Duality of the Fermionic 2d Black Hole and N=2 Liouville Theory as Mirror Symmetry
群论第8章

能级简并(时间反演的结果). 实表示:Cn 的特征标为+1( A 表示),-1( B 表示)。 反演对称操作i 的特征标为 1(偶宇称,下标用 g ),-1(奇宇称,下标用u ).
除Ci ,有 10 个点群具有反演操作i 对称,它们均可以表示为Ci 群与另一正 则转动群的直积:
对 n = 2,4,6 ,它包含一个反演操作 I (≡ C2σ h )。
Sn 群:有一个 n 度转动反演轴( n = 4,6 ); 对 n = 2,3的 S2 和 S3 ,一般用 Ci 和 C3h 符号;
Dn 群:有一个 n 度转动轴及 n 个与之垂直的二度轴( n = 2,3,4,6 ); Dnd 群: Dn 群加 4 n 个垂直对交镜面( n = 2,3)镜面将二度轴角度平分。 Dnh 群: Dn 群加一个水平镜面( n = 2,3,4,6 ). n = 2,4,6 时, Dnh 包含反演操作。 除以上 27 个群外,还有Oh , O ,Td ,Th 和T 群。
群 论 讲 稿----吴 长 勤
第八章 点群和空间群 (Point Groups and Space Groups)
§1 点群 (Point Groups)
点群:使系统(如分子)不变的对称操作的集合构成的群。(某点固定,空 间任何两点距离不变的有限群)
一般,几何对称操作有:
E : 恒等操作;
Cn :转角 2π / n 的操作,转动轴称 n 度轴;
{ } C3v : {E}, C3,C32 , {σ1,σ 2 ,σ 3}; 三个共轭类。 { } { } C'3v : {E},{E}, C3,C32 , EC3, EC32 ,{σ1,σ 2 ,σ 3},{Eσ1, Eσ 2 , Eσ 3};
用基础量子力学解释氢原子

用基础量子力学解释氢原子四川师范大学本科毕业论文用基本量子力学解释氢原子——量子力学与氢原子的相遇相知相交学生姓名黄兰院系名称物理与电子工程学院专业名称物理学班级2008级 2 班学号2008070219指导教师侯邦品四川师范大学教务处二○一二年五月用基本量子力学解释氢原子本科生:黄兰指导老师:侯邦品内容摘要:主要从以下几个方面来运用基本量子力学解释氢原子。
1、氢原子的能级和能量本征函数。
首先介绍在量子力学中的波函数,再利用薛定谔方程来导出氢原子的能量本征函数,最后再分析它的物理含义。
2、氢原子的四个量子数的物理意义。
解释它们其与氢原子的能级的关系。
3、径向波函数和角度波函数。
主要是得出径向波函数和角度波函数同时给出它的物理意义。
4、简并性破除与量子激光。
氢原子的内部结构中电子在原子中受到的磁场的作用所产生的正常塞曼效应和反常塞曼效应,以及可能引起的电子跃迁。
5、氢原子的Stark效应。
氢原子在外场的作用下表现的Stark 效应,这部分将作简单的介绍。
关键词:量子量子力学氢原子 stark效应Schr?dinger方程Using quantum mechanics to explain the physical phenomena in hydrogen atomsAbstract:we shall use quantum mechanics to explain the physicalphenomena in the hydrogen atoms as follows: 1, the energy eigenfunctions for hydrogen are obtained after introducing the wave function in quantum mechanics . 2 , physical significance of the four quantum numbers in the hydrogen atoms.Here we shall focus on the hydrogen atom electron spin and its physical meaning of the four quantum numbers . 3, the radial wave function and the angle wave function . Coming to the radial wave function and the angle of the wave function at the same time we will get its physical significance. 4, the degeneracy is broken by magnetic fields. The normal and the anomalous Zeeman effect induced by magnetic field are introduced. 5, Finally, the the Stark effect in the hydrogen atomis briefly introduced.Key Words:Quantum Quantum mechanics Hydrogen atoms stark effect Schr?dinger equation目录引言 (4)1氢原子的能级和能量本征函数 (6)1.1波函数与Shr?dinger方程 (6)1.1.1波函数 (6)1.1.2波函数的归一化 (6)1.2 Shr?dinger方程 (7)1.2.1不含时Shr?dinger方程 (7)1.2.2 Shr?dinger方程的一般形式 (7)1.3中心力场中角动量守恒与径向方程 (7)1.4氢原子的能级与本征函数波函数 (8)2氢原子四个量子数 (11)2.1氢原子的定态薛定谔方程 (11)2.2 三个量子数 (12)2.3电子的自旋与第四量子数 (15)2.3.1斯特恩--盖拉赫实验(1921年) (15)3径向波函数和角度波函数 (17)3.1径向几率分布 (17)3.2电子的几率密度随角度的变化 (19)4氢原子四个量子数 ................................................................ 错误!未定义书签。
办公室提案改善点子汇总

办公室提案改善点子汇总提案一:改善员工工作环境在办公室中,员工的工作环境对于他们的工作效率和舒适度起着至关重要的作用。
因此,我们可以采取以下措施来改善员工的工作环境:1. 提供舒适的工作座椅和办公桌:选择符合人体工程学的工作座椅和办公桌,以确保员工可以正确地坐姿工作,减少腰椎和颈椎的负担。
2. 提供充足的自然光照:研究表明,自然光照可以提高员工的工作效率和情绪状态。
因此,我们可以在办公室中增加窗户和透明隔板,以便更多的自然光进入办公区域。
3. 设立休闲区域:在办公室中设立一个专门的休闲区域,供员工放松身心。
这个区域可以配备舒适的沙发、净水器和书籍杂志,员工可以在休息时间放松一下,以提高工作效率。
提案二:优化办公流程办公流程的优化可以提高工作效率和减少错误率。
为此,我们可以考虑以下改进措施:1. 引入数字化工具:通过引入数字化工具,如办公软件、电子邮件、在线会议等,可以加快信息传递和协作效率,减少文件丢失和沟通错误。
2. 优化会议流程:会议是办公室中常见的沟通方式,但往往会占用大量的时间和资源。
我们可以通过明确会议议程、减少与会人数、缩短会议时间等方式来优化会议流程,提高会议效率。
3. 建立信息共享平台:建立一个统一的信息共享平台,员工可以在上面共享和查找相关文件和信息,避免重复劳动和信息不对称的问题。
提案三:改善员工福利待遇员工的福利待遇直接影响到他们的工作积极性和忠诚度。
因此,我们可以考虑以下改进措施:1. 提供灵活的工作时间:允许员工根据个人需要灵活安排工作时间,例如弹性上下班、远程办公等,以提高员工的工作满意度和生活质量。
2. 提供培训和发展机会:为员工提供持续的培训和发展机会,帮助他们提升技能和职业能力,增加工作动力和成就感。
3. 建立员工奖励制度:建立员工奖励制度,如年度表彰、优秀员工奖等,激励员工积极工作,提高工作质量和效率。
通过以上改善点子的实施,我们可以提高办公室的工作环境和流程,优化员工的福利待遇,进而提高员工的工作效率和满意度。
Two-Dimensional Gas of Massless Dirac Fermions in Graphene

Two-Dimensional Gas of Massless Dirac Fermions in Graphene K.S. Novoselov1, A.K. Geim1, S.V. Morozov2, D. Jiang1, M.I. Katsnelson3, I.V. Grigorieva1, S.V. Dubonos2, A.A. Firsov21Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester, M13 9PL, UK2Institute for Microelectronics Technology, 142432, Chernogolovka, Russia3Institute for Molecules and Materials, Radboud University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, the NetherlandsElectronic properties of materials are commonly described by quasiparticles that behave as nonrelativistic electrons with a finite mass and obey the Schrödinger equation. Here we report a condensed matter system where electron transport is essentially governed by the Dirac equation and charge carriers mimic relativistic particles with zero mass and an effective “speed of light” c∗ ≈106m/s. Our studies of graphene – a single atomic layer of carbon – have revealed a variety of unusual phenomena characteristic of two-dimensional (2D) Dirac fermions. In particular, we have observed that a) the integer quantum Hall effect in graphene is anomalous in that it occurs at halfinteger filling factors; b) graphene’s conductivity never falls below a minimum value corresponding to the conductance quantum e2/h, even when carrier concentrations tend to zero; c) the cyclotron mass mc of massless carriers with energy E in graphene is described by equation E =mcc∗2; and d) Shubnikov-de Haas oscillations in graphene exhibit a phase shift of π due to Berry’s phase.Graphene is a monolayer of carbon atoms packed into a dense honeycomb crystal structure that can be viewed as either an individual atomic plane extracted from graphite or unrolled single-wall carbon nanotubes or as a giant flat fullerene molecule. This material was not studied experimentally before and, until recently [1,2], presumed not to exist. To obtain graphene samples, we used the original procedures described in [1], which involve micromechanical cleavage of graphite followed by identification and selection of monolayers using a combination of optical, scanning-electron and atomic-force microscopies. The selected graphene films were further processed into multi-terminal devices such as the one shown in Fig. 1, following standard microfabrication procedures [2]. Despite being only one atom thick and unprotected from the environment, our graphene devices remain stable under ambient conditions and exhibit high mobility of charge carriers. Below we focus on the physics of “ideal” (single-layer) graphene which has a different electronic structure and exhibits properties qualitatively different from those characteristic of either ultra-thin graphite films (which are semimetals and whose material properties were studied recently [2-5]) or even of our other devices consisting of just two layers of graphene (see further). Figure 1 shows the electric field effect [2-4] in graphene. Its conductivity σ increases linearly with increasing gate voltage Vg for both polarities and the Hall effect changes its sign at Vg ≈0. This behaviour shows that substantial concentrations of electrons (holes) are induced by positive (negative) gate voltages. Away from the transition region Vg ≈0, Hall coefficient RH = 1/ne varies as 1/Vg where n is the concentration of electrons or holes and e the electron charge. The linear dependence 1/RH ∝Vg yields n =α·Vg with α ≈7.3·1010cm-2/V, in agreement with the theoretical estimate n/Vg ≈7.2·1010cm-2/V for the surface charge density induced by the field effect (see Fig. 1’s caption). The agreement indicates that all the induced carriers are mobile and there are no trapped charges in graphene. From the linear dependence σ(Vg) we found carrier mobilities µ =σ/ne, whichreached up to 5,000 cm2/Vs for both electrons and holes, were independent of temperature T between 10 and 100K and probably still limited by defects in parent graphite. To characterise graphene further, we studied Shubnikov-de Haas oscillations (SdHO). Figure 2 shows examples of these oscillations for different magnetic fields B, gate voltages and temperatures. Unlike ultra-thin graphite [2], graphene exhibits only one set of SdHO for both electrons and holes. By using standard fan diagrams [2,3], we have determined the fundamental SdHO frequency BF for various Vg. The resulting dependence of BF as a function of n is plotted in Fig. 3a. Both carriers exhibit the same linear dependence BF = β·n with β ≈1.04·10-15 T·m2 (±2%). Theoretically, for any 2D system β is defined only by its degeneracy f so that BF =φ0n/f, where φ0 =4.14·10-15 T·m2 is the flux quantum. Comparison with the experiment yields f =4, in agreement with the double-spin and double-valley degeneracy expected for graphene [6,7] (cf. caption of Fig. 2). Note however an anomalous feature of SdHO in graphene, which is their phase. In contrast to conventional metals, graphene’s longitudinal resistance ρxx(B) exhibits maxima rather than minima at integer values of the Landau filling factor ν (Fig. 2a). Fig. 3b emphasizes this fact by comparing the phase of SdHO in graphene with that in a thin graphite film [2]. The origin of the “odd” phase is explained below. Another unusual feature of 2D transport in graphene clearly reveals itself in the T-dependence of