且当x=1或x=3时,f′(x)=0所以f(x)的极大值为f(1)=16ln2﹣9,极小值为f(3)=32ln2﹣21因此f(16)>162﹣10×16>16ln2﹣9=f(1)f(e﹣2﹣1)<﹣32+11=﹣21<f(3)所以在f(x)的三个单调区间(﹣1,1),(1,3),(3,+∞)直线y=b有y=f(x)的图象各有一个交点,当且仅当f(3)<b<f(1)因此,b的取值范围为(32ln2﹣21,16ln2﹣9).【点评】此题重点考查利用求导研究函数的单调性,最值问题,函数根的问题;,熟悉函数的求导公式,理解求导在函数最值中的研究方法是解题的关键,数形结合理解函数的取值范围.21.(12分)(2016春•宝安区校级期中)已知点A(﹣1,2)是抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C相切,直线l2:x=a(a≠﹣1)交抛物线C于点B,交直线l1于点D.(1)求直线l1的方程;(2)设△BAD的面积为S1,求|BD|及S1的值;(3)设由抛物线C,直线l1,l2所围成的图形的面积为S2,求证:S1:S2的值为与a无关的常数.【考点】直线与圆锥曲线的综合问题;直线的一般式方程.【分析】(1)由y=2x2,得y′=4x.当x=﹣1时,y'=﹣4.由此能求出l1的方程.(2)由,得:B点坐标为(a,2a2).由,得D点坐标(a,﹣4a﹣2).点A 到直线BD 的距离为|a+1|.由此能求出|BD|及S 1的值.(3)当a >﹣1时,S 1=(a+1)3,S 2=∫﹣1a [2x 2﹣(﹣4x ﹣2)]dx=∫﹣1a(2x 2+4x+2)dx=.S 1:S 2=.当a <﹣1时,S 1=﹣(a+1)3,S 2=∫a ﹣1[2x 2﹣(﹣4x ﹣2)]dx=∫a ﹣1(2x 2+4x+2)dx=.S 1:S 2=,综上可知S 1:S 2的值为与a 无关的常数,这常数是.【解答】解:(1)由y=2x 2,得y′=4x.当x=﹣1时,y'=﹣4.(2分) ∴l 1的方程为y ﹣2=﹣4(x+1),即y=﹣4x ﹣2.(3分)(2)由,得:B 点坐标为(a ,2a 2).(4分)由,得D 点坐标(a ,﹣4a ﹣2).∴点A 到直线BD 的距离为|a+1|.(6分) |BD|=2a 2+4a+2=2(a+1)2 ∴S 1=|a+1|3.(7分)(3)当a >﹣1时,S 1=(a+1)3,(8分) S 2=∫﹣1a [2x 2﹣(﹣4x ﹣2)]dx =∫﹣1a (2x 2+4x+2)dx==.(9分)∴S 1:S 2=.(11分) 当a <﹣1时,S 1=﹣(a+1)3 S 2=∫a ﹣1[2x 2﹣(﹣4x ﹣2)]dx =∫a ﹣1(2x 2+4x+2)dx=.(13分)∴S 1:S 2=,综上可知S 1:S 2的值为与a 无关的常数,这常数是.(14分)【点评】本题主要考查直线与圆锥曲线的综合应用能力,具体涉及到轨迹方程的求法及直线与双曲线的相关知识,解题时要注意双曲线的性质、导数、定积分的灵活运用,合理地进行等价转化.22.(12分)(2016春•宝安区校级期中)已知函数.(1)若p=2,求曲线f(x)在点(1,f(1))处的切线方程;(2)若函数f(x)在其定义域内为增函数,设函数,若在[1,e]上至少存在一点x,使得f(x0)>g(x)成立,求实数p的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(1)求出函数在x=1处的值,求出导函数,求出导函数在x=1处的值即切线的斜率,利用点斜式求出切线的方程.(2)通过g(x)的单调性,求出g(x)的最小值,通过对p的讨论,求出f(x)的最大值,令最大值大于等于g(x)的最小值求出p的范围.【解答】解:(1)当p=2时,函数,f(1)=2﹣2﹣2ln1=0.,曲线f(x)在点(1,f(1))处的切线的斜率为f'(1)=2+2﹣2=2.从而曲线f(x)在点(1,f(1))处的切线方程为y﹣0=2(x﹣1),即y=2x﹣2.(2).令h(x)=px2﹣2x+p,要使f(x)在定义域(0,+∞)内是增函数,只需h(x)≥0在(0,+∞)内恒成立.由题意p>0,h(x)=px2﹣2x+p的图象为开口向上的抛物线,对称轴方程为,∴,只需,即p≥1时,h(x)≥0,f'(x)≥0∴f(x)在(0,+∞)内为增函数,正实数p的取值范围是[1,+∞).∵在[1,e]上是减函数,∴x=e时,g(x)min =2;x=1时,g(x)max=2e,即g(x)∈[2,2e],当p≥1时,由(2)知f(x)在[1,e]上是增函数,f(1)=0<2,又g(x)在[1,e]上是减函数,故只需f(x)max >g(x)min,x∈[1,e],而,g(x)min=2,即,解得,而,所以实数p的取值范围是.【点评】解决曲线的切线问题,常利用导数在切点处的值为切线的斜率求出切线方程;解决函数单调性已知求参数范围问题,常令导函数大于等于0(小于等于0)恒成立,求出参数的范围.。