七年级数学下册 第五章 轴对称复习学案(无答案) 新版北师大版
七年级数学下册第五章生活中的轴对称5.1轴对称现象作业设计(新版)北师大版

5.1 轴对称现象一.选择题(共1小题)1.如图,以平面镜AD和DC为两个侧面的一个黑盒子的另一个侧面BC上开有一个小孔P,一位观察者在盒外沿与BC平行方向走过时,则通过小孔能几次看到光源S所发出的光线()(第1题图)A.1次B.2次C.3次D.4次二.填空题(共6小题)2.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.(第2题图)3.如图,是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在从剩余的13个白色小正方形中选出一个涂成黑色,使涂成黑色的四个小正方形所构成的图形是轴对称图形,则这样的白色小正方形有个.(第3题图)4.如图,在一个规格为6×12(即6×12个小正方形)的球台上,有两个小球A,B.若击打小球A,经过球台边的反弹后,恰好击中小球B,那么小球A击出时,应瞄准球台边上的点.(P1至P4点)(第4题图)5.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.(第5题图)6.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中的一个小正方形涂黑,所得图案是一个轴对称图形,则涂黑的小正方形可以是(填出所有符合要求的小正方形的标号)(第6题图)7.弹子盘为长方形ABCD,四角有洞,弹子从A出发,路线与小正方形的边成45°角,撞到边界即反弹(如图所示).AB=4,AD=3,弹子最后落入B洞.那么,当AB=9,AD=8时,弹子最后落入洞,在落入洞之前,撞击BC边次.(第7题图)三.解答题(共5小题)8.对于特殊四边形,通常从定义、性质、判定、应用等方面进行研究,我们借助于这种研究的过程与方法来研究一种新的四边形﹣﹣﹣﹣﹣筝形.定义:在四边形ABCD中,若AB=AD,BC=CD,我们把这样四边形ABCD称为筝形性质:按下列分类用文字语言填写相应的性质:从对称性看:筝形是一个轴对称图形,它的对称轴是;从边看:筝形有两组邻边分别相等;从角看:;从对角线看:.判定:按要求用文字语言填写相应的判定方法,补全图形,并完成方法2的证明.方法1:从边看:运用筝形的定义;方法2:从对角线看:;如图,四边形ABCD中,.求证:四边形ABCD是筝形应用:如图,探索筝形ABCD的面积公式(直接写出结论).(第8题图)9.已知:如图所示,在四边形ABCD中,AD=BC,∠DAB=∠CBA.(1)试判断AB与CD的位置关系,并说明理由;(2)四边形ABCD是轴对称图形吗?试说明理由.(第9题图)10.如图,在△ABC中,高线CD将∠ACB分成20°和50°的两个小角.请你判断一下△ABC 是轴对称图形吗?并说明你的理由.(第10题图)11.△ABC的三边长分别为:AB=2a2﹣a﹣7,BC=10﹣a2,AC=a,(1)求△ABC的周长(请用含有a的代数式来表示);(2)当a=2.5和3时,三角形都存在吗?若存在,求出△ABC的周长;若不存在,请说出理由;(3)若△ABC与△DEF成轴对称图形,其中点A与点D是对称点,点B与点E是对称点,EF=4﹣b2,DF=3﹣b,求a﹣b的值.12.如图,表示把长方形纸片ABCD沿对角线BD进行折叠后的情况,图中有没有轴对称图形?有没有关于某条直线成轴对称的图形.(第12题图)参考答案一.1.D二.2.(,) 3.4 4.P2 5.3 6.2,3,4,5,7 7. D,4 三.8.解:性质:从对称性看:筝形是轴对称图形,它的对称轴是其中一条对角线所在直线.从角看:筝形只有一组对角相等;从对角线看:有且只有一条对角线被另一条对角线垂直平分.判定:结合性质定理,可得出:方法二:从对角线看:有且只有一条对角线被另一条对角线垂直平分.结合方法二可知缺少的条件为:AC垂直平分BD于O点,且AO≠CO.证明:按照题意,画出图形1.(第8题答图)∵AC垂直平分BD,∴AB=AD,CB=CD.又∵AB=,BC=,AO≠CO,∴AB≠BC,∴由筝形定义得,四边形ABCD是筝形.应用:筝形面积为对角线乘积的一半;∵S筝形ABCD=S△ABD+S△CBD=BD•AO+BD•CO=BD(AO+CO)=BD•AC,∴筝形面积为对角线乘积的一半.9.解:(1)AB∥CD.理由如下:在△ABD和△BAC中.∴△ABD≌△BAC(SAS).∴∠OAB=∠OBA,BD=AC.∴OA=OB.∴AC﹣OA=BD﹣OB.∴OD=OC.∴∠ODC=∠OCD.∵∠ODC+∠OCD+∠COD=180°,∠OAB+∠OBA+∠AOB=180°,∴2∠ODC+∠COD=180°.2∠OBA+∠AOB=180°.