SdHO (Fig. 2b). Indeed, with increasing T the oscillations at high Vg (high n) decay more rapidly. One can see that the last oscillation (Vg ≈100V) becomes practically invisible already at 80K whereas the first one (Vg <10V) clearly survives at 140K and, in fact, remains notable even at room temperature. To quantify this behaviour we measured the T-dependence of SdHO’s amplitude at various gate voltages and magnetic fields. The results could be fitted accurately (Fig. 3c) by the standard expression T/sinh(2π2kBTmc/heB), which yielded mc varying between ≈ 0.02 and 0.07m0 (m0 is the free electron mass). Changes in mc are well described by a square-root dependence mc ∝n1/2 (Fig. 3d). To explain the observed behaviour of mc, we refer to the semiclassical expressions BF = (h/2πe)S(E) and mc =(h2/2π)∂S(E)/∂E where S(E) =πk2 is the area in k-space of the orbits at the Fermi energy E(k) [8]. Combining these expressions with the experimentally-found dependences mc ∝n1/2 and BF =(h/4e)n it is straightforward to show that S must be proportional to E2 which yields E ∝k. Hence, the data in Fig. 3 unambiguously prove the linear dispersion E =hkc∗ for both electrons and holes with a common origin at E =0 [6,7]. Furthermore, the above equations also imply mc =E/c∗2 =(h2n/4πc∗2)1/2 and the best fit to our data yields c∗ ≈1⋅106 m/s, in agreement with band structure calculations [6,7]. The employed semiclassical model is fully justified by a recent theory for graphene [9], which shows that SdHO’s amplitude can indeed be described by the above expression T/sinh(2π2kBTmc/heB) with mc =E/c∗2. Note that, even though the linear spectrum of fermions in graphene (Fig. 3e) implies zero rest mass, their cyclotron mass is not zero. The unusual response of massless fermions to magnetic field is highlighted further by their behaviour in the high-field limit where SdHO evolve into the quantum Hall effect (QHE). Figure 4 shows Hall conductivity σxy of graphene plotted as a function of electron and hole concentrations in a constant field B. Pronounced QHE plateaux are clearly seen but, surprisingly, they do not occur in the expected sequence σxy =(4e2/h)N where N is integer. On the contrary, the plateaux correspond to half-integer ν so that the first plateau occurs at 2e2/h and the sequence is (4e2/h)(N + ½). Note that the transition from the lowest hole (ν =–½) to lowest electron (ν =+½) Landau level (LL) in graphene requires the same number of carriers (∆n =4B/φ0 ≈1.2·1012cm-2) as the transition between other nearest levels (cf. distances between minima in ρxx). This results in a ladder of equidistant steps in σxy which are not interrupted when passing through zero. To emphasize this highly unusual behaviour, Fig. 4 also shows σxy for a graphite film consisting of only two graphene layers where the sequence of plateaux returns to normal and the first plateau is at 4e2/h, as in the conventional QHE. We attribute this qualitative transition between graphene and its two-layer counterpart to the fact that fermions in the latter exhibit a finite mass near n ≈0 (as found experimentally; to be published elsewhere) and can no longer be described as massless Dirac particles. 2The half-integer QHE in graphene has recently been suggested by two theory groups [10,11], stimulated by our work on thin graphite films [2] but unaware of the present experiment. The effect is single-particle and intimately related to subtle properties of massless Dirac fermions, in particular, to the existence of both electron- and hole-like Landau states at exactly zero energy [912]. The latter can be viewed as a direct consequence of the Atiyah-Singer index theorem that plays an important role in quantum field theory and the theory of superstrings [13,14]. For the case of 2D massless Dirac fermions, the theorem guarantees the existence of Landau states at E=0 by relating the difference in the number of such states with opposite chiralities to the total flux through the system (note that magnetic field can also be inhomogeneous). To explain the half-integer QHE qualitatively, we invoke the formal expression [9-12] for the energy of massless relativistic fermions in quantized fields, EN =[2ehc∗2B(N +½ ±½)]1/2. In QED, sign ± describes two spins whereas in the case of graphene it refers to “pseudospins”. The latter have nothing to do with the real spin but are “built in” the Dirac-like spectrum of graphene, and their origin can be traced to the presence of two carbon sublattices. The above formula shows that the lowest LL (N =0) appears at E =0 (in agreement with the index theorem) and accommodates fermions with only one (minus) projection of the pseudospin. All other levels N ≥1 are occupied by fermions with both (±) pseudospins. This implies that for N =0 the degeneracy is half of that for any other N. Alternatively, one can say that all LL have the same “compound” degeneracy but zeroenergy LL is shared equally by electrons and holes. As a result the first Hall plateau occurs at half the normal filling and, oddly, both ν = –½ and +½ correspond to the same LL (N =0). All other levels have normal degeneracy 4B/φ0 and, therefore, remain shifted by the same ½ from the standard sequence. This explains the QHE at ν =N + ½ and, at the same time, the “odd” phase of SdHO (minima in ρxx correspond to plateaux in ρxy and, hence, occur at half-integer ν; see Figs. 2&3), in agreement with theory [9-12]. Note however that from another perspective the phase shift can be viewed as the direct manifestation of Berry’s phase acquired by Dirac fermions moving in magnetic field [15,16]. Finally, we return to zero-field behaviour and discuss another feature related to graphene’s relativistic-like spectrum. The spectrum implies vanishing concentrations of both carriers near the Dirac point E =0 (Fig. 3e), which suggests that low-T resistivity of the zero-gap semiconductor should diverge at Vg ≈0. However, neither of our devices showed such behaviour. On the contrary, in the transition region between holes and electrons graphene’s conductivity never falls below a well-defined value, practically independent of T between 4 and 100K. Fig. 1c plots values of the maximum resistivity ρmax(B =0) found in 15 different devices, which within an experimental error of ≈15% all exhibit ρmax ≈6.5kΩ, independent of their mobility that varies by a factor of 10. Given the quadruple degeneracy f, it is obvious to associate ρmax with h/fe2 =6.45kΩ where h/e2 is the resistance quantum. We emphasize that it is the resistivity (or conductivity) rather than resistance (or conductance), which is quantized in graphene (i.e., resistance R measured experimentally was not quantized but scaled in the usual manner as R =ρL/w with changing length L and width w of our devices). Thus, the effect is completely different from the conductance quantization observed previously in quantum transport experiments. However surprising, the minimum conductivity is an intrinsic property of electronic systems described by the Dirac equation [17-20]. It is due to the fact that, in the presence of disorder, localization effects in such systems are strongly suppressed and emerge only at exponentially large length scales. Assuming the absence of localization, the observed minimum conductivity can be explained qualitatively by invoking Mott’s argument [21] that mean-free-path l of charge carriers in a metal can never be shorter that their wavelength λF. Then, σ =neµ can be re-written as σ = (e2/h)kFl and, hence, σ cannot be smaller than ≈e2/h per each type of carriers. This argument is known to have failed for 2D systems with a parabolic spectrum where disorder leads to localization and eventually to insulating behaviour [17,18]. For the case of 2D Dirac fermions, no localization is expected [17-20] and, accordingly, Mott’s argument can be used. Although there is a broad theoretical consensus [18-23,10,11] that a 2D gas of Dirac fermions should exhibit a minimum 3conductivity of about e2/h, this quantization was not expected to be accurate and most theories suggest a value of ≈e2/πh, in disagreement with the experiment. In conclusion, graphene exhibits electronic properties distinctive for a 2D gas of particles described by the Dirac rather than Schrödinger equation. This 2D system is not only interesting in itself but also allows one to access – in a condensed matter experiment – the subtle and rich physics of quantum electrodynamics [24-27] and provides a bench-top setting for studies of phenomena relevant to cosmology and astrophysics [27,28].1. Novoselov, K.S. et al. PNAS 102, 10451 (2005). 2. Novoselov, K.S. et al. Science 306, 666 (2004); cond-mat/0505319. 3. Zhang, Y., Small, J.P., Amori, M.E.S. & Kim, P. Phys. Rev. Lett. 94, 176803 (2005). 4. Berger, C. et al. J. Phys. Chem. B, 108, 19912 (2004). 5. Bunch, J.S., Yaish, Y., Brink, M., Bolotin, K. & McEuen, P.L. Nanoletters 5, 287 (2005). 