七年级数学轴对称测试题
初中数学:轴对称 单元测试题

A 、B 、75°C、70° D 、60°A 、PA+PB>QA+QB B 、PA+PBVQA+QBD 、PA+PB=QA+QB D 、不6.如点P 为ZAOB 内一点,分别作出点P 关于OA 、OB 的对称点P 、 1 P ,连接PP 交OA12 于M, A交OB 于N ,若PP =6,则APHN 的周长为(12B 、5C 、6D 、7 )初中数学:轴对称单元测试题一、选择题1. 已知点A 与点(-4,5)关于y 轴对称,则A 点坐标是()A. (4,-5)B.(-4,-5)C.(-5,-4)D.(4,5)2. 如果点P(a,2015)与点Q(2016,b)关于x 轴对称,那么a+b 的值等于()A.-4031B.-1C.1D.40313. 图,在已知的△ABC 中,按以下步骤作图:①分别以B,C 为圆心,以大于-BC 的长为半径作弧,5•已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,贝V(7.如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD 二AC,ZA=50。
,则ZACB 的度数4.如图:ZEAF=15°,AB=BC=CD=DE=EF,则ZDEF 等于().MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的三角形中(). A 、AH =DH 丰ADB 、AH=DH=ADC 、AH=AD 丰DH D 、AH 丰DH 丰AD 8、若等腰三角形的周长为26cm ,一边为11cm , 则腰长为(). A .11cm B .7.5cm C.11cm 或7.5cm D.以上都不对10.如图所示,RtAABC 中,ZC=90°, AB 的垂直平分线DE 交BC 于D,交AB 于点E.当ZB=30°时,图中一定不相等的线段有(A.AC=AE=BEB.AD=BDC. CD=DED. AC=BD9.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是().D MA CNEB二、填空题(每小题4分,共16分)14.如图,现要利用尺规作图作厶ABC关于BC的轴对称图形△A'BC.若AB=5cm,AC=6cm,BC=7cm,16.如图,AABC中,AB二AC,ZBAC=54°,ZBAC的平分线与AB的垂直平分线交于点O,将ZC沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则ZOEC为度.三、解答题:17.(6分)如图所示,AD是ZBAC的平分线,DE丄AB,DF丄AC,垂足分别为E,F,连接EF,EF与AD交18.(7分)如图,已知点M、N和ZAOB,A求作一点P,使P到点M、N的距离相等,且到ZAOB的两边的距离相等.19.(8分)如图,AD是厶ABC的角平分线,BE丄AD交AD的延长线于点E,EF〃AC交AB于点F,20.(7分)已知:如图,AABC中,AB=AC,CD丄AB于D.求证:ZBAC=2ZDCB。
北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。
北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

第五章生活中的轴对称达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.观察下列平面图形,其中轴对称图形共有()A.4个B.3个C.2个D.1个(第1题)(第2题)(第3题)2.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A =50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°3.如图,在3×3的正方形网络中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形构成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种4.等腰三角形的一个内角为40°,它的顶角的度数是()A.70°B.100°C.40°或100°D.70°或100°5.将一张正方形纸片依次按图a,图b的方式对折,然后沿图c中的虚线裁剪,最后将图d的纸展开铺平,所看到的图案是()(第5题)(第7题)6.在△ABC中,∠C=90°,BC=16 cm,∠A的平分线AD交BC于D,且CD∶DB=3∶5,则点D到AB的距离等于()A.6 cm B.7 cm C.8 cm D.9 cm7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°8.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰三角形ACD,作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()(第8题)A.15 B.17 C.18 D.20二、填空题(共5小题,每小题3分,计15分)9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第9题)(第11题)(第12题)(第13题)10.已知等腰三角形的一个内角为70°,则这个等腰三角形底角的度数为________.11.如图,直线AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________.12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB、AC于点E、F,BE=OE,OF=5 cm,点O到BC的距离为4 cm,则△OFC的面积为________cm2.13.