又∠COD=∠AOB,∴∠CDO=∠OBA.∴AB∥CD.(2)四边形ABCD是轴对称图形.理由如下:延长AD、BC交于点P,∵∠DAB=∠CBA,∴AP=BP.∴点P在AB的垂直平分线上.又OA=OB,∴点O在AB的垂直平分线上.∴OP垂直平分线段AB,∴点A与点B关于直线OP对称①.∵AB∥DC,∴∠PDC=∠PAB∠PCD=∠PBA.∴∠PDC=∠PCD.∴DP=CP,∴点P在DC的垂直平分线上.又OD=OC,∴点O在DC的垂直平分线上.∴OP垂直平分线段DC.∴点C与点D关于直线OP对称②.所以,综上①②所述,四边形ABCD是轴对称图形.(第9题答图)10.解:△ABC是轴对称图形.∵∠BCD=20°,∴∠B=90°﹣∠BCD=70°,∴∠ACB=∠B=70°,∴△ABC是等腰三角形,∴△ABC是轴对称图形.11.解:(1)△ABC的周长=AB+BC+AC=2a2﹣a﹣7+10﹣a2+a=a2+3.(2)当a=2.5时,AB=2a2﹣a﹣7=2×6.25﹣2.5﹣7=3,BC=10﹣a2=10﹣6.25=3.75,AC=a=2.5,∵3+2.5>3.75,∴当a=2.5时,三角形存在,周长=a2+3=6.25+3=9.25;当a=3时,AB=2a2﹣a﹣7=2×9﹣3﹣7=8,BC=10﹣a2=10﹣9=1,AC=a=3,∵3+1<8.∴当a=3时,三角形不存在.(3)∵△ABC与△DEF成轴对称图形,点A与点D是对称点,点B与点E是对称点,∴EF=BC,DF=AC,∴10﹣a2=4﹣b2,即a2﹣b2=6;a=3﹣b,即a+b=3、把a+b=3代入a2﹣b2=6,得3(a﹣b)=6 ∴a﹣b=2.12.解:五边形ABCDE是轴对称图形,△ABE与△CDE,△ABD与△CDB成轴对称.。
七年级数学下册第五章轴对称的应用将军饮马问题课件(新版)北师大版

A P
B l
B′
6、为什么这样找到的点P,就能使得PA+PB最短呢?你能尝试证明吗?
探究新知
证明:在直线L上任意取不同于点P的一点Q,连接QA、QB、 QB/,如图所示。
∵PA+PB=PA+PB/=AB/ QA+QB=QA+QB/
又∵AB/<QA+QB/(两点之间线段最短或三角形中两边之和大 于第三边)
∴PA+PB< QA+QB 即此时点P使得PA+PB的值最小
B
A P L
Q
B/
小试牛刀
如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛 奶,已知居民区A、B分别距离街道1km、2km,两居民区水平距 离4km,请问奶站修建在什么地方才能使得A,B到它的距离之和 最短?最短距离是多少?
C
居民区A 街道
精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这 个问题.这个问题后来被称为“将军饮马问题”.
你知道海伦是如何帮助将军解决问题的吗?
B A
l
任务驱动 启迪智慧
问题
A
1、截至目前, 你学到那些最短 问题?
2、如图,A,B 两点位于直线L
A
的两侧,你能
在直线L上找一
点P,使得点p
到A、B两点距
直线段路径
课后拓展延伸
课后作业
1、如图,菱形ABCD中,AB=2, ∠BAD=600,E是AB 的中点,点P是对角线AC上的一个动点,请找出使得 PE+PB的值最小时点P的位置(找出位置即可)
D
A
P C
E B
课后拓展延伸
☆一点P,让PB与PA 的差最大,并给出证明!
北师大版七年级数学下册生活中的轴对称复习课课件

课堂精讲
类比精练2.在△ABC中,AB=AC,AD⊥BC, ∠BAD=40°,AD=AE. 求∠CDE的度数.
解:∵AB=AC,AD⊥BC,
∴∠CAD=∠BAD=40°,
E=
=70°,
∴∠CDE=90°﹣70°=20°.
第四环节 知识串联
问题:线段的垂直平分线有哪些性质? 线段垂直平分线上的点到这条线段两 个端点的距离相等。
∴_A__D_⊥__B_C_; ∠_B__A_D_= ∠_C__A_D_ B
(3) ∵ AD是角平分线 ∵__A_D_ ⊥_B__C_;__B__D_=__C_D_
A DC
本章总结提升
► “三线合一”有关的题型 例2 如图所示,在△ABC中,AB=AC,∠BAC和 ∠ACB的平分线相交于点D,∠ADC=130°,求∠BAC的 度数.
第五章 生活中的轴对称
回顾与思考
第一环节 知识串联 查漏补缺
本章知识框架图
轴
生 活 中 的 轴 对 称
对
线段
称
图
角
形 等腰三角形
两个图形成轴对称
轴
对 称 轴对 的 称的 性 应用
质
第二环节 回顾知识
问题:等腰三角形有哪些性质? 等边对等角
A ∵AB=AC
∴∠B = ∠C.