6. Dresselhaus, M.S. & Dresselhaus, G. Adv. Phys. 51, 1 (2002). 7. Brandt, N.B., Chudinov, S.M. & Ponomarev, Y.G. Semimetals 1: Graphite and Its Compounds (North-Holland, Amsterdam, 1988). 8. Vonsovsky, S.V. and Katsnelson, M.I. Quantum Solid State Physics (Springer, New York, 1989). 9. Gusynin, V.P. & Sharapov, S.G. Phys. Rev. B 71, 125124 (2005). 10. Gusynin, V.P. & Sharapov, S.G. cond-mat/0506575. 11. Peres, N.M.R., Guinea, F. & Castro Neto, A.H. cond-mat/0506709. 12. Zheng, Y. & Ando, T. Phys. Rev. B 65, 245420 (2002). 13. Kaku, M. Introduction to Superstrings (Springer, New York, 1988). 14. Nakahara, M. Geometry, Topology and Physics (IOP Publishing, Bristol, 1990). 15. Mikitik, G. P. & Sharlai, Yu.V. Phys. Rev. Lett. 82, 2147 (1999). 16. Luk’yanchuk, I.A. & Kopelevich, Y. Phys. Rev. Lett. 93, 166402 (2004). 17. Abrahams, E., Anderson, P.W., Licciardello, D.C. & Ramakrishnan, T.V. Phys. Rev. Lett. 42, 673 (1979). 18. Fradkin, E. Phys. Rev. B 33, 3263 (1986). 19. Lee, P.A. Phys. Rev. Lett. 71, 1887 (1993). 20. Ziegler, K. Phys. Rev. Lett. 80, 3113 (1998). 21. Mott, N.F. & Davis, E.A. Electron Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979). 22. Morita, Y. & Hatsugai, Y. Phys. Rev. Lett. 79, 3728 (1997). 23. Nersesyan, A.A., Tsvelik, A.M. & Wenger, F. Phys. Rev. Lett. 72, 2628 (1997). 24. Rose, M.E. Relativistic Electron Theory (John Wiley, New York, 1961). 25. Berestetskii, V.B., Lifshitz, E.M. & Pitaevskii, L.P. Relativistic Quantum Theory (Pergamon Press, Oxford, 1971). 26. Lai, D. Rev. Mod. Phys. 73, 629 (2001). 27. Fradkin, E. Field Theories of Condensed Matter Systems (Westview Press, Oxford, 1997). 28. Volovik, G.E. The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).Acknowledgements This research was supported by the EPSRC (UK). We are most grateful to L. Glazman, V. Falko, S. Sharapov and A. Castro Netto for helpful discussions. K.S.N. was supported by Leverhulme Trust. S.V.M., S.V.D. and A.A.F. acknowledge support from the Russian Academy of Science and INTAS.43µ (m2/Vs)0.8c4P0.4 22 σ (1/kΩ)10K0 0 1/RH(T/kΩ) 1 2ρmax (h/4e2)1-5010 Vg (V) 50 -10ab 0 -100-500 Vg (V)50100Figure 1. Electric field effect in graphene. a, Scanning electron microscope image of one of our experimental devices (width of the central wire is 0.2µm). False colours are chosen to match real colours as seen in an optical microscope for larger areas of the same materials. Changes in graphene’s conductivity σ (main panel) and Hall coefficient RH (b) as a function of gate voltage Vg. σ and RH were measured in magnetic fields B =0 and 2T, respectively. The induced carrier concentrations n are described by [2] n/Vg =ε0ε/te where ε0 and ε are permittivities of free space and SiO2, respectively, and t ≈300 nm is the thickness of SiO2 on top of the Si wafer used as a substrate. RH = 1/ne is inverted to emphasize the linear dependence n ∝Vg. 1/RH diverges at small n because the Hall effect changes its sign around Vg =0 indicating a transition between electrons and holes. Note that the transition region (RH ≈ 0) was often shifted from zero Vg due to chemical doping [2] but annealing of our devices in vacuum normally allowed us to eliminate the shift. The extrapolation of the linear slopes σ(Vg) for electrons and holes results in their intersection at a value of σ indistinguishable from zero. c, Maximum values of resistivity ρ =1/σ (circles) exhibited by devices with different mobilites µ (left y-axis). The histogram (orange background) shows the number P of devices exhibiting ρmax within 10% intervals around the average value of ≈h/4e2. Several of the devices shown were made from 2 or 3 layers of graphene indicating that the quantized minimum conductivity is a robust effect and does not require “ideal” graphene.ρxx (kΩ)0.60 aVg = -60V4B (T)810K12∆σxx (1/kΩ)0.4 1ν=4 140K 80K B =12T0 b 0 25 50 Vg (V) 7520K100Figure 2. Quantum oscillations in graphene. SdHO at constant gate voltage Vg as a function of magnetic field B (a) and at constant B as a function of Vg (b). Because µ does not change much with Vg, the constant-B measurements (at a constant ωcτ =µB) were found more informative. Panel b illustrates that SdHO in graphene are more sensitive to T at high carrier concentrations. The ∆σxx-curves were obtained by subtracting a smooth (nearly linear) increase in σ with increasing Vg and are shifted for clarity. SdHO periodicity ∆Vg in a constant B is determined by the density of states at each Landau level (α∆Vg = fB/φ0) which for the observed periodicity of ≈15.8V at B =12T yields a quadruple degeneracy. Arrows in a indicate integer ν (e.g., ν =4 corresponds to 10.9T) as found from SdHO frequency BF ≈43.5T. Note the absence of any significant contribution of universal conductance fluctuations (see also Fig. 1) and weak localization magnetoresistance, which are normally intrinsic for 2D materials with so high resistivity.75 BF (T) 500.2 0.11/B (1/T)b5 10 N 1/2025 a 0 0.061dmc /m00.04∆0.02 0c0 0 T (K) 150n =0e-6-3036Figure 3. Dirac fermions of graphene. a, Dependence of BF on carrier concentration n (positive n correspond to electrons; negative to holes). b, Examples of fan diagrams used in our analysis [2] to find BF. N is the number associated with different minima of oscillations. Lower and upper curves are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a similar value of BF, respectively. Note that the curves extrapolate to different origins; namely, to N = ½ and 0. In graphene, curves for all n extrapolate to N = ½ (cf. [2]). This indicates a phase shift of π with respect to the conventional Landau quantization in metals. The shift is due to Berry’s phase [9,15]. c, Examples of the behaviour of SdHO amplitude ∆ (symbols) as a function of T for mc ≈0.069 and 0.023m0; solid curves are best fits. d, Cyclotron mass mc of electrons and holes as a function of their concentration. Symbols are experimental data, solid curves the best fit to theory. e, Electronic spectrum of graphene, as inferred experimentally and in agreement with theory. This is the spectrum of a zero-gap 2D semiconductor that describes massless Dirac fermions with c∗ 300 times less than the speed of light.n (1012 cm-2)σxy (4e2/h)4 3 2 -2 1 -1 -2 -3 2 44Kn7/ 5/ 3/ 1/2 2 2 210 ρxx (kΩ)-4σxy (4e2/h)0-1/2 -3/2 -5/2514T0-7/2 -4 -2 0 2 4 n (1012 cm-2)Figure 4. Quantum Hall effect for massless Dirac fermions. Hall conductivity σxy and longitudinal resistivity ρxx of graphene as a function of their concentration at B =14T. σxy =(4e2/h)ν is calculated from the measured dependences of ρxy(Vg) and ρxx(Vg) as σxy = ρxy/(ρxy + ρxx)2. The behaviour of 1/ρxy is similar but exhibits a discontinuity at Vg ≈0, which is avoided by plotting σxy. Inset: σxy in “two-layer graphene” where the quantization sequence is normal and occurs at integer ν. The latter shows that the half-integer QHE is exclusive to “ideal” graphene.。
d维RN-AdS黑洞的弱宇宙审查猜想

Applications 创新应用集成电路应用 第 39 卷 第 4 期(总第 343 期)2022 年 4 月 69们认为奇点是密度无穷大的一个点,在这个点附近一切物理定律都无法使用,这与我们目前已知的情况格格不入,即是说明我们目前已知的物理规律、量子力学、场论等等一切物理规律都是无效的在奇点附近。
为了保证已知的物理定律的真实性和有效性,1969年彭罗斯从类时测地线受到启发提出了弱宇宙审查猜想来保证物理规律可行性,他的猜想表明黑洞坍塌诞生的奇点应该被黑洞视界包着,视界在奇点的外围,奇点被视界隐藏在后面,远处的研究人员不能通过任何方法无法得到奇点附近的任何信息。
由于对于奇点附近的问题一直得不到解决,而人们又急需一种理论来说明这种情况,于是很多学者开始赞同彭罗斯宇宙审查猜想,用事件视界来隔离奇点内外情况,用事件视界作为边界,视界内部是奇点所在时空,外界对其不会有任何影响,视界外部的一切也不会影响到视界内部,虽然这种说法能暂时将奇点问题屏蔽,但是其说法很难得到广大科学家认同。
自从彭罗斯最初的研究结果以来,弱宇宙审查猜想(WCCC)一直是黑洞的一个有趣的研0 引言拉普拉斯(Laplace)和米谢尔(Michelle)通过对天体研究发现,存在一类天体其第二宇宙速度超过光速,我们无法观测到它,因为一切靠近它的物质包括光都会被其巨大的引力拖拽,人们把这种天体称为暗星[1]。
1 研究背景100多年后爱因斯坦在1915年提出相对论,他认为质量的存在会影响周围的时空,使周围时空发生弯曲,如果一个天体质量足够大,其产生的弯曲曲率能使光线都发生偏折,并向中心天体靠近,那么光进入之后就无法出来,之后史瓦西通过对场方程求解得到了一个真空球对称解——史瓦西解,美国科学家惠勒将这种天体现象称为黑洞(BH)。
之后人们对黑洞性质,及其满足的物理规律都有极大兴趣,在1960~1970年代,霍金和彭罗斯对黑洞的形成进行研究,他们发现只有相对论有效,满足因果性,黑洞内部就一定是奇异的。
所属领域——精选推荐

编者按:大地涵藏万物,孕育生命,被誉为人类的母亲。
但是,近年来,伴随我国工业化的快速发展,大地不断遭到各种污染的伤害。
仅仅因土壤污染防治不足、环境监管乏力,导致的食品药品安全事件就频频发生,2008年以来,全国已发生百余起重大污染事故。
目前我国大地污染现状严峻,成因十分复杂,形成令人扼腕的“大地之殇”。
《经济参考报》以此为主题,探寻大地污染背后所触及的我国农业、工业、城市化进程中关于生存与发展的一系列深层矛盾与两难抉择,并以“大地之殇”系列报道的形式在“深度”版推出,敬请关注。
大地之殇一·黑土地之悲占全国粮食总产五分之一的东北黑土区是我国最重要的商品粮基地,但一个并不为多数人了解的严峻事实是,支撑粮食产量的黑土层却在过去半个多世纪里减少了50%,并在继续变薄,几百年才形成一厘米的黑土层正以每年近一厘米的速度消失。
照此速度,部分黑土层或将在几十年后消失殆尽,东北这一中国最大粮仓的产能也将遭受无法挽回的损失。
□记者孙彬管建涛连振祥吉哲鹏娄辰李松南京哈尔滨兰州昆明济南重庆报道毒土:GDP至上的恶果当前,我国土壤污染出现了有毒化工和重金属污染由工业向农业转移、由城区向农村转移、由地表向地下转移、由上游向下游转移、由水土污染向食品链转移的趋势,逐步积累的污染正在演变成污染事故的频繁爆发。
日益加剧的污染趋势可能还要持续30年“目前,我国土壤污染呈日趋加剧的态势,防治形势十分严峻。
”多年来,中国土壤学会副理事长、中国农业科学院研究员张维理教授一直关注我国土壤污染问题“我国土壤污染呈现一种十分复杂的特点,呈现新老污染物并存、无机有机污染混合的局面。
”“现在我国土壤污染比各国都要严重,日益加剧的污染趋势可能还要持续30年。
”中国土壤学专家,南京农业大学教授潘根兴告诉《经济参考报》记者,这些污染包括随经济发展日益普遍的重金属污染、以点状为主的化工污染、塑料电子废弃物污染及农业污染等。
国土资源部统计表明,目前全国耕种土地面积的10%以上已受重金属污染。
磁荷对Hayward-Anti-deSitter黑洞的全息互信息的影响