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,若∠1∶∠2∶∠3=13∶3∶2,则∠α的度数为________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)如图所示的五角星共有几条对称轴?请你在下图中分别画出来.(第14题)15.(5分)以图中的虚线为对称轴画出该图形的另一半.(第15题)16.(5分)如图,四边形ABCD与四边形EFGH关于直线MN对称.(1)线段AD的对应线段是________,CD=________,∠CBA=________,∠ADC=________.(2)连接AE,BF.AE与BF平行吗?为什么?(3)若AE与BF平行,则能说明轴对称图形中对应点的连线一定互相平行吗?(第16题)317.(5分)在植树节活动中,两个班的学生分别在M,N两处植树,现要在道路AB,AC交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请同学们用圆规、直尺在图中画出供应点P的位置,保留画图痕迹,不写作法.(第17题)18.(5分)如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.(第18题) 19.(5分)如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F. 试说明DE=DF .(第19题)20.(5分)把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.(第20题)(1)试说明MC的长度等于点M到AB的距离;(2)求∠AMB的度数.521.(6分)如图,已知CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O且AO平分∠BAC.试说明OB=OC.(第21题)22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E.试说明CE=AB.(第22题)23.(7分)如图,在△ABC中,AB=AC,BD⊥AC于点D.试说明∠DBC=12∠BAC.(第23题)24.(8分)如图,在直角三角形ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP交于点H,试说明BQ⊥CP .(第24题)25.(8分)如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,与AC,AD,AB分别交于点E,M,F.若∠CAD=20°,求∠MCD的度数.7(第25题)26.(10分)综合与探究:如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D与点B,C不重合),连接AD,作∠ADE=40°,DE交线段AC于点E. (1)当∠BDA=115°时,∠EDC=________°,∠DEC=________°;在点D从点B向点C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,何时DA与DE的长度相等?求出此时∠BDA的度数.(第26题)答案一、1.C 2.C 3.C 4.C 5.D 6.A7.C8.C二、9.210.55°或70°11.312.1013.100°三、14.解:如图所示的五角星共有5条对称轴.对称轴如图所示.(第14题)15.解:如图所示.(第15题)16.解:(1)线段EH;GH;∠GFE;∠EHG(2)AE∥BF.理由如下:因为每对对应点连接成的线段被对称轴重直平分,则EA⊥MN,BF⊥MN,所以AE∥BF.(3)AE∥BF不能说明对应点的连线一定互相平行,还有可能共线.17.解:如图所示,点P即为所求.(第17题)18.解:因为AB=AD,所以∠B=∠ADB,因为∠BAD=26°,所以∠B=12(180°-∠BAD)=12×(180°-26°)=12×154°=77°,所以∠ADB=77°,所以∠ADC=103°. 因为AD=CD,所以∠DAC=∠C,所以∠C=12(180°-∠ADC)=38.5°.919.解:连接AD,因为AB=AC,点D是BC边上的中点.所以AD平分∠BAC(三线合一),因为DE、DF分别垂直AB、AC于点E和F.所以DE=DF(角平分线上的点到角两边的距离相等).20.解:(1)过点M作MN⊥AB,易得∠CAD=∠DAB=30°,因为∠C=90°,MN⊥AB,所以MC=MN(角平分线上的点到角两边的距离相等),即MC的长度等于点M到AB的距离.(2)由题意知∠MAB=∠MBA=30°,所以∠AMB=180°-30°-30°=120°.21.解:因为AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,所以OE=OD,又因为在直角三角形OBE和直角三角形OCD中,∠BOE=∠COD,∠BEO =∠ODC=90°,所以△OBE≌△OCD,所以OB=OC.22.解:因为AB=AC,AD是BC边上的高,所以BD=CD.因为CE∥AB,所以∠BAE=∠E,∠B=∠ECD,所以△ABD≌△ECD,所以CE=AB.23.解:作∠BAC的平分线AE,与BC,BD分别交于点E,F,则∠CAE=1 2∠BAC.因为AB=AC,所以由等腰三角形的“三线合一”可知AE⊥BC,所以∠AEB=90°.因为BD⊥AC,所以∠ADB=90°.