(等边对等角 )
B
C
5、已知,如图AB=AC=CD AD=BD
∵点M在线段AB的垂直平分线 上 ∴ MA = MB .
本章总结提升
► 类型三 线段垂直平分线的应用
例3 如图所示,已知AB=AC,∠A=40°,AB的垂 直平分线MN交AC于点D.
(1)求∠DBC的度数; (2)若△DBC的周长为14 cm,BC=5 cm,求AB的长.
新编【北师大版】2020年春七年级下册数学:第五章-生活中的轴对称-章末复习(含答案)

期末复习(五) 生活中的轴对称01 知识结构生活中的轴对称⎩⎪⎪⎨⎪⎪⎧轴对称现象⎩⎪⎨⎪⎧轴对称图形两个图形成轴对称轴对称的性质⎩⎪⎨⎪⎧对应点所连的线段被对称轴垂直平分对应线段相等,对应角相等简单的轴对称图形⎩⎪⎨⎪⎧等腰三角形的性质线段垂直平分线的性质角平分线的性质利用轴对称进行设计本章知识在考试中涉及的考点主要有:识别轴对称图形,运用轴对称的性质求线段或角,运用等腰三角形、线段垂直平分线或角平分线的性质求三角形中的角度和边长,证明三角形中相关角度或边长之间的关系等. 02 典例精讲【例1】 下列轴对称图形中,对称轴条数最多的是(D)【思路点拨】 选项A ,B ,C 的图形中分别有1条对称轴;而选项D 的图形中有4条对称轴,在几个备选项中对称轴最多.【方法归纳】 本题考查轴对称图形及对称轴的定义.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,其中这条直线叫做对称轴.轴对称图形是针对一个图形本身而言,成轴对称是对两个图形而言,注意他们的本质区别.【例2】 (黄冈中考)如图,在△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线交AC 于点E ,垂足为点D ,连接BE ,则∠EBC 的度数为36°.【思路点拨】 根据垂直平分线的性质可得边相等,再由等腰三角形的性质得角相等.【方法归纳】 此题主要借助等腰三角形的性质、线段垂直平分线的性质及三角形内角和定理等几何知识来求解. 【例3】 如图1,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在△A BC 中,∠ACB 是直角,∠B =60°,AD ,CE 分别是∠BAC ,∠BCA 的平分线,AD ,CE 相交于点F.请你判断并写出FE 与FD 之间的数量关系;(2)如图3,在△ABC 中,如果∠ACB 不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【思路点拨】首先按题意要求完成画图(作出全等三角形),易联想到全等三角形的性质、判定及角平分线的性质等相关知识,为解决后面的问题提供了探究的途径和方法.【解答】画图略.(1)FE与FD之间的数量关系为FE=FD.(2)FE=FD仍然成立.理由:在AC上截取AG=AE,连接FG.因为∠BAD=∠DAC,AF为公共边,所以△AEF≌△AGF. 所以∠AFE=∠AFG,FE=FG.因为∠B=60°,AD,CE分别是∠BAC,∠BCA的平分线,所以∠DAC+∠FCA=60°.所以∠AFE=∠CFD=∠AFG=60°.所以∠CFG=60°.又因为∠FCA=∠DCE,FC为公共边,所以△CFG≌△CFD.所以FG=FD.所以FE=FD.【方法归纳】本例是一道设计新颖的几何结论探究性试题,旨在考查学生应用所学知识解决三角形有关问题的综合能力.解决此类问题重点抓住全等三角形的判定和性质及角平分线的性质解题.【例4】如图,有一条小船及A,B两点,如果该小船先从点A航行到达岸边l的点P处补货后,再航行到点B,但要求航程最短,试在图中画出点P的位置.【思路点拨】题目要求航程最短,就是在岸边l上找一点P,使点P到A,B的距离之和最短.只要找出A点关于l的对称点A′,连接A′B,A′B与l的交点就为所求的P点.【解答】(1)作出点A′,使点A′与点A关于直线l成轴对称.(2)连接A′B交直线l于点P,则点P为所求,如图所示.【方法归纳】由轴对称性质可知AP=A′P,要使AP+PB的和最小,即A′P+PB的和最小,于是求出点P的位置的问题,转化为“两点之间,线段最短”的问题.03整合集训一、选择题(每小题3分,共30分)1.(龙东中考)下列交通标志图案是轴对称图形的是(B)2.如图所示的轴对称图形中,对称轴最多的是(B)3.若等腰三角形的顶角为50°,则它的底角是(C)A.20° B.50°C.65° D.80°4.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是(D)A.△ABD≌△ACDB.AF垂直平分EGC.∠B=∠CD.DE=EG5.(凉山中考)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为(C)A.30° B.45°C.60° D.75°6.如图,已知五边形ABCDE和五边形A1B1C1D1E1关于直线MN对称,点B到直线MN的距离是3,则下列说法中正确的是(B)A.点A1到MN的距离是3B.点B1到MN的距离是3C.点C1到MN的距离是3D.点D1到MN的距离是37.(丹东中考)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为(D)A.70°B.80°C.40°D.30°8.如图,将长方形纸片的一角折叠,使顶点A落在点A′处,BC为折痕,若BE是∠A′BD的平分线,则∠CBE的度数为(C)A.65° B.115°C.90° D.75°9.下列说法不正确的是(D)A.角平分线上的点到这个角两边的距离相等B.线段垂直平分线上的点到这条线段两个端点的距离相等C.圆有无数条对称轴D.等腰三角形的对称轴是底角平分线所在直线10.