第41卷第6期2023年12月沈阳师范大学学报(自然科学版)J o u r n a l o f S h e n y a n g N o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n)V o l.41N o.6D e c.2023文章编号:16735862(2023)06056804磁荷对H a y w a r d-A n t i-d eS i t t e r黑洞的全息互信息的影响李慧玲,张宁,张宝琪,李瑶(沈阳师范大学物理科学与技术学院,沈阳110034)摘要:H a y w a r d黑洞是爱因斯坦引力非线性耦合一个携带磁荷的电磁场的解析解,是非线性磁单极子引力场的简并结构㊂一般情况下,黑洞的内部会存在奇点,而 非奇异 黑洞是一种内部没有奇点的黑洞㊂H a y w a r d黑洞属于非奇异黑洞,此规则黑洞的对称性由磁势决定,带磁荷和不带磁荷的黑洞具有不同的微观结构㊂利用纠缠熵讨论磁荷对非奇异H a y w a r d-A n t i-d eS i t t e r黑洞中全息互信息的影响㊂结果表明,随着条带宽度(子区域)的增加,2个渐进子系统纠缠增大,且全息互信息随磁荷的增加而降低㊂除此之外,存在临界磁荷使得全息互信息为零,此时对偶的子区域之间不存在纠缠,磁荷取不同值时,全息互信息消失的条带宽度临界值是不同的㊂关键词:全息互信息;纠缠熵;磁荷;A d S黑洞中图分类号:P145.8文献标志码:Ad o i:10.3969/j.i s s n.16735862.2023.06.014E f f e c to fm a g n e t i cc h a r g e so nh o l o g r a p h i cm u t u a l i n f o r m a t i o no fH a y w a r d-A n t i-d e S i t t e r b l a c kh o l e sL IH u i l i n g,Z HA N GN i n g,Z HA N GB a o q i,L IY a o(C o l l e g e o f P h y s i c a l S c i e n c e a n dT e c h n o l o g y,S h e n y a n g N o r m a lU n i v e r s i t y,S h e n y a n g110034,C h i n a)A b s t r a c t:H a y w a r d b l a c k h o l ei sa n a n a l y t i c a ls o l u t i o n o f E i n s t e i n s g r a v i t a t i o n a ln o n l i n e a rc o u p l i n g o f a n e l e c t r o m a g n e t i c f i e ld c a r r y i n g m a g ne t i c c h a r g e s.I n g e n e r a l,t h e r e w i l l b es i n g u l a r i t i e s i n s i d eb l a c kh o l e s,a n d"n o n-s i n g u l a r"b l a c kh o l e sa r eb l a c kh o l e s w i t h o u t i n t e r n a l s i n g u l a r i t i e s,a n d H a y w a r d b l a c k h o l e sa r en o n-s i n g u l a r.H a y w a r d b l a c k h o l ei sad e g e n e r a t e s t r u c t u r eo f t h e n o n l i n e a rm a g n e t i cm o n o p o l e g r a v i t a t i o n a l f i e l d.T h e s y mm e t r y o f t h e r e g u l a r b l a c kh o l e i s d e t e r m i n e db y t h em a g n e t i c p o t e n t i a l,a n d t h em a g n e t i c c h a r g e a n d t h e n o n-m a g n e t i c c h a r g eh a v e d i f f e r e n tm i c r o s t r u c t u r e s.W e d i s c u s s t h e i n f l u e n c e o fm a g n e t i c c h a r g e o nh o l o g r a p h i cm u t u a li n f o r m a t i o n i nn o n s i n g u l a rH a y w a r d-A n t i-d eS i t t e r b l a c kh o l eb y u s i n g e n t a n g l e m e n t e n t r o p y.T h er e s u l t s s h o wt h a t t h e e n t a n g l e m e n t o f t h e t w o a s y m p t o t i c s u b s y s t e m s i n c r e a s e sw i t h t h e i n c r e a s e o f t h e s t r i p w i d t h(s u b r e g i o n),a n d t h e h o l o g r a p h i cm u t u a l i n f o r m a t i o nd e c r e a s e sw i t h t h e i n c r e a s e o f m a g n e t i c c h a r g e,I n a d d i t i o n,t h e r e i s a c r i t i c a lm a g n e t i c c h a r g e t h a tm a k e s t h e h o l o g r a p h i cm u t u a li n f o r m a t i o n z e r o,a n d t h e r e i s n o e n t a n g l e m e n t b e t w e e n t h e s u b r e g i o n s o f t h e d u a l i t y,a n dw h e n t h em a g n e t i c c h a r g et a k e sd i f f e r e n tv a l u e s,t h ec r i t i c a lv a l u eo ft h es t r i p e w i d t ho ft h eh o l o g r a p h i c m u t u a l i n f o r m a t i o nd i s a p p e a r i n g i s d i f f e r e n t.K e y w o r d s:h o l o g r a p h i cm u t u a l i n f o r m a t i o n;e n t a n g l e d e n t r o p y;m a g n e t i c c h a r g e;A n t i-d e S i t t e r(A d s)b l a c kh o l e收稿日期:20230713基金项目:辽宁省教育厅科学研究经费项目(L J KM20221474)㊂作者简介:李慧玲(1977 ),女,辽宁沈阳人,沈阳师范大学教授,博士㊂黑洞是广义相对论中最具有深远意义的预言之一,多年来,人们一直在研究宇宙中这个神秘天体㊂对于非奇异H a y w a r d -A d S 黑洞,带磁荷和不带磁荷的黑洞具有不同的微观结构㊂全息互信息测量了量子信息理论中2个子系统之间的相关性[1],可以通过计算连接一个永恒A d S 黑洞两侧的虫洞长度[2]获得全息互信息㊂热场二重态(t h e r m a l f i e l dd o u b l e s t a t e ,T F D )可以描述黑洞两侧纠缠态[3],即Ψ>ʉðie -β2E ii >L 췍i >R其中:β是温度的倒数;i >L 和i >R 是两侧的A d S 黑洞上相同的量子态㊂假设黑洞的每一侧存在2个完全相同的类空子区域A 和B ,则A 和B 之间的全息互信息I (A ,B )可以表示为[4]I (A ,B )ʉS (A )+S (B )-S (A ɣB )其中:S (A ),S (B )是最小表面A 和B 上类空区域的纠缠熵;S (A ɣB )是穿过事件视界连接A 和B 的区域的纠缠熵㊂1 非奇异H a y w a r d -A d S 黑洞的全息互信息非奇异H a y w a r d -A d S 黑洞[56]是爱因斯坦引力与携带磁荷的电磁场非线性耦合的解析解㊂在四维A d S 背景下的H a y w a r d -A d S 黑洞解[78]为d s 2=-f (r )d t 2+d r 2f (r)+r 2dΩ2(1)其中,d Ω2=d θ2+s i n 2θd φ2,度规函数为f (r )=1-2M r 2g 3+r3-Λ3r 2(2)式(2)中得到的参数g 与黑洞总磁荷Q m 有关,即Q m =g22α(3)α为自由积分常数㊂永恒黑洞有2个渐近的A d S 区域,其可以用2个相同的㊁无相互作用的共形场论[4]的T F D 来进行全息描述㊂为了方便计算,令左渐近边界上的子区域A 和右渐近边界上的B 完全相同,即A =B ㊂在四维背景下,将A d S 黑洞边界参数化为(x ,y )的二维空间㊂将子区域A 或B 看作一条带,其宽度为x ɪ(0,x 0),且沿y 方向延伸,长度为Y ,Y ʉ1㊂因此,子区A 的纠缠熵S (A )=R e g i o n A /4,其中R e g i o n A 是最小表面的面积,即R e g i o n A =ʏx 00d x r ᶄ21-2M r 2g 3+r3+r 2+r 2(4)其中,r ᶄ=d r /d x ㊂如果将等式(4)中的被积函数看作 拉格朗日函数 L ,定义一个与x 方向平移相关的守恒量为r3r 2+r ᶄ21-2M r 2g 3+r3+r 2=r 2m i n(5)r m i n 为r ᶄ=0时的转折点㊂根据其表面对称性,转折点位于x =x 0/2㊂根据守恒方程(5),x 0为x 0=ʏx 0d x =2ʏɕr m i n d r r 1-2M r 2g 3+r3r 21(r /r m i n )4-1(6)式(6)中的最小面积为R e g i o n A =2ʏɕr m i n d r 1-2M r 2g 3+r3+r 21(r /r m i n )4-1(7) 由于B 与A 相同,所以R e g i o n B 与R e g i o n A 也是相同的㊂通过黑洞视界连接区域A (左)和B (右)的最小表面面积为R e g i o n A ɣB ,对应的纠缠熵为S (A ɣB )965第6期 李慧玲,等:磁荷对H a y w a r d -A n t i -d eS i t t e r 黑洞的全息互信息的影响=R e g i o n A ɣB /4㊂两侧的总面积R e g i o n A ɣB 可表示为R e g i o n A ɣB =4ʏɕr hd r 11-2M r 2g 3+r3+r 2r (8) 根据全息互信息表达式I (A ,B )ʉS (A )+S (B )-S (A ɣB ),结合式(7)和式(8),得到I (g )=ʏɕr m i n d r r 1-2M r 2g 3+r3+r 211-(r m i n /r )4-ʏɕr hd rr1-2M r 2g 3+r3+r 2(9)此即H a y w a r d -A d S 黑洞的全息互信息㊂2 磁荷对全息互信息的影响要讨论静态A d S 背景下磁荷对全息互信息的影响,首先要研究非奇异H a yw a r d 黑洞的全息互信息与条带宽度的关系㊂将式(6)代入到式(8)中,得到条带的宽度x 0与全息互信息I (x 0,g )的关系I (x 0,g )=12x 0r 2m i n +ʏɕr m i nd rr 1-2M r 2g 3+r3+r 21-(r m i n/r )4-ʏɕr h d rr 1-2M r 2g 3+r3+r 2㊂(10) 当I (x 0,g )=0时全息互信息会消失㊂因此,可得到全息互信息消失时条带宽度的临界值x 0c 为x 0c =2r 2m i n ʏɕr h d r r1-2M r 2g 3+r3+r 2-ʏɕr m i nd rr 1-2M r 2g 3+r3+r 21-(r m i n/r )éëêêêùûúúú4(11)图1 条带的宽度x 0和转折点位置r m i n 之间的关系(令r h =1,g =0.4)F i g .1 T h e r e l a t i o n s h i p be t w e e n t h ew i d t hof t h e s t r i p a n d t h e l o c a t i o no f t h e t u r n i n gpo i n t 图2 全息互信息I (x 0,g )和转折点位置r m i n 之间的关系(令r h =1,g =0.4)F i g .2 T h e r e l a t i o n s h i p b e t w e e n h o l o g r a ph i cm u t u a l i n f o r m a t i o na n d t u r n i n gpo i n t l o c a t i o n 首先研究条带的宽度x 0对转折点位置r m i n 的影响㊂根据式(6)中条带宽度x 0与转折点位置r m i n 之间的关系,绘制如图1所示的图像㊂如图1所示,当r m i n ңr h 时,条带宽度x 0的积分发散,式(6)中所表现出的趋势与图1中的图像是一致的㊂r m i n 越大对应的条带宽度越小㊂由式(10)和式(11)可知,当r m i n ңr h 时2个边界上条带的宽度几乎是发散的,所以全息互信息也是发散的,这与在图2中所绘制的趋势也是一致的㊂发散条带的全息互信息也会是发散的㊂如图2所示,当r m i n ʈ1.269时,全息互信息消失㊂也就说明全息互信息消失存在一个临界值㊂结合图1和图2,发现全息互信息I (x 0,g )和条带宽度x 0之间也存在密切关系,从而作出图3进行进一步研究㊂在图3中,可以清晰地看出,当磁荷g 取不同值时,全息互信息I (x 0,g )消失的条带宽度临界值x 0c 是不同的㊂其数值结果为g =0.4时,x 0c ʈ1.77;g =0.6时,x 0c ʈ1.89;g =0.8时,x 0c ʈ2.15㊂磁荷g 越大,其临界宽度的值x 0c 也越大㊂且当全息互信息I (x 0,g )为某一值时,对应的磁荷g 不同㊂意味着磁荷g 也会对全息互信息I (x 0,g )产生重要影响㊂从图3中还发现全息互信息I (x 0,g )总是随着条带宽度x 0的增加而增加㊂可见2个渐近边界075沈阳师范大学学报(自然科学版) 第41卷上的子系统更大,纠缠也更大㊂(从上到下磁荷g 分别为g =0.4,g =0.6,g =0.8)图3 全息互信息I (x 0,g )和条带宽度x 0之间的关系F i g .3 T h e r e l a t i o n s h i p b e t w e e n h o l o g r a ph i cm u t u a l i n f o r m a t i o na n d s t r i pew i d t h (从上到下的曲线对应于r m i n 从1.18增加到1.21,步长为0.01)图4 全息互信息I (x 0,g )和磁荷g 之间的关系F i g .4 T h e r e l a t i o n s h i p b e t w e e n h o l o g r a ph i cm u t u a l i n f o r m a t i o na n dm a g n e t i c c h a r ge 接下来,研究非奇异H a y w a r d 黑洞的磁荷g 对全息互信息I (x 0,g )的影响㊂由图4可见,对于每条曲线,全息互信息随着磁荷的增加而减小㊂存在一个临界磁荷g c 使得全息互信息为零,此时对偶的子区域之间不存在纠缠㊂图4中的4条曲线从上到下对应r m i n 从1.18增加到1.21,步长为0.01㊂由此发现,当磁荷g 为固定值时,r m i n 越大,全息互信息I (x 0,g )越小㊂且由图1可知,r m i n 与条带宽度x 0有关,r m i n 越大,边界上的条带宽度x 0越小,图4中的结论与图2中的结果相一致㊂当条带宽度固定时,随着温度的升高,2条条带的全息互信息也会增加㊂条带的临界宽度x 0c 是使得互信息消失的宽度,即I (x 0c ,g )=0㊂在图4中,随着磁荷的增大,全息互信息单调递减㊂3 结 论对非奇异H a y w a r d -A d S 黑洞的全息互信息的研究表明:在静态情况下,当r m i n ңr h 时全息互信息是发散的,且随着条带宽度的增加而增加,说明2个渐进子系统更大则纠缠也更大;磁荷对全息互信息有直接影响,全息互信息会随着磁荷的增加而减小,当磁荷增加到临近值g c 时,I (x 0c ,g )=0,即全息互信息消失,可见磁荷对H a y w a r d 黑洞全息互信息产生重要影响㊂参考文献:[1]N I E L S E N M A ,C HU A N GI .Q u a n t u m c o m p u t a t i o na n d q u a n t u m i n f o r m a t i o n [J ].A m JP h y s ,2002,70(5):558559.[2]C A IR G ,Z E N G X X ,Z HA N G H Q.I n f l u e n c eo f i n h o m o g e n e i t i e so nh o l o g r a p h i cm u t u a l i n f o r m a t i o na n db u t t e r f l y e f f e c t [J ].JH i g hE n e r g y P h y s ,2017,2017(7):120.[3]MA L D A C E N AJ ,S U S S K I N DL .C o o l h o r i z o n s f o r e n t a n g l e db l a c kh o l e s [J ].F o r t s c h rP h y s ,2013,61(9):781811.[4]S H E N K E RS H ,S T A N F O R D D.B l a c kh o l e sa n dt h eb u t t e r f l y e f f e c t [J ].J H i g h E n e r g y P h y s ,2013,2014(3):125.[5]T O R R E S R.N o n s i n g u l a rb l a c kh o l e s ,t h ec o s m o l o g i c a l c o n s t a n t ,a n da s y m p t o t i cs a f e t y [J ].P h y sR e vD ,2017,95(12):124004.[6]Z E N G XX ,L I U X M ,L I U W B .H o l o g r a p h i c t h e r m a l i z a t i o nw i t h a c h e m i c a l p o t e n t i a l i nG a u s s -B o n n e t g r a v i t y [J ].J H i g hE n e r g y P h y s ,2014,2014(3):124.[7]Z E N G XX ,L I U W B .H o l o g r a p h i c t h e r m a l i z a t i o n i nG a u s s -B o n n e t g r a v i t y [J ].P h y sL e t t B ,2013,726(6):481487.[8]P A R KC .H o l o g r a p h i c r e n o r m a l i z a t i o n i nd e n s em e d i u m [J ].A d vH i g hE n e r g y P h ys ,2014,2014(9):565219.175第6期 李慧玲,等:磁荷对H a y w a r d -A n t i -d eS i t t e r 黑洞的全息互信息的影响。