又因为∠BFE=∠AFD,所以∠DBC=∠CAE,故∠DBC=12∠BAC.24.解:因为△CAP和△CBQ都是等边三角形,所以∠ACP=∠CBQ=60°,因为∠ACB=90°,所以∠BCP=∠ACB-∠ACP=30°,在△BCH中,∠BHC=180°-∠BCH-∠CBH=180°-30°-60°=90°,所以BQ⊥CP.25.解:因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC.因为∠CAD=20°,所以∠ACD=70°.因为EF垂直平分AC,所以AM=CM,所以∠ACM=∠CAD=20°,所以∠MCD=∠ACD-∠ACM=70°-20°=50°.26.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为∠C=40°,所以∠DEC+∠EDC=140°.因为∠ADE=40°,所以∠ADB+∠EDC=140°,所以∠ADB=∠DEC.在△ABD和△DCE中,因为∠ADB=∠DEC,∠B=∠C,AB=DC=2,所以△ABD≌△DCE.(3)当△ABD≌△DCE时,DA=DE.因为∠ADE=40°,所以∠DAE=∠DEA=70°,所以∠DEC=110°.因为△ABD≌△DCE,所以∠BDA=∠DEC=110°.11。
(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》检测卷(含答案解析)

一、选择题1.下列四个图案中,不是轴对称图形的是( ) A .B .C .D .2.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .3.点Р在AOB ∠的角平分线上,点Р到OA 边的距离等于5,点Q 是OB 边上的任意一点,则下列选项正确的是( ) A .5PQ >B .5PO ≥C . 5PQ <D .5PO ≤4.如图,直角梯形纸片对边//AB CD ,C ∠是直角,将纸片沿着EF 折叠,DF 的对应边D F '交AB 于点G ,FH 平分CFD '∠交AC 于点H .则结论:①2AGF GFE ∠=∠;②EGF GFE ∠=∠;③CHF GFE ∠=∠;④若70B EG ∠='︒,则55GFE ∠=︒.其中正确结论的个数为( )A .4个B .3个C .2个D .1个5.下列说法错误的是( ) A .所有的等边三角形都是全等三角形 B .全等三角形面积相等 C .三条边分别相等的两个三角形全等D .成轴对称的两个三角形全等6.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是( )A .B .C .D .7.长方形按下图所示折叠,点D 折叠到点D′的位置,已知∠D′FC=60°,则∠EFD 等于( )A .30°B .45°C .50°D .60°8.下列图形是轴对称图形的是( )A .B .C .D .9.如图,已知ABC 为等腰三角形, , 90AB AC BAC =∠<︒,将ABC 沿AC 翻折至,ADC E 为BC 的中点,F 为AD 的中点,线段EF 交AC 于点G ,若()1FCD GECS m m S=≠,则AGGC=( )A .mB .11m m +- C .1m + D .1m -10.下列图形中是轴对称图形的个数为( )A .2个B .3个C .4个D .5个11.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB 的度数为( )A .60°B .45°C .22.5°D .30°12.如图,在△ABC 中,点D 、E 在BC 边上,点F 在AC 边上,将△ABD 沿着AD 翻折,使点B 和点E 重合,将△CEF 沿着EF 翻折,点C 恰与点A 重合.结论:①∠BAC=90°,②DE=EF ,③∠B=2∠C ,④AB=EC ,正确的有( )A .①②③④B .③④C .①②④D .①②③二、填空题13.如图所示,AOB ∠内一点P ,1P ,2P 分别是P 关于OA ,OB 的对称点,12PP 交OA于点M ,交OB 于点N ,若125cm PP =,则PMN 的周长是__________.14.如图,有一张长方形纸片ABCD,点E.F 分别在边AB 、CD 上,连接EF,将∠BEF 对折,点B 落在直线EF 上的点B /处,得折痕EM;将∠AEF 对折,点A 落在直线EF 上的点A’处,得折痕EN,则∠MEN 的度数为__________.15.如图,点P 为∠AOB 内任一点,E ,F 分别为点P 关于OA ,OB 的对称点.若∠AOB =30°,则∠E+∠F=_____°.16.如图,三角形ABC的面积为1,将三角形ABC沿着过AB的中点D的直线折叠,使点A落在BC边上的1A处,折痕为DE,若此时点E是AC的中点,则图中阴影部分的面积为______________.17.如图,在△ABC中,AB=AC=6,AD是高,M,N分别是AD,AC上的动点,△ABC的面积是15,则MN+MC的最小值是_____.18.如图,在锐角△ABC中,AB=4,∠ABC=45°,∠ABC的平分线交AC于点D,点P、Q 分别是BD、AB上的动点,则AP+PQ的最小值为______.19.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼 的度数是________.间无缝隙),AOB20.如图,在等边ABC中,D、E分别是AB、AC上的点,将ADE沿直线DE折叠后,点A 落在点A '处,ABC 的边长为4cm ,则图中阴影部分的周长为_____cm .三、解答题21.如图,ABC 中,AD 平分BAC ∠,P 为AD 延长线上一点,PE BC ⊥于E ,已知80ACB ∠=︒,24B ∠=︒,求P ∠的度数.22.