如图,点B,C,E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是(D)A.△ACE≌△BCDB.△BGC≌△AFCC.△DCG≌△ECFD.△ADB≌△CEA二、填空题(每小题4分,共20分)11.在方正黑体字:“幸、福、开、阳”中,是轴对称图形的字是幸.12.如图,在△ABC中,AB=AC,点D为BC边中点,∠BAD=20°,则∠CAD=20°.13.如图,△ABC与△A1B1C1关于某条直线成轴对称,则∠A1=75°.14.如图,D,E为AB,AC的中点,将△ABC沿线段DE折叠,点A落在点F处,若∠B=50°,则∠BDF=80°.15.(河南中考)如图,在△ABC中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为105°.三、解答题(共50分)16.请作出图中四边形ABCD 关于直线a 的轴对称图形,要求:不写作法,但必须保留作图痕迹.解:如图所示,四边形A ′B ′C ′D ′即为所求.17.(6分)已知:如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F ,∠BFE 与∠D 相等吗?并说明理由.解:∠BFE =∠D. 理由:因为AB =AC , 所以∠B =∠C. 因为DE ⊥BC ,所以∠BEF =∠DEC =90 °. 在△BEF 和△CDE 中,因为∠B =∠C ,∠BEF =∠DEC , 所以∠BFE =∠D.18.如图,在四边形ABCD 中,AD ∥BC ,把△BCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O ,若∠DBC =15°,求∠BOD 的度数.解:因为AD ∥BC ,∠DBC =15°,所以∠BDO =15 °. 由折叠可知,∠DBC =∠DBO. 所以∠BDO =∠DBO =15 °. 又因为三角形内角和为180 °, 所以∠BOD =180 °-2∠DBO =180 °-2×15 ° =150 °.19.(10分)某中学七(2)班举行文艺晚会,桌子摆成两直条(如图中的AO ,BO),AO 桌面上摆满了橘子,OB 桌面上摆满了糖果,站在C 处的学生小明先拿橘子再拿糖果,然后回到C 处,请你在图上帮助他设计一条行走路线,使其所走的总路程最短.解:①分别作点C 关于OA ,OB 的对称点M ,N ;②连接MN ,分别交OA 于点D ,OB 于点E ,则C →D →E →C 为所求的行走路线.图略.20.(12分)如图所示,已知AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D. (1)求∠DBC 的度数;(2)若△DBC 的周长为14 cm ,BC =5 cm ,求AB 的长.解:(1)因为AB =AC , 所以∠ABC =∠C. 因为∠A =40 °,所以∠ABC =180 °-40 °2=70 °.因为MN 是AB 的垂直平分线, 所以DA =DB.所以∠DBA =∠A =40 °.所以∠DBC =70 °-40 °=30 °.(2)因为MN 垂直平分AB ,所以DA =DB.△DBC 的周长为BD +DC +BC =DA +DC +BC =AC +BC. 因为△DBC 的周长为14 cm ,BC =5 cm , 所以AC =14-5=9(cm ). 所以A B =9 cm .21.(12分)如图1所示,在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于点N ,交BC 或BC 的延长线于点M.(1)如图1所示,若∠A =40°,求∠NMB 的大小;(2)如图2所示,如果将(1)中的∠A 的度数改为70°,其余条件不变,再求∠NMB 的大小; (3)你发现了什么规律?写出猜想,并说明理由.解:(1)因为AB =AC ,所以∠B =∠ACB.所以∠B =12(180 °-∠A)=12(180 °-40 °)=70 °.又因为∠BNM =90 °,所以∠NMB =90 °-∠B =90 °-70 °=20 °. (2)同理可得:∠NMB =35 °.(3)猜想规律:等腰三角形一腰的垂直平分线与底边或底边延长线的夹角等于顶角的一半,即∠NMB =12∠A.理由:因为AB =AC ,所以∠B =∠C =12(180 °-∠A).因为∠BNM =90 °,所以∠NMB =90 °-∠B =90 °-12(180 °-∠A)=12∠A.故∠NMB =12∠A.。
七年级数学下册第5章生活中的轴对称5.3.2简单的轴对称图形同步练习(新版)北师大版

第五章 生活中的轴对称5.3.2 简单的轴对称图形一、选择题⒈ 下列图形中,不是轴对称图形的是 ( )A. 两条相交直线B. 线段C. 有公共端点的两条相等线段D.有公共端点的两条不相等线段 ⒉ 到三角形的三个顶点距离相等的点是 ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点 3. 在下列图形中,不是轴对称图形的是() A 、一条线段B 、一个角C 、一个平行四边形D 、一个等腰梯形 4. 有下列图形:(1)一个等腰三角形;(2)一条线段;(3)一个角;(4)一个长方形;(5)两条相交直线;(6)两条平行线,其中轴对称图形共有 ()A 、3个B 、4个C 、5个D 、6个⒌ 如图,在Rt△ABC 中,∠B=90°,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,已知∠BAE=10°,则∠C 的度数为 ( ) A 、30° B 、40° C 、50° D 、60°二、填空题⒍ 如图,△ABC 中,DE 垂直平分AC ,与AC 交于E ,与BC 交于D ,∠C=150, ∠BAD=600,则△ABC 是__________三角形.