导致Unruh-Hawking效应与可延拓出分叉Killing视界的充分条件
导致Unruh-Hawking效应与可延拓出分叉Killing视界的充分条件张靖仪;杨锦波【摘要】文章回顾了“导致Hawking效应的普遍坐标变换”一文中产生Unruh-Hawking效应的条件,对这些条件的作用进行了梳理.基于同样的方法,作者找到了能导致可延拓分叉Killing视界的充分条件并做出了证明.新的条件原则上也可以把非时轴正交的情况包括进来.由于可延拓分叉Killing视界普遍具有非零的表面引力,因此,也可以说这些新条件是导致Unruh-Hawking效应的充分条件.最后以极端RN黑洞为例,讨论了极端Killing视界的情况.【期刊名称】《广州大学学报(自然科学版)》【年(卷),期】2017(016)002【总页数】5页(P9-13)【关键词】分叉Killing视界;非零表面引力;Unruh-Hawking效应;极端视界【作者】张靖仪;杨锦波【作者单位】广州大学天体物理中心,广东广州510006;广州大学天体物理中心,广东广州510006【正文语种】中文【中图分类】O412.1Rindler参考系的Unruh效应与黑洞的Hawking辐射的发现已经几十年了,它们的发现令黑洞力学四定律与热力学四定律的“形似”变为“神似” [1-2].人们从不同的角度出发去理解它们,有的从弯曲时空量子场论出发,证明了这种效应是分叉Killing视界的一个普适的性质[3-4];有的认为虽然已经确定了视界普遍导致这种效应,但是其统计物理的根源尚未得到很好的理解[5-7]; 它同时还有其他物理上很新奇的想法的来源.例如,一个研究有限温度场论的非常有意义的工具——桂氏时空,也是受到这方面研究的启发提出来的[8-9].分叉Killing视界跟黑洞热力学第零定律——表面引力为常数有很大的关系.可以证明,分叉Killing视界的表面引力必定为常数,反过来,表面引力为常数的Killing 视界虽然不一定就是分叉Killing视界,但总可以延拓出一个分叉Killing视界[10]. 此外,WALD还证明了黑洞的熵可以视为微分同胚不变的引力理论对分叉Killing视界的Noether荷[11].可见分叉Killing视界应与黑洞热力学有很深的关系.黑洞的Hawking辐射引发了信息佯谬[12].现在基于全息原理的论证,大部分物理学家都相信Hawking辐射的过程是幺正的,但是不清楚信息释放的机制,一般都认为Hawking原来的计算忽略了出射Hawking辐射粒子与剩下的黑洞的微观态的关联[13].考虑了这一关联之后,幺正性就不会遭到破坏,但是这个考虑又引起了晚期黑洞会不会在视界形成Firewall的争论[14].在这场争论中,MADECENA等[15]提出了ER=EPR的猜想,它断言几何上的Einstein-Rosen桥时空构型跟量子的EPR纠缠对是等价的,例如,Schwarzchild-AdS的最大延拓正好可以在全息原理的意义上跟边界上的热纠缠态对应起来.这个想法起码能在特定的拓扑场论中以某种方式实现[16].随后更加激进的猜想——复杂度-体积对应乃至复杂度-作用量对应也被提出来[17-18].有趣的是,他们所谈的不可穿越虫洞——Einstein-Rosen桥实际上也是分叉Killing 视界的喉部.从这点来看,按照文献[3-4]的结果,起码可以认为ER=EPR在弯曲时空量子场论的层次上是成立的.文献[7]在寻找到Unruh-Hawking效应的统计物理根源这一方向上做出了努力.该文认为时空变量分离变量形式的坐标变换扮演了很重要的角色,地位可能相当于统计物理中的分子混沌假设.只要再提一些物理上合理的要求,可以证明,分离变量型的坐标变换会导致Unruh-Hawking效应.然而这些条件,有些是对坐标系的要求,有些又是对时空的要求,但并没有区分得很清楚.本文希望能进一步理清文献[7]所提条件的含义,进一步讨论它们和分叉Killing视界的关系,找出导致Hawking效应的充分条件.针对线元ds2=-G0dT2+G1dX2+G2dY2+G3dZ2, 文献[7]给出了能导致Hawking辐射的普遍坐标变换:①坐标系变换采取分离变量的形式且f1(x),f2(x),g1(t),g2(t)全都不为常数;②新时空时轴正交③新时空稳态且④满足初条件t=0时,T=0.这4个条件将会把坐标变换的形式限制成条件1构造了一个坐标系变换,但是坐标系变换是可以很随意的,取什么样的坐标变换都可以,初看是一个平凡的条件.条件4不怎么重要,只是个原点选择的问题.实质性的是条件3.条件3该分3个方面看.首先是要求新时空稳态,也就是说时空中存在类时Killing矢量场.其次是把它的积分曲线的参数用作时间坐标t,则可定义Killing矢量场的适配坐标系.在这个坐标系中,自动会有G3=0,粗略地看,这个要求似乎也很平凡.但它配合同样也是看上去很平凡的条件1就不平凡了,它们在一起相当于要求从坐标系{T,X,Y,Z}换到Killing矢量场的适配坐标系必须具有分离变量的形式.最后,条件3中最强的要求是G1=0.一般而言,度规分量与t无关只在适配坐标系中成立,换了其它坐标系就不一定成立.可见条件3还对其它坐标系中的度规分量提出了要求.而这个要求会对G0,G1做出限制,使它们满足一定的关系.它可以等价地理解为对这2个要求:(dT)a(dT)a和(dX)a(dX)a对Killing 矢量场的李导数为零.条件2限制太强,把Kerr一类的黑洞都排除在外,这其实可以改进.重要的是要挑出一个跟Killing矢量场垂直的方向.本节将用文献[7]中的技术,重新研究什么是可延拓出分叉Killing视界的充分条件.给定一个时空,时空里存在标量场r(可以据此定出时空分层)与类时Killing矢量场a, 它们满足:① aar=0.于是可以选定超曲面r=rc,由于 a总是切于超曲面,所以超曲面r=rc里总有 a的积分曲线.任意指定一条,再让rc发生变动,就得到一个以rc为参数的 a 积分曲线族,它张成一个二维子流形.二维子流形上的坐标可以自然地取为r和 a 积分曲线的参数η,并使得它满足,这个二维流形上的诱导度规为显然,aa和arar都不会是η的函数.②用η和r再进一步构造如下形式的标量场T,R其中, 1不能全局为零.要求它们满足如下条件可以证明存在常数c,使得(dT)a(dT)a+c2(dR)a(dR)a=0和L(T2-c2R2)=0成立.再进一步,如果(dT)a(dT)a作为T和R函数,在包括T=R=0的开集上满足-∞<(dT)a(dT)a<0,则可延拓出分叉Killing视界.下面给出证明过程.由T和R的构造可知为了简化公式,定义gTT=(dT)a(dT)a, gRR=(dR)a(dR)a, gηη=(dη)a(dη)a,grr=(dr)a(dr)a.于是因为1(η)不能全局为零,所以从公式(10)可以导出公式(8)和公式(9)就是要求LgTT=LgRR=0,可以导出可见,和都是常数,而且是非零常数.非零是因为如果常数为零,就会有g0和g1为常数, 继而T和R的表达式,不能用来构成坐标变换.反之可以设0=w1g1和1=w0g0,其中w0,w1都是不为零的常数.这样就有gηη.再次运用公式(8)和公式(9)可以求出公式(14)又给出于是,有根据上式和 a类时,可以得出w0与w1必定同号,这样0=w1g1和1=w0g0还蕴含着,即为常数,不妨记为K.并且,式(19)可以推出于是f1=af0,其中a是任意非零常数.从式(15)可以得到配合,还可以知道L,更进一步,有w0与w1必定同号意味着是正的常数.还可以求出可见K必定是负的常数, a类时说明gηη<0.条件gTT=(dT)a(dT)a为有限负数是可以得到满足的.引进坐标变换ξ = ,那么dr, 二维面上的诱导线元关系式(22)变为再根据和gTT必定是个有限负数,有原来讨论的时候要求a是类时的,只占据了R2<0区域,即ξ>0的范围.而式(26)和式(27)则表示ξ→0时,有aa→0.ξ可以光滑地延拓到等于0和小于0的地方,分别对应R2=0和的区域.在T-R平面上,代表和根直线,可见它就是分叉Killing 视界.命题得证.实际上对gTT在T=R=0附近的有限性要求暗示人们,即使坐标变换采取时空变量分离、时间部分作为双曲函数出现的形式,也不一定能延拓出分叉Killing视界,因而不一定有非零的表面引力.以RN黑洞为例,分极端情况和非极端情况讨论,以此来说明(dT)a(dT)a的重要性.给出RN黑洞的线元表达式视界位置由方程r2-2Mr+Q2=0决定.先讨论非极端黑洞,有r+≠r-,于是线元可以写为引入坐标变换其中则有其中如果选择,那么,而且在r=r+处是解析的.T,R可以延拓到T2-R2<0的区域以外.而这个ω的选择正好就是外视界r=r+的表面引力.对内视界也一样,如果选择,则G(r)在r=r-处解析.现在再来讨论极端RN黑洞,这时r+=r-=M,于是线元表达式是引入类似的坐标变换其中,将得到ds2=G(r)(-dT2+dR2)+r(T,R)2dΩ2其中r作为T,R的函数由下式决定无论如何选择ω,G(r)在r=M处的奇异性都无法消去,但是r=M对极端RN黑洞而言只是一个坐标奇性,这说明了坐标系{T,R}只能覆盖到T2-R2<0的区域,它没有办法做延拓.文献[7]提及的4个条件,极端RN黑洞都能满足,确实如同证明所表现的那样一定可以找到该文献中提到的特定的坐标变换:T=f(r)sinh(ωt),R=f(r)·cosh(ωt),然而极端RN黑洞的表面引力为0,意味着在极端RN黑洞的时空中不存在Hawking辐射(但可以有粒子对产生[19]).也就是说这种形式的坐标系变换并不如原来想象中那样会导致Hawking辐射.只有当可以延拓出分叉Killing视界的时候,才会有Unruh-Hawking效应.而要做到这点,就要在原来所提条件的基础上多加一个对(dT)a(dT)a解析性质的要求.可延拓出分叉Killing视界的充分条件是存在标量场r与类时Killing矢量场 a,满足 aar=0,并且可以利用它们去构造2个标量场T和R,满足要求L(dT)a(dT)a=L(dR)a(dR)a=(dT)a(dR)a=0,和要求(dT)a(dT)a作为T和R的函数在T=R=0附近有限.aar=0和L(dT)a(dT)a=L(dR)a(dR)a=(dT)a(dR)a=0 2个条件导致了L和个结果.这2个结果保证坐标变换中的η变量总会以双曲函数的形式出现.(dT)a(dT)a作为T和R的函数在T=R=0附近有限意味着总可以延拓出分叉Killing视界,于是总有一个非零的表面引力.最后这点的要求必不可少,极端RN黑洞就是一个很好的例子.【相关文献】[1] HAWKING S W. Particle creation by black holes[J]. Commun Math Phys,1975,43: 199-220.[2] UNRUH W G, WEISS N. Acceleration radiation in interacting field theories[J]. Phys Rev D,1984,29: 1656-1662.[3] JACOBSON T. A note on Hartle-Hawking Vacua[J]. Phys Rev D, 1994, 50:6031-6032.[4] SANDERS K. On the construction of Hartle-Hawking-Israel states across a static bifurcate killing horizon[J]. Lett Math Phys, 2015, 105(4): 575-640.[5] 赵峥. 四维静态黎曼时空中的Hawking辐射[J]. 物理学报,1981,30: 1508-1518.ZHAO Z. Hawking radiation in four dimensional static Riemann spacetime[J]. Acta Phys Sin, 1981, 30: 1508-1518.[6] 刘辽. 费曼路径积分和霍金蒸发[J]. 物理学报,1982,31(4): 519-524.LIU L. Feynman’s Path-integral Method and Hawking evaporation[J]. Acta Phys Sin, 1982, 31(4): 519-524.[7] 赵峥. 导致Hawking效应的普遍坐标变换[J]. 物理学报,1990,39(11): 1854-1862.ZHAO Z. University coordinate transformation leading to Hawking effect[J]. Acta Phys Sin, 1990, 39(11): 1854-1862.[8] GUI Y X. Quantum field in η-ξ spacetime[J]. Phys Rev D,1990,42: 1988-1995.[9] GUI Y X. Fermion fields in η-ξ spacetime[J]. Phys Rev D,1992,45: 697-700.[10]RACZ I, WALD R M. Extensions of spacetimes with killing horizons[J]. Class Quantum Grav,1992,9(12): 2643-2656.[11]WALD R M. Black hole entropy is the noether charge[J]. Phys Rev D,1993,48:R3427-3431.[12]HAWKING S W. Breakdown of predictability in gravitational collapse[J]. Phys Rev D,1976,14: 2460-2473.[13]VERLINDE E, VERLINDE H. Black Hole entanglement and quantum errorcorrection[J/OL]. 2012,arXiv:1211.6913v1 [hep-th].[14]ALMHEIRI A, MAROLF D, POLCHINSKI J, et al. Black Holes: Complementary or firewalls[J/OL]. 2012,arXiv:1207.3123v4 [hep-th].[15]MALDACENA J, SUSSKIND L. Cool horizons for entangled black holes[J/OL].2013,arXiv:1306.0533v2 [hep-th].[16]BAEZ J C, VICARY J. Wormholes and Entanglement[J/OL]. 2014,arXiv:1401.3416v2[gr-qc].[17]SUSSKIND L. Entanglement is not enough[J/OL]. 2014,arXiv:1411.0690v1[hep-th].[18]BROWN A R, ROBERTS D A, SUSSKIND L. Complexity equals action[J/OL].2015,arXiv:1509.07876v1 [hep-th].[19]CHEN C M, KIM S P, LIN I C, et al. Spontaneous pair production in reissner-nordström Black Holes[J/OL]. 2012,arXiv:1202.3224v2 [hep-th].。
2024国际物理奥林匹克竞赛试题
选择题一个质子和一个中子结合形成一个氘核时,会释放能量。
这一过程中,以下哪个物理量守恒?A. 质量B. 电荷量C. 质量与电荷量均守恒(正确答案)D. 仅有能量守恒在双缝干涉实验中,当光屏上某点到两缝的光程差为半个波长时,该点将出现:A. 明条纹B. 暗条纹(正确答案)C. 无法确定条纹明暗D. 既非明条纹也非暗条纹关于黑洞的视界,以下描述正确的是:A. 视界是黑洞内部与外部的分界线,物质和光可以穿越B. 视界是黑洞的“表面”,但实际上并不存在物理意义上的表面C. 视界内部的事件对外部观察者而言是不可见的(正确答案)D. 视界的大小与黑洞的质量无关在量子力学中,波函数的平方代表什么?A. 粒子的动量B. 粒子的位置C. 粒子在某处出现的概率密度(正确答案)D. 粒子的能量以下哪个现象不能用经典力学解释?A. 行星绕太阳的运动B. 电磁波的传播(正确答案)C. 炮弹的弹道D. 地球的自转在相对论中,当物体的速度接近光速时,以下哪个物理量将显著增加?A. 物体的质量(正确答案)B. 物体的体积C. 物体的密度D. 物体的电荷关于原子核的裂变,以下说法正确的是:A. 裂变过程中,原子核的总质量增加B. 裂变过程中,会释放大量的能量(正确答案)C. 裂变只能发生在重元素中,如铅D. 裂变是原子核自发分裂的过程,无需外部粒子轰击在电磁感应现象中,当导体在磁场中运动时,感应电流的方向由什么定律决定?A. 欧姆定律B. 库仑定律C. 楞次定律(正确答案)D. 法拉第电磁感应定律关于量子纠缠,以下哪个描述是正确的?A. 量子纠缠是经典物理中的常见现象B. 量子纠缠意味着两个粒子在任何时刻的状态都是完全相同的C. 量子纠缠的两个粒子之间,对其中一个粒子的测量会瞬间影响到另一个粒子的状态,无论它们相距多远(正确答案)D. 量子纠缠可以通过经典通信来复制和传递。
Tube Model for Light-Front QCD
For instance, some of the zero modes that were otherwise constrained become dynamical. In light-front field theory, equations of motion are typically of the form ∂+(∂− + igV )φ = U(φ), where U(φ) is the potential term. When V = 0 it is clear why zero modes ∂−φ = 0 are not dynamical: they have no conjugate momentum. However, note that when V is nonzero, the associated kinetic term is small (since V is small) relative to the kinetic term of any non-zero mode. Thus, one may just as well treat these zero modes as non-dynamical (that is, as a solution of a constraint equation).
1 The gauge zero mode