如图①,将笔记本活页一角折过去,使角的顶点A 落在A '处,BC 为折痕.(1)图①中,若130∠=︒,则A BD '∠=________;(2)如果又将活页的另一角斜折过去,使BD 边与BA '重合,折痕为BE ,如图②所示,130∠=︒,求2∠以及CBE ∠的度数;(3)如果在图②中改变1∠的大小则BA '的位置也随之改变那么问题(2)中CBE ∠的大小是否改变?如果不会改变请直接写出CBE ∠的度数;如果会改变,请说明理由. 23.如图1,在锐角△ABC 中,∠ABC=45°,高线AD 、BE 相交于点F . (1)判断BF 与AC 的数量关系并说明理由;(2)如图2,将△ACD 沿线段AD 对折,点C 落在BD 上的点M ,AM 与BE 相交于点N ,当DE ∥AM 时,判断NE 与AC 的数量关系并说明理由.24.如图,4×5的方格纸中,请你在除阴影之外的方格中任意选择一个涂黑,使得图中阴影部分构成的图形是轴对称图形.25.如图,ABC 和ADE 关于直线l 对称,已知15AB =,10DE =,70D =∠,求B 的度数及BC 、AD 的长度.26.如图,方格图中每个小正方形的边长为1,点,,A B C 都是格点.(1)画出ABC ∆关于直线MN 的对称图形'''A B C ∆; (2)直接写出线段'BB 的长度; (3)直接写出ABC ∆的面积。
(必考题)初中数学七年级数学下册第五单元《生活中的轴对称》测试题(含答案解析)

一、选择题1.下列选项中的图标,属于轴对称图形的是( )A .B .C .D . 2.如图,ABC ,点D ,E 在BC 边上,点F 在AC 边上.将ABC 沿AD 折叠,恰好与AED 重合,将CEF △沿EF 折叠,恰好与AEF ∆重合.下列结论:①60B ︒∠=②AB EC =③AD AF =④DE EF =⑤2B C ∠=∠正确的个数有( )A .2个B .3个C .4个D .5个3.剪纸是我国传统的民间艺术.将一张纸片按图①,②中的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是( )A .B .C .D .4.如图,弹性小球从点P 出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时人射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P 点出发第1次碰到长方形边上的点记为A 点,第2次碰到长方形边上的点记为B 点,……第2020次碰到长方形边上的点为图中的( )A.A点B.B点C.C点D.D点5.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A.B.C.D.6.下列轴对称图形中,对称轴最多的图形是()A.B.C.D.7.在如图所示的直角坐标系中,三颗棋子A、O、B的位置如图,它们的坐标分别是(-1,1),(0,0)和(1,0),添加棋子C,使A、O、B、C四颗棋子成为一个轴对称图形,则C的坐标一定不是()A.(-1,-1) B.(1,1) C.(-1,2) D.(0,-1)8.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是()A.110°B.100°C.90°D.80°9.如图,点D,E在ABC边上,沿DE将ADE翻折,点A的对应点为点'A,'40A EC∠=︒,'110A DB∠=︒,则A∠等于()A.30B.35︒C.60︒D.70︒10.下列四个图标中,是轴对称图形的是()A .B .C .D .11.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A .B .C .D .12.如图所示,在锐角三角形ABC中,AB=8,AC=5,BC=6,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,下列结论:①∠CBD=∠EBD,②DE⊥AB,③三角形ADE的周长是7,④34BCDABDSS=△△,⑤34CDAD=.其中正确的个数有()A .2B .3C .4D .5二、填空题13.如图a 是长方形纸带,18DEF ∠=︒,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的CFE ∠的度数是_________.14.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是__.15.将一张长为12.6m .宽为()6.3acm a >的长方形纸片按如图折叠出一个正方形,并将正方形剪下,这一过程称为第一次操作,将余下的长方形纸片再次折叠出一个正方形,并把正方形再剪下,则称为第二次操作,……,如此操作下去,若前四次剪下后的长方形纸片长与宽之比都小于2:1,当第五次操作后,剩下图形的长与宽之比为2:1,则a =________cm .16.如图,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边对折所形成的,CD 与AE 交于点P 若∠1:∠2:∠3=13:3:2,则∠α的度数为_____.17.如图,△ABC 中,∠ACB =90°,∠A =30°,AC =6,点P 在边AB 上运动(不与端点重合),点P 关于直线AC ,BC 对称的点分别为P 1,P 2.则在点P 的运动过程中,线段P 1P 2的长度m 的取值范围是_____.18.将长方形ABCD 纸片按如图所示方式折叠,使得50A EB ''︒∠=,其中EF ,EG 为折痕,则AEF ∠+BEG ∠=____________度.19.