⒎ 如图,△ABC 中,∠C=900,DE 是AB 的垂直平分线,且∠BAD:∠CAD=4:1,则∠B=_______.⒏ 如图,分别作出点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 分别交OA 、OB 于点M 、N ,若P 1P 2=5cm ,则△PMN 的周长为__________________.第5、6题图DC第7题图EAB⒐ 如图,P 是线段AB 垂直平分线上一点,M 为线段AB 上异于A ,B 的点,则PA ,PB ,PM 的大小关系是PA __________PB __________PM .⒑ 如图,在锐角三角形ABC 中,∠A =50°,AC 、BC 的垂直平分线交于点O ,则∠1____∠2,∠3___∠4,∠5___∠6,∠2+∠3=____°,∠1+∠4=____°,∠5+∠6=____°,∠BOC =____°.三、解答题⒒ 如图 ,在ABC △中,36AB AC A =∠=,°,线段 AB 的垂直平分线交 AB 于 D ,交 AC 于 E ,连接BE . 求:∠CBE 的度数;第8题图B9题图10题图AE CBD⒓如图,己知AB=AC,DE垂直平分AB交AC、AB于E、D两点,若AB=12cm,BC=10cm,∠A=48º,求△BCE的周长和∠EBC的度数.13.如图所示,AB=AC,DE垂直平分AB交AB于D,交AC于E,若△ABC的周长为28,BC=8.求△.BCE的周长Array14.如图所示,平面上的四边形ABCD是一只“风筝”的骨架,其中AB=AD,CB=CD.(1)八年级温馨观察了这个“风筝”的骨架后,他认为四边形ABCD对角线AC⊥BD,对角线AC 与BD交于点E,并且BE=ED,温馨同学的判断正确吗?请说明理由.(2)设对角线AC=a,BD=b,请用含有a,b的式子表示四边形ABCD的面积.参考答案 1―5: D D C D B ⒍ 直角 ⒎ 40° ⒏ 5 ⒐ =,>⒑ =,=,50,50,80,100 ⒒ 36° ⒓ 22cm ,18°13.解:∵△ABC 的周长为28,BC=8且AB= AC,∴AB+AC+BC=28,即2AC+BC=28,∴AC=10,∵DE 垂直平分AB,∴BE=AE,∴△BCE 的周长为BE+EC+BC=AE+EC+BC= AC+BC=10+8=18.答△BCE 的周长是18.14.解:(1)温馨同学的判断是正确的,理由是:∵AB=AD,∴点A 在BD 的垂直平分线上;∵CB=CD,∴点C 在BD 的垂直平分线上,∴AC 为BD 的垂直平分线,∴BE=DE,AC ⊥BD.(2)由(1)得,S 四边形ABCD=SCBDABDS+=11112222BD CE BD AE BD AC ab +== .。
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]
![北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/fe639f3a4b7302768e9951e79b89680203d86b9a.png)
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]研究目标】1.增进对身边轴对称图形的认识和欣赏,提高对数学的兴趣。
2.了解轴对称的概念,探索轴对称图形的基本性质和应用。
3.探究线段垂直平分线、角平分线和等腰三角形的性质及判定方法。
4.能够按照要求画出一些轴对称图形。
要点梳理】要点一、轴对称1.轴对称图形和轴对称1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
要点诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。
3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的。
联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。
2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一。
同时也给出了引辅助线的方法,即遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
新北师大版七年级数学下册第五章《生活中的轴对称》单元复习卷含答案解析(36)
一、选择题(共10题)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有( )A.1个B.2个C.3个D.4个2.点P在∠AOB的平分线上,点P到OA边的距离等于6,点Q是OB边上的任意一点,则下列选项正确的是( )A.PQ>6B.PQ≥6C.PQ<6D.PQ≤63.下列汽车标志中不是轴对称图形的是( )A.B.C.D.4.下列图形是轴对称图形的是( )A.B.C.D.5.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.6.下列图案中,属于轴对称图形的是( )A.B.C.D.7.下列不是轴对称图形是A.B.C.D.8.下列美丽的图案中,不是轴对称图形的是( )A.B.C.D.9.读书使人进步,下列图书馆的馆徽不是轴对称图形的是( )A.B.C.D.10.以下是各种交通标志指示牌,其中不是轴对称图形的是( )A.B.C.D.二、填空题(共7题)11.某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车辆的号码如图所示,则该汽车的号码是.12.