Before we begin, we must discuss the “gauge zero mode,” V ≡ dx− A−. As has been noticed by several authors in the context of both light-front [5] and equal time [6] quantization, one cannot set V = 0 by choice of gauge because it is a genuine dynamical degree of freedom. Only the gauge choice ∂−A− = 0 is allowed.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :h e p -t h /0104202v 2 18 J u l 2001February 1,2008hep-th/0104202HUTP-01/A019Duality of the Fermionic 2d Black Hole and N =2LiouvilleTheory as Mirror SymmetryKentaro Hori and Anton Kapustin Jefferson Physical Laboratory School of Natural Sciences Harvard University Institute for Advanced Study Cambridge,MA 02138,U.S.A.Princeton,NJ 08540,U.S.A.Abstract We prove the equivalence of the SL (2,R )/U (1)Kazama-Suzuki model,which is a fermionic generalization of the 2d Black Hole,and N =2Liou-ville theory.We show that this duality is an example of mirror symmetry.The essential part of the derivation is to realize the fermionic 2d Black Hole as the low energy limit of a gauged linear sigma-model.Liouville theory is obtained by dualizing the charged scalar fields and taking into account the vortex-instanton effects,as proposed recently in non-dilatonic models.The gauged linear sigma-model we study has many useful generalizations whichwe briefly discuss.In particular,we show how to construct a variety of dila-tonic superstring backgrounds which generalize the fermionic 2d Black Hole and admit a mirror description in terms of Toda-like theories.1IntroductionThe mirror dual of an N=2supersymmetric non-linear sigma-model on a toric variety has been derived in[1]by realizing the model as the low energy limit of a gauged linear sigma-model[2],and dualizing the phases of charged scalarfields.This can be viewed as T-duality applied to thefibers of a torusfibration.When a circlefiber shrinks to zero size at some locus of the base,one could na¨ıvely expect that the dual circle blows up at the same locus.What really happens is the following.To each such degeneratingfiber there corresponds a superpotential term,generated by the vortex-instanton of the gauge system (analogously to[3]),that diverges toward the degeneration locus.The superpotential also breaks the rotational symmetry of the dual theory,accounting for the loss of winding number in the original system due to the degeneration of the circle.This is the story for(2,2)supersymmetric non-dilatonic sigma-models on toric manifolds,but it would be interesting to see how universal this phenomenon is.Some time ago,Fateev,Zamolodchikov and Zamolodchikov(FZZ)[4]conjectured a duality between the conformalfield theory of a two-dimensional Euclidean black hole[5] and a Landau-Ginzburg theory,called sine-Liouville theory.The2d Black Hole is defined as the level k SL(2,R)/U(1)coset model and has the following target-space metric and dilaton for large kd s2=k[dρ2+tanh2ρdϕ2],Φ=Φ0−2log coshρ.(1.1) Hereϕis a periodic variable of period2π.The coset theory is well-defined for all k>2. On the other hand,the sine-Liouville theory is a theory of scalarfields−∞<̺<∞and ϑ≡ϑ+2πwith the following actionS=1k−2(d̺)2+1k−2R h̺+µ2e−̺cosϑ √k and the dilaton is linear,Φ∼−2ρ.Atρ=0the circle shrinks to zero size,and therefore the overall geometry is that of a semi-infinite cigar.Sine-Liouvilletheory also has an asymptotic region,̺→∞,where the potential is exponentially small√and the theory is the sigma-model on a cylinder of radius1/therefore for small k,where the radius of the cylinder is large and semiclassical reasoning is valid,we expect the model to be unstable.This corresponds to the fact that the coset model is well-defined only for k>2.If we compare the radii of the two asymptotic regions,we notice that the two theories may be related by T-duality.The shrinking of the circle as one goes towardsρ=0on the2d Black Hole side corresponds to the exponentially growing potential which breaks rotational symmetry on the sine-Liouville side.Thus FZZ duality is strongly reminis-cent of mirror duality between(2,2)sigma-models and(2,2)Landau-Ginzburg models mentioned above.In this paper,we prove the supersymmetric version of FZZ duality using the method of [1].Instead of a2d Black Hole we consider a fermionic2d Black Hole,defined as the level k SL(2,R)/U(1)Kazama-Suzuki supercoset model[7],and instead of sine-Lioville theory we consider N=2supersymmetric Liouville theory[8].This duality was conjectured in [9]from the space-time point of view;closely related ideas were discussed earlier in[10–12], and the duality was studied more recently in[13].The supercoset model can be viewed as an N=1supersymmetric sigma-model with target-space metric(1.1).The action for N=2Liouville theory on aflat world-sheet is given byS=12k|Y|2+12π d2x d4θ 4(P+2e2|Σ|2 .(1.4)We willfirst give some numerical evidence.We will show that the sigma-model that arises after integrating out the gauge multipletflows under one-loop renormalization groupflow to the supersymmetric sigma-model with target-space metric(1.1).We will explicitly see how the linear dilaton in the asymptotic region is generated.The one-loop approximationis valid for large k.To go beyond this approximation,we compute the infrared central charge of the above gauged linear sigma-model(GLSM).Following[14,15],we identify the right-moving N=2superconformal algebra in the ring of left-chiral operators.The classical gauge theory(1.4)has both vector and axial R-symmetries,but on the quantum level the axial R-symmetry is anomalously broken.However,one can modify the current using thefield P to make it conserved.This allows us to identify the right-moving R-current,and then the full N=2superconformal algebra.The correction terms in the superconformal currents are linear in P and generate linear dilaton in the asymptotic region.(Alternatively,one can obtain the whole current superfield by cancelling the Konishi anomaly[16]associated to the axial anomaly.)Wefind that the central charge isc=3 1+2(this can be derived either by4kusing the fact that the supercoset is asymptotic to a linear dilaton theory with back-√ground charge Q=1/1We assume that world-sheet parity is a symmetry of the theory.Otherwise h min is defined as the smaller of the lower boundaries of the spectra of L0and˜L0.generalization of[1].Dualizing the phase ofΦand the imaginary part of P,we obtain twisted chiral superfields Y and Y P of period2πi.The superpotential of the dual system isW=Σ(Y+Y P)+µe−Y,(1.6) where the term linear inΣis present already at the classical level,and the exponential term is generated by the vortex ofΦ.Note that the P-vortex is absent,and therefore no nonperturbative superpotential is generated for Y P.The K¨a hler potential isK=−12k|Y P|2+...,(1.7)where dots denote a possible correction term that vanishes in the asymptotic region Re Y→∞.In the infrared limit e→∞it is appropriate to integrate outΣ,and this gives a constraint Y+Y P=0.Thus,we obtain a theory of a single periodic chiral superfield Y with the superpotential e−ing the uniqueness of the supersymmetric coset,one can show that the corrections to the K¨a hler potential indicated by dots in(1.7) are in fact absent.Note that in general the methods of[1]do not allow to control the K¨a hler potential.What makes the present case different is that one can continuously deform the gauge theory(1.4)to the N=2Liouville theory without breaking any sym-metries.Since the supersymmetric coset is rigid,this implies that the infrared limit of the theory(1.4)is equivalent to N=2Liouville theory.This alternative way of deriving the mirror dual is less general than that used in[1],but provides more information about the dual theory.We also describe some obvious generalizations of the model(1.4),compute their in-frared central charge andfind mirror duals.Some of these modelsflow to non-trivial(2,2) superconformalfield theories and can be used to construct a variety of higher-dimensional superstring backgrounds with a non-constant dilaton and fermionic symmetries.Others are massivefield theories which upon integrating out the gaugefields reduce to sigma-models on“squashed”toric varieties.Mirror symmetry relates these sigma-models to Landau-Ginzburg models;for example,the sigma-model on a“squashed”CP1(the su-persymmetric“sausage model”)is mirror to the N=2sine-Gordon model with afinite K¨a hler potential.In fact,in this particular case both theories are integrable,and their equivalence has been conjectured by Fendley and Intriligator[21].(The squashed toric sigma models and the mirrors are also introduced and studied from a different but related point of view in[22].)2The Gauged Linear Sigma-ModelThe field content of the gauged linear sigma-model will be the following:two chiral superfields Φand P and a vector superfield V .Our superfield conventions are collected in Appendix A.The gauge transformations laws are defined to beΦ→e i ΛΦ,P →P +i Λ,V →V −i Λ+iD +Λ=2π d 2x d 4θ 4(P +2e 2|Σ|2 .(2.2)Here Σ=D +Σ=D −Σ=0.We did not include the Fayet-Iliopoulos term as it can be absorbed into P .Neither did we include its superpart-ner,the theta-angle,since it breaks world-sheet parity,while we want the theory to flow to a parity-invariant supercoset model (see Appendix D for details about the definition of world-sheet parity for the coset models).The chiral superfield P can be gauged away completely,after which one is left with Φand a massive vector superfield described by V .Thus the action (2.2)describes massive N =2QED.Alternatively,one can choose the Wess-Zumino gauge for V and retain P .Then the action in terms of component fields reads1φD µφ+i ψ+(D 0−D 1)ψ++D |φ|2+|F |2−|σ|2|φ|2−ψ+φλ−ψ++i ψ+ψ−2 −D µχ−(∂0+∂1)χ−+i p )+|F P |2−|σ|2+iχ+λ−−iχ−λ++i λ−−i λ+ +1σ∂µσ+i λ+(∂0−∂1)λ++v 201+D 2 .