小刚从镜子中看到的电子表的读数是[15:01],则电子表的实际度数是.13.如图,在△ABC中,∠C=90∘,AD是△ABC的角平分线,DE⊥AB于点E,且DE=3cm,BD=5cm,则BC=cm.14.如果一个多边形是轴对称图形,那么这个多边形可以是(写出一个即可).15.在等腰三角形、平行四边形、矩形、菱形、正方形、正六边形、圆这7种图形中,一定是轴对称图形的共有种.16.如图,在△ABC中,AB=AC,AD⊥BC于点D.若AB=6,CD=4,则△ABC的周长是.17.观察图中的两个图案,是轴对称图形的是,它有条对称轴.三、解答题(共8题)18.请回答下列问题:(1) 用尺规作图法,以∠AOB的一边OB为公共边,在∠AOB的外部画∠BOC等于已知∠α.(2) 用尺规作图法画∠AOC的平分线OP,并直接求出∠BOP的度数.19.如图,在△ABC中,AB>AC.(1) 用尺规作图法在AB上找一点P,使得PB=PC.(保留作图痕迹,不用写作法)(2) 在(1)的条件下,连接PC,若AB=6,AC=4,求△APC的周长.20.已知:如图,AC∥BD,AE,BE分别平分∠CAB,∠DBA.求证:CE=DE.21.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1) 若5∠C=2∠BAC,求∠BAD的度数.(2) 若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.22.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的23.已知抛物线y=14x2+1上一个动点,求△PMF周距离始终相等,若点M的坐标为(√3,3),P是抛物线y=14长的最小值及此时P点坐标.24.如图,在△ABC中,∠A=90∘,AB=AC,BD平分∠ABC,DE⊥BC,垂足为E,若BC=16,求△DEC的周长.25.如图:107国道OA和320国道OB在某市交于点O,在∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA,OB的距离相等,且PC=PD.请在∠AOB的内部画出货站的位置(不写画法,保留画图痕迹,写出结论).答案一、选择题(共10题)1. 【答案】C【解析】根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意;第四个图形有1条对称轴,是轴对称图形,符合题意.轴对称图形共有3个.【知识点】轴对称图形2. 【答案】B【解析】∵点P在∠AOB的平分线上,点P到OA边的距离等于6,∴点P到OB的距离为6,∵点Q是OB边上的任意一点,∴PQ≥6.故选:B.【知识点】角平分线的性质3. 【答案】B【知识点】轴对称图形4. 【答案】B【知识点】轴对称图形5. 【答案】A【知识点】轴对称图形6. 【答案】A【解析】A.此图案是轴对称图形,有5条对称轴,此选项符合题意;B.此图案不是轴对称图形,此选项不符合题意;C.此图案不是轴对称图形,不符合题意;D.此图案不是轴对称图形,不符合题意.【知识点】轴对称图形7. 【答案】B【知识点】轴对称图形8. 【答案】A【解析】A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.【知识点】轴对称图形9. 【答案】D【知识点】轴对称图形10. 【答案】C【知识点】轴对称图形二、填空题(共7题)11. 【答案】B6395【解析】根据镜面对称的性质,题中所显示的图片中的数字与“B6395”成轴对称,则该汽车的号码是B6395.【知识点】生活中的轴对称12. 【答案】10:21【解析】电子表的实际时刻是10:21,故答案为10:21.【知识点】图形成轴对称13. 【答案】8【知识点】角平分线的性质14. 【答案】答案不唯一.如:正方形【知识点】轴对称图形15. 【答案】6【知识点】轴对称图形16. 【答案】20【知识点】等腰三角形的性质17. 【答案】(2);6【知识点】轴对称图形三、解答题(共8题)18. 【答案】(1) 略(2) 略【知识点】作一个角等于已知角、作已知角的平分线19. 【答案】(1) 如图所示,点P即为所求;(2) 由(1)可得PB=PC,又∵AB=6,AC=4,∴△PAC的周长=PA+PC+AC=PA+PB+AC=AB+AC=6+4=10.【知识点】垂直平分线的性质、作线段的垂直平分线20. 【答案】提示:延长AE交直线BD于点F,则AE=EF,证明△AEC≌△FED,可得CE=DE.【知识点】全等三角形的性质与判定、角平分线的性质21. 【答案】(1) ∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∠B=∠C,又5∠C=2∠BAC,∠C,∴∠BAC=52∵∠B+∠C+∠BAC=180∘,∠C=180∘,∴92∴∠C=40,∴∠BAD=90∘−40∘=50∘.(2) ∵AB=AC,AD⊥BC于点D,∴∠BAD=∠CAD,∵EF∥AC,∠F=∠CAD,∴∠BAD=∠F,∴AE=FE.【知识点】三角形的内角和、等腰三角形的性质、内错角相等22. 【答案】图②与其他三个不同,因为四个图形中,只有图②不是轴对称图形.【知识点】轴对称图形23. 【答案】过点M作ME⊥x轴于点E,ME与抛物线交于点Pʹ,如图所示:∵点Pʹ在抛物线上,∴PʹF=PʹE,又∵点到直线之间垂线段最短,MF=√(√3−0)2+(3−2)2=2,∴当点P运动到点Pʹ时,△PMF周长取最小值,最小值为ME+MF=3+2=5,∵ME⊥x轴于抛物线焦点为P,∴P点横坐标为√3,将x=√3代入y=14x2+1得:y=34+1=74,故P点坐标为(√3,74).【知识点】二次函数的图象与性质、轴对称之最短路径、两点间距离公式24. 【答案】16【知识点】全等三角形的性质与判定、角平分线的性质25. 【答案】略.【知识点】作已知角的平分线、作线段的垂直平分线。
5.3简单的轴对称图形-等腰三角形之三线合一 练习-北师大版七年级数学下册(无答案)
初一下数学 5.3简单的轴对称图形-等腰三角形之三线合一(编号:504)班别__________学号_________姓名_________(出题者: )一、课前训练1.如图,AD=AE,∠B=∠C,你能证明AB=AC吗?2.如图,已知O为AC与BD的中点,你能说明AD//BC吗?AB CDO3.如图,已知AB=AD,∠ADE=∠B,∠1=∠2,求证AC=AE.21ED CA二、新课学习1. 动手操作:请拿出准备的等腰三角形纸片,把纸片对折,让两腰AB、AC重叠在一起,折痕为AD,你能发现什么?回答下面的问题,并写明理由。
①等腰三角形是轴对称图形吗?②折痕AD是△ABC的顶角平分线吗?③折痕AD是△ABC底边上的中线吗?④折痕AD是△ABC底边上的高吗?☞猜想:①等腰三角形是图形,有条对称轴。
②等腰三角形顶角的、底边上的、底边上的互相重合,简称“”,它们所在的都是等腰三角形的对称轴。
思考:你能用几何证明的方法说明上面的猜想②③吗?例题1:在△ABC中,AB=AC, AD为△ABC的高,求证; AD为△ABC的角平分线和中线,B CA亲,求边角相等用方法例题2:在△ABC 中,AB=AC, AD 为△ABC 的角平分线,求证; AD 为△ABC 的高和中线,BCA例题3:在△ABC 中,AB=AC, AD 为△ABC 的中线,求证; AD 为△ABC 的角平分线和高,BCA☞几何语言:如图,在△ABC 中,AB=AC ,点D 在BC 上 ①∵AB=AC ,AD ⊥BC (已知)∴∠BAD =∠____, BD = ( ) ②∵AB=AC ,∠BAD =∠CAD ,(已知)∴ AD ⊥_ __,BD =_ __( ) ③∵AB=AC ,BD =CD ,∴∠BAD =∠_______,AD ⊥_____( )☞例题4:如图,在△ABC 中,AB=AC ,D 是BC 边上的中点,∠B=30° 求∠1和∠ADC 的度数。
七年级数学下册 第五章 生活中的轴对称知识点归纳 (新版)北师大版.doc
第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。
7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。
8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。
北师大版七年级下册数学第五章 生活中的轴对称含答案(完美版)
北师大版七年级下册数学第五章生活中的轴对称含答案一、单选题(共15题,共计45分)1、如图,AB=AC,AE=EC,∠ACE=28°,则∠B的度数是()A.60°B.70°C.76°D.45°2、如图,∠AOB=60°,以点O为圆心,以任意长为半径作弧交OA,OB于C,D两点;分别以C,D为圆心,以大于CD的长为半径作弧,两弧相交于点P;以O为端点作射线OP,在射线OP上截取线段OM=6,则M点到OB的距离为()A.6B.2C.3D.3、等腰三角形ABC在直角坐标系中,底边的两端点坐标是(-2,0),(4,0),则其顶点的坐标能确定的是()A.纵坐标B.横坐标C.横坐标及纵坐标D.横坐标或纵坐标4、如图,在中,,垂直平分,分别交、于点、,若,则的度数为()A. B. C. D.5、如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为 ( )A.4 cmB.3 cmC.2 cmD.1 cm6、若等腰三角形中的一个外角等于,则它的顶角的度数是()A. B. C. D. 或7、如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD= ,则△ABC的边长为()A.3B.4C.5D.68、如图,在△ 中,,点是的中点,交于;点在上,,则的长为()A.3B.4C.5D.69、有A,B,C三个社区(不在同一直线上),现准备修建一座公园,使该公园到三个社区的距离相等,那么公园应建在下列哪个位置上?( )A.△ABC三条角平分线的交点处B.△ABC三条中线的交点处 C.△ABC三条高的交点处 D.△ABC三边垂直平分线的交点处10、在中,,点D在边上,点E在边上,,,若为等腰三角形,则的度数为( )A. B. 或 C. 或 D. 或11、如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB 的距离DE=3.8cm,则BC等于()A.3.8cmB.7.6cmC.11.4cmD.11.2cm12、下列命题正确的是()A.到角两边距离相等的点在这个角的平分线上B.垂直于同一条直线的两条直线互相平行C.平行于同一条直线的两条直线互相平行D.等腰三角形的高线、角平分线、中线互相重合13、如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1B.2C.4D.814、如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()A.6B.6C.9D.315、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交边AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60二、填空题(共10题,共计30分)16、如图,在4×4正方形网格中有3个小方格涂成了灰色.