(2.3)Here φand p are the lowest components of Φand P ,respectively,ψand χare their superpartners,and v µ,λ,and D are components of a vector multiplet in the Wess-Zumino gauge.D µφand D µψ±are the standard covariant derivatives,while D µp :=∂µp +iv µ.After one gauges away the imaginary part of p,one can see that the gaugefield and its superpartners have mass e√k one can integrate outΣand set the D-term potential to zero.The D-term is given byD(φ,p)=|φ|2+k Re p.To obtain the low-energy effective action forΦwe set Im p=0(this is a gauge choice), express Re p in terms ofφby means of D(φ,p)=0,and integrate out V omitting the last term in the action(because the infrared limit is equivalent to taking e→∞).Equiva-lently,we can take theflat space parametrized byφand p with K¨a hler potentialK(φ,p)=|φ|2+kk )dr2+r2kdθ2.(2.4)Here r=√k. Thus it describes a cigar,i.e.a2d Riemannian manifold diffeomorphic to R2with a metric which has a U(1)isometry and asymptotes to aflat metric on a cylinder.The metric(2.4)is different from the usual2d Black Hole metric[5].If one sets r=√gρρ(ρ)dρ.(2.7)In terms of v,θany cigar-like metric has the formds2=dv2+F2(v)dθ2for some function F(v)which approaches a constant for v→∞.For our metric the differ-√ence F(v)−R ij.(3.1)2πIts only zero is aflat metric,and since any cigar has a nonzero curvature near the tip, na¨ıvely it appears that a cigar-like metric cannot be afixed point of the RGflow.Theresolution of this puzzle is well-known(see e.g.[23])and is related to the possibility of having a dilaton gradient.In the usual formulation,the dilaton affects the coupling of the sigma-model to a curved world-sheet metric.Alternatively,if one prefers to stay on aflat world-sheet,one may say that a non-trivial dilaton gradient in space-time is equivalent to assigning a non-trivial Weyl transformation law to target-space coordinates.Once the possibility of a non-trivial Weyl transformation law for X i is recognized, it is easy to see in what sense a cigar can be invariant under RGflow.Let usfix a conformally-flat gauge for the space-time metric G ij,so that it has the formds2=eΨ(u) du2+dθ2 .(3.2) The functionΨ(u)does not depend onθbecause we are only interested in the sigma-models which have a U(1)isometry.The tip of the cigar corresponds to u→−∞,while the cylindrical asymptotics is reached for u→+∞.From the known behavior at the tip and at infinity we infer thatΨ(u)∼2u+...for u→−∞,(3.3)Ψ(u)∼log k+...for u→+∞.The functionsΨ(u)and F(v)are related as follows:F(v)=eΨ(u)/2,v= u−∞eΨ(u)/2du.(3.4)Note that both(3.2)and(3.3)are left invariant by reparametrizations u→u+c,θ→θ+c′,where c,c′are constants.This is what remains of reparametrization invariance after wefix the gauge(3.2,3.3).Hence the most general transformation law for u andθunder the Weyl rescaling of the world-sheet metric by t2isu→u+at,θ→θ+a′t,where a,a′are real constants.Saying that the metric approaches afixed limit under such a modified Weyl transformation is equivalent to saying that forµ→∞the function Ψ(u,t)depends only on the difference u−at:Ψ(u,t)→ΨIR(u−at).SinceΨdoes not depend onθ,by a t-dependent reparametrization ofθone can make a′=0.The one-loop RG equation forΨis∂Ψ(u,t)4πe−Ψ(u,t)∂2Ψ(u,t)4πe−ΨIR(u)Ψ′′IR(u)+aΨ′IR(u)=0. The general solution of this equation iseΨIR(u)=1λ,whereλ,b are constants.Imposing the conditions(3.3),we obtainλ=2,a=1e−2(u−b)+1 k tanhρ=eΨIR(u)/2the metricds2=eΨIR(u)(du2+dθ2)is transformed to the form Eq.(2.6).This proves that the only cigar-likefixed point of the one-loop RG equations is the2d Black Hole.We now would like to show that our metric(2.5)indeedflows to this infraredfixed point.We setΨ(u,t)=f(u−t/(2πk),t),and solve numerically the RG equation for f(u,t).The initial condition is implicitly given by the metric(2.5).Explicitly,Ψ(u,0)=Ψ0(u)can be written in a parametric formeΨ0(u(r))=kr22.It is useful to note that the equation(3.5)is invariant with respect to the transforma-tionΨ(u,t)→Ψ(u,t)+log q,t→qt.This means that we can absorb k into the defintion of the RG time t.Therefore in the remainder of this section we set k=1.v0.900.951.00F v,t tanh vΤ 0Τ 1Τ 4Τ 20Τ 200Figure 1:RG evolution of the cigar metric.We plotted F (v,t )/tanh v as a function of v for several values of the rescaled RG time τ=t/(4π).For numerical integration we used an implicit scheme,which requires solving a sparse (tri-diagonal)system of linear equations at each step (see e.g.[24]).It is also convenient to reparametrize the variable u so that it runs over a finite rather than an infinite interval.The results of the numerical integration of the RG equation are presented in Figure 1.We chose to plot the ratio F (v,t )/tanh v where F (v,t )is related to Ψ(u,t )by (3.4).For the 2d Black Hole this ratio is equal to 1.From Figure 1it is evident that F (v,t )/tanh v approaches 1as t →+∞.Hence at one-loop level the sigma-model with target-space metric (2.5)flows to the 2d Black Hole (2.6).The discussion in this section clarifies how a linear dilaton is generated by the RG flow.The point is simply that as the RG time increases,the cigar tries to shrink,so that its tip moves towards positive u .In order to “keep up”with the tip,one has to make a t -dependent reparametrization of the u -coordinate,which is equivalent to redefining the Weyl transformation law for u .4An Exact Computation of the Central ChargeIn the previous section we have analyzed the renormalization group flow in the one-loop approximation which is valid for large k .In this section,using the method of [14,15],we show that the central charge of the IR superconformal fixed point has to be exactly c =3+6/k .This computation is used in the next section to prove that the GLSM (2.2)flows to the fermionic 2d Black Hole for all k >0.4.1Q+.It is a nilpo-tent operator whose anti-commutator with its conjugate Q+is the left-moving translation operator:(Q+,Q+}=H+P.(4.1) By the nilpotency,one can considerQ+,O]=0then [H+P,O]={Q+-closed operators are independent of x+=x0+x1,that is,they depend only on the x−=x0−x1coordinates of the insertion points.(In the Euclidean theory they are holomorphic functions.)In particular they form a right-moving operator product algebra(i.e.a chiral algebra).Suppose a(2,2)field theoryflows to a(2,2)superconformalfield theory.Then(2,2) supersymmetry is enhanced in the IR limit to left-moving and right-moving N=2super-Virasoro algebras whose generators(anti-)commute with each other.In particular,the right-moving super-Virasoro is contained in the chiral algebra ofQ+-cohomology atfinite energy).Therefore,if one can uniquely identify such a chiral algebra atfinite energy,one can learn about the right-moving superconformal algebra in the IR limit,and in particular compute its central charge.So let us look for such a superconformal algebra in theD+J=0.(4.2) Then the lowest term in theθ+,Q+,J|θ+=D+=Q+cohomology class.Its lowest component willflow to the right-moving R-current of the IR theory(moduloψ∓ψ∓+k χ∓χ∓−1λ∓λ∓,(4.4)j ±A =±ψ∓2χ∓2e 2λ∓e 2(∂∓σ∂∓σ).(4.5)The right-moving R-current j ±R =1ψ−+k χ−+i σσ−2e 22e 2(∂+σ∂+σ).(4.7)In the limit e 2→∞where the Σmultiplet becomes very massive,j −R vanishes and j +Robeys the right-moving condition ∂+j +R =0classically.Let us consider a superfieldJ ◦=D −(Φe V )e −VΦ)+k P +V )P +V )+i Σ.(4.8)It is invariant under the gauge transformation (2.1),and its lowest component ψ−2χ−e 2σ∂D +Φ)=0,(4.9)D −(P +Φ+k P +V )+1D −Σ+D −Σ)=0,(4.11)it is easy to check that this superfield obeys the right-chiral conditionD +J ◦=1D −Σ.(4.12)This is a supersymmetric extension of the chiral anomaly equation∂µj µA =2F +−.(4.13)The factor 2in front of F +−can be understood by noting that there are n zero modes for both ψ−and 2πF .The equation (4.12)is a (1+1)-dimensional version of the Konishi anomaly [16],and its detailed derivation is given in Appendix C.Usually,the anomalous current cannot be modified in a gauge-invariant way so that it is conserved.The situation is different in the present theory where we have a field ϕP :=Im p that shifts under the gauge transformation.Then,the curvature F +−can be expressed as a differential of a gauge invariant quantityA µ=∂µϕP +v µ,(4.14)namely F +−=∂+v −−∂−v +=∂+A −−∂−A +.Then the modified axial currentj +A =j +A −2A −, j −A =j −A +2A +,is gauge-invariant and conserved.This story has a supersymmetric generalization.LettingδJ =1D −D −−D −P +V ),(4.15)we can derive from (4.10)that D −Σ.This is correct quantum mechani-cally,since the equation of motion (4.10)is used linearly.Thus the modified currentJ :=J ◦+δJ(4.16)satisfies the right-chiral condition on the quantum level:θ±=0=ψ−2χ−e 2σ∂−ψ−+k χ−+i σ +∂−1λ+λ+−i σ∂+σ =F +−=2∂+A −,(4.19)where we have used the ϕP equation of motion ∂µA µ=0in the last step.We note thatσ∂+σ={σψ−+k χ−+i σ−2A − =0modulo {4.3The superconformal algebraWe define the currents j −,G −,D −J ,1D −,D −]J .They have the following expressions in terms ofcomponent fields:j −=ψ−2χ−e 2σ∂−p ),(4.21)G −=−2iψ−D −p +1λ−+i∂−χ−,(4.22)ψ−+ki D −p e 2λ−∂−χ−,(4.23)T −=2D −φD −p +1σ−σ∂2−2(ψ−D −ψ−)+ik χ−−∂−χ−2e 2λ−∂−2∂−(D −p +D −p ).)The quadratic termsin the currents come from J ◦,and the linear terms are from the “quantum correction”δJ .Since they are the lowest components of right-chiral superfields,they represent right-movingψ−(x )ψ−4χ−χ−(0)−1σ(x )σ∂−(x −)2+k 2(x −)2−1(x −)2+4−1/2k (x −)2.