现从剩余的13个白色小方格中选一个也涂成灰色,使整个涂成灰色的图形成轴对称图形,则这样的白色小方格有________个.17、已知菱形ABCD的边长为4,,如果点是菱形内一点,且,那么BP的长为________.18、在平面直角坐标系中,x轴上一动点P到定点A(一1,1),B(3,3)的距离分别为AP和BP,那么当BP+AP最小时,P点坐标为________.19、如图,直线,等边△ABC的顶点C在直线上,若边AB与直线的夹角,则边AC与直线的夹角∠2=________ .20、如图,,点A,B分别在射线OM,ON上,,点C是线段AB的中点,△A'OC与△AOC关于直线OC对称.A'O与AB相交于点D.当△A'DC是直角三角形时,△OAB的面积等于________.21、看镜子里有一个数“ ”,这个数实际是________.22、如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P 1, P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为________.23、如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,________.24、如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为________ .25、如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是________.三、解答题(共5题,共计25分)26、已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:AD=AE.27、如图,在△ABC中,AD是高,在线段DC上取一点E,使DE=BD,已知AB+BD=DC.求证:E点在线段AC的垂直平分线上.28、已知:如图,等腰△ABC中,AB=AC,D是BC的中点,DE∥AB,DF∥AC,求证:四边形AFDE是菱形.29、已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这个等腰三角形各角的度数.30、如下图,在等腰ΔABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连结AP交BC于点E ,连结BP交AC于点F.∠CAE=∠CBF 吗?说明理由.参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、D5、C6、D7、A8、B9、D10、D11、C12、C13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第五章 轴对称复习
一、学习目标:掌握轴对称的有关概念,掌握线段、角、等腰三角形的性质,并能灵活
应用上述知识解题。
二、学习重点:复习轴对称的基本性质,简单的轴对称图形,并会运用轴对称的性质解
决相关问题。
三、学习难点:轴对称与轴对称图形的关系和区别,灵活运用轴对称的性质解决相关问
题。
本章知识回顾
(一)基础知识
轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,则称
这个图形是轴对称图形。
成轴对称:如果两个图形沿一条直线对折后,它们能完全重合,则称这两个图形成轴
对称。
对称轴:这一条直线叫对称轴
常见图形的对称轴
角:1条。(角平分线所在的直线)
线段:2条。(线段的垂直平分线和它本身)
等腰三角形:1条。(底边上的中线或高或顶角平分线)
等边三角形:3条。(三边上的“三线合一”)
长方形(矩形):2条。(对边中点所在直线)
正方形:4条(两对边中点和两对角线所在直线)
正n边形:n条
圆:无数条
(二)轴对称的性质
1、对应点所连的线段被对称轴垂直平分
2、对应线段相等,对应角相等
(三)常见轴对称图形的性质
1、线段垂直平分线性质
(1)线段的垂直平分线是线段的一条对称轴
(2)线段垂直平分线上的点到这条线段的两端距离相等
知识运用:
生
活
中
的
轴
轴对称的性质 两个图形成轴对称 线段
角
等腰三角形
轴对称
的应用
轴
对
称
图
2
1.如图,已知AD是BC的中垂线,所能得到的结论是:
你能根据现有条件,推得∠ABD=∠ACD。
2.如图,在△ABC中,AB=AC=16cm,AB的垂直平分线交AC于D,如果
BC=10cm,那么△BCD的周长是_______cm.
2、角平分线性质
(1)角平分线所在直线是角的对称轴
(2)角平分线上的点到这个角的两边距离相等
3、等腰三角形
(1)等腰三角形是轴对称图形
(2)它的对称轴是底边上的中线、底边上的高、顶角的角平分线所在
的直线。并且三线合一。
(3)等边对等角、等角对等边。
(4)等边三角形是特殊的等腰三角形。
4、等边三角形
(1)三边都相等的三角形是等边三角形(也叫正三角形)
(2)等边三角形是轴对称图形,它有三条对称轴。
(3)等边三角形三个内角都等于60°
知识运用
1、(1)等腰△ABC中,AB=AC,顶角∠A=100°,那么底角 ∠
B= , ∠C= 。
(2) △ABC中,AB=AC,∠B=72°,那么∠A=
(3) 等腰△ABC中有一个角为50°,那么另外两个角分别是 °
2、如图,在△ABC中,AB=AC时,
(1)∵AD⊥BC
∴∠ ____= ∠_____; ____=____
(2) ∵AD是中线
∴____⊥____; ∠_____= ∠_____
(3) ∵ AD是角平分线
∴____ ⊥____; _____=____
3.如图,P、Q是△ABC边上的两点,BP=PQ=QC=AP=AQ,
求∠BAC的度数。
E
F
P
C B
A
B
A
C
B
A
C D
P
A
B
C
Q