(4.25)Similarly,we can show that the rest of the OPE has the form j −(x )G −(0)∼−i G −(0)∼i G −(0),T −(x )j −(0)∼−1x −∂−j −(0),T −(x )G −(0)∼−3/2x −∂−G −(0),T −(x )(x −)2x −∂−2(x −)4+−2x −∂−T −(0),G −(x )(x −)3−2x − T −(0)−iThis is an N=2superconformal algebra with central chargec=3 1+2D−(P+D+J2=0by virtue of the equations of motion(4.10).1This current is free of Konishi anomaly orD+J2=0is derived by using the equation of motion linearly.Thus it appears that one can modify the current J by an arbitrary multiple of J2J′=J+a J2.(4.30) It is easy to see that the four currents j′−,G′−,ψ−+kχ−+iσ+i(D−p−D−p,=Re j′−+i 11The chiral current for the phase rotation ofΦis D−Φ).This is equal to−k D−(P+ D+(i∂−D−D+exact terms.The current in the infrared limit has to be real and therefore the imaginary part in (4.31)has to vanish up to∂−|σ|2is negligible2e2in that region,becauseσhas a large mass due to large values of|φ|2∼−Re p/2.On the other hand,thefield∂−Re p survives in the IR limit as a freefield(possibly with a background charge),and is not Q+-exact terms,we have to seta=0.(4.32) It follows that j−,G−,k .(5.1) Unlike in the bosonic case,here the expansion of the central charge in powers of1/k terminates at one-loop order.For large k this CFT is weakly coupled and is equivalent to the sigma-model with target(2.6).Note that the central charge of the fermionic2d Black Hole at level k is exactly the same as the IR central charge of the GLSM(2.2)computed in Section4.In the asymptotic region of the target space both models become√equivalent to the theory of a free chiral superfield with radiusclear from the fact that the sigma-model metric(1.1)describing the supercoset has a U(1) isometry which shiftsϕ).Thus the supercoset has the same symmetries as the IRfixed point of the GLSM.The analysis of Section3shows that for k→∞the GLSM(2.2)flows to the fermionic 2d Black Hole at level k.Forfinite k we only know that the GLSMflows to a(2,2) superconformalfield theory with the same central charge,symmetries,and asymptotic behavior as the fermionic2d Black Hole at level k.It could be that forfinite k the GLSM flows not to the supercoset,but to some otherfixed point nearby.But if this is the case, then the supercoset theory must admit a marginal operator which deforms it to the IR fixed point to which the GLSMflows to.This operator must preserve all the symmetries of the2d Black Hole and leave its asymptotic behavior unchanged.If we can show that such marginal operators are absent,then the GLSM(2.2)has no choice but toflow to the fermionic2d Black Hole for all k>0.5.2Marginal deformations of the bosonic cosetAs a warm-up,let us discuss marginal deformations of the bosonic SL(2,R)/U(1) coset.This problem has been previously addressed in[25,26].We will focus on marginal deformations which preserve all the obvious symmetries of the coset,i.e.momentum and world-sheet parity.In addition we require the deformation to decay or stay constant towardsρ→∞,so that the asymptotic behavior of the model is not drastically altered.First,let us consider marginal operators in the coset which correspond to normalizable states in the parent WZW theory.The quantization of the SL(2,R)WZW has been a subject of interest for many years,but the precise spectrum of the theory was determined only recently[27].According to[27],one should include the following representations of SL(2,R)as the Kac-Moody primaries:.(i)D+j:principal discrete representation with lowest weight of spin j,12.(ii)D−j:principal discrete representation with highest weight of spin−j,12 (iii)Cαj:principal continuous representations with j=1sentations by D±j, Cαj.However,one should also include other representations labeled by an integer w[27].These are obtained by declaring that the primary is annihilated by J+n+w,J3n,and J−n−w for n>0.One says that these new representations are obtained from the usual positive-energy representations by the spectralflow.They are denoted by D±,w j and Cα,w j.Under the spectralflow by w units,the L0and J30eigenvalues of a state change as(h,m)→(h+wm−kw2/4,m−kw/2).In general spectralflow takes a positive-energy representation ofSL(2,R)to a representation with energy unbounded from below.The exceptions to this rule are D+,w=−1j and D−,w=1j.They are equivalent to D−k2−j, respectively.More generally,we haveD−,w j≃ D+,w−1k2,w∈Z)and Cα,w j× Cα,w j(j∈1k−2.(5.3) After the spectralflow by w its quantum numbers becomeJ30=m−kw2,(5.4)L0=−j(j−1)4,˜L0=−j(j−1)4.(5.5)States of the coset theory are represented by states of the parent WZW theory obeyingJ30+˜J30=0,(5.6)J3n=˜J3n=0,n≥1.(5.7) The momentum in the coset theory is given byJ30−˜J30.The Virasoro generators are represented by L n−L U(1)n,˜L n−˜L U(1)n where L U(1)n and˜L U(1)n are the Sugawara operators of the U(1)subalgebra at level k.We are interested in Virasoro primaries in the coset theory which have dimension(1,1) and zero momentum.This means that we are looking for Virasoro primaries of the parent WZW theory satisfying(5.7)together withJ30=˜J30=0and L0=˜L0=1.(5.8)A little high-school algebra shows that in the discrete representations there are two such states for k>3:J−−1˜J−−1|j=1 +,(5.9)J+0˜J+0|j=k2−1and D−1and write the second state as1J+−1˜J+−1|j=1 −.(5.11) Since world-sheet parity exchanges J±and˜J∓and D+j× D+j and D−j× D−j(see Appendix D),the statement becomes obvious.The above two states are in the spectrum if1<(k−1)/2,i.e.for k>3.For k=3the states become delta-function normalizable and appear in the continuous representations with j=1/2,α=1/2,w=±1(see below).For2<k<3the states are not normalizable.Thus for k>3there are two marginal operators in the SL(2,R)WZW theory which come from discrete representations and could give rise to marginal momentum-conserving deformations of the coset.It is easy to write down their explicit form.Following[27]we use the coordinates(ρ,t,ϕ)on SL(2,R)defined byg=e iσ2(t+ϕ)/2eσ3ρe iσ2(t−ϕ)/2(5.12) (φof[27]is replaced here withϕto avoid confusion with the scalar component ofΦ). The vertex operators corresponding to the two states in(5.9,5.11)are given by ∂+ρcoshρ∓i sinhρ∂−(−t+ϕ) .(5.13)They are complex-conjugates of each other and are exchanged by world-sheet parity∂+↔∂−,t↔−t(Appendix D).The coset can be realized as a gauged WZW model[5,25].The gauging is with respect to the translation symmetry t→t−α,and the gauged action is obtained from the ordinary WZW action by replacing∂µt with the gauge invariant expression∂µt−Aµ: S=kS WZW(A,g)(5.14)k=cosh2ρ ∂+ρ∂−ρ+tanh2ρ∂+ϕ∂−ϕ ±i tanhρcosh2ρ dρ2+tanh2ρdϕ2 .Thus deformation by the real part of(5.16)is equivalent to a reparametrization ofρ. This implies in turn that this deformation is a total derivative on the ing equations of motion,one can check that(5.16)is proportional to∂+∂−log cosh2ρ.(5.17) The imaginary part of(5.16)is a B-field term which is parity-odd.This,of course, corresponds to the fact that the two states in(5.9,5.11)are exchanged by world-sheet parity.The conclusion is that for k>3the discrete series give rise to two momentum-conserving marginal deformations in the coset theory(while for k≤3they give none). One is a parity-odd B-field,and the other is a total derivative on the world-sheet.If we restrict ourselves only to parity-even deformations,then we are left with the total derivative operator.Can one simply discard this operator as trivial?If the world-sheet is compact without a boundary,then one is certainly justified in doing so,but if the world-sheet has a boundary,or is noncompact,like R2,then the answer depends on boundary conditions.Since we are studying a conformalfield theory,it is natural to impose bound-ary conditions which preserve Weyl invariance.In this case,the total derivative operator is trivial.Indeed,recall that the variables u andρare related by u=log sinhρ,and therefore a change of variablesρ→ρ+ǫtanhρis equivalent to u→u+ǫ.But the latter change of variables is also effected by the Weyl transformation.Hence with Weyl-invariant boundary conditions adding the operator(5.17)has no effect on the theory.As for the principal continuous series,for general k the only states that give rise to marginal operators in the coset theory are the Kac-Moody primaries withj=1k−9m=0.(5.18)Such operators decay as exp(−2jρ),and since for k>9/4j has a nonzero imaginary part, they exhibit oscillatory behavior.Note that for k=92,w=±11 2,α=12,α=1。