如图所示为一张三角形纸片,已知6cm AC =,8cm BC =,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则ACD △的周长为________cm .20.如图,在Rt ABC 中,ACB 90∠=︒,AC 6=,BC 8=,AD 是BAC ∠的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是____.三、解答题21.如图,已知ABC ∆,点B 在直线a 上,直线,a b 相交于点O .(1)画ABC ∆关于直线a 对称的111A B C ∆;(2)在直线b 上画出点P ,使BP CP +最小.22.如图,点P 是∠AOB 外的一点,点Q 与P 关于OA 对称,点R 与P 关于OB 对称,直线QR 分别交OA 、OB 于点M 、N ,若PM =PN =4,MN =5.(1)求线段QM 、QN 的长;(2)求线段QR 的长.23.如图,ABC 和ADE 关于直线l 对称,已知15AB =,10DE =,70D =∠,求B 的度数及BC 、AD 的长度.24.如图,在由长度为1个单位长度的小正方形组成的网格中,ABC 的三个顶点A ,B ,C 都在格点上,分别按下列要求在网格中作图:(1)画出与ABC 关于直线l 成轴对称的111A B C △;(2)在直线l 上找出一点P ,使得||PA PC -的值最大;(保留作图痕迹,并标上字母P )(3)在直线l 上找出一点Q ,使得1QA QC +的值最小.(保留作图痕迹,并标上字母Q )25.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A 落在A′处,BC 为折痕.若∠ABC =50°,求∠A′BD 的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD 边与BA′重合,折痕为BE ,如图2所示,求∠2和∠CBE 的度数.(3)如果将图2中改变∠ABC 的大小,则BA′的位置也随之改变,那么(2)中∠CBE 的大小会不会改变?请说明.26.如图,已知ABC ∆.(1)画出ABC ∆关于y 轴对称的A B C '''∆;(2)写出ABC ∆关于x 轴对称的111A B C ∆各顶点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接根据轴对称图形的概念进行判断即可;【详解】A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,正确掌握知识点是解题的关键;2.A解析:A【分析】将△ABD沿着AD翻折,可得AB=AE,∠B=∠AEB,将△CEF沿着EF翻折,可得AE=CE,∠C=∠CAE,可得∠B=2∠C.【详解】解:∵将△ABD沿着AD翻折,使点B和点E重合,∴AB=AE,∠B=∠AEB,∵将△CEF沿着EF翻折,点C恰与点A重合,∴AE=CE,∠C=∠CAE,∴AB=EC,∴②正确;∵∠AEB=∠C+∠CAE=2∠C,∴∠B=2∠C,故⑤正确;其余的都无法推导得出,故选:A.【点睛】本题考查翻折变换,三角形外角性质等知识,掌握旋转的性质是本题的关键.3.A解析:A【分析】对于此类问题,只要依据翻折变换,知道剪去了什么图形即可判断,也可动手操作,直观的得到答案.【详解】解:按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个正方形,可得:.故选:A.【点睛】本题主要考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.4.D解析:D【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图所示,经过6次反弹后动点回到出发点P,∵2020÷6=336…4,∴当点P第2020次碰到矩形的边时为第337个循环组的第4次反弹,∴第2020次碰到矩形的边时的点为图中的点D;故选:D.【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.5.D解析:D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.6.D解析:D【分析】根据对称轴的概念、结合图形分别找出各个图形的对称轴,得到答案.【详解】A中图形有一条对称轴;B中图形有一条对称轴;C中图形有两条对称轴;D中图形有四条对称轴;故选:D.【点睛】此题考查轴对称图形,正确找出各个图形的对称轴是解题的关键.7.B解析:B【分析】根据A,B,O,C的位置,结合轴对称图形的性质,进而画出对称轴即可.【详解】如图所示,C点的位置为(-1,2),(2,1),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴,C点的位置为(-1,-1),x轴是对称轴,C点的位置为(0,-1),故选:B.【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.8.C解析:C【分析】根据折叠求出∠CFG=∠EFG=12∠CFE,根据角平分线定义求出∠HFE=12∠BFE,即可求出∠GFH=∠GFE+∠HFE=12∠CFB.根据平角的定义即可得答案.【详解】∵将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,∴∠CFG =∠EFG =12∠CFE , ∵FH 平分∠BFE ,∴∠HFE =12∠BFE , ∴∠GFH =∠GFE+∠HFE =12(∠CFE+∠BFE )=12×180°=90°, 故选:C .【点睛】本题考查折叠的性质及角平分线的定义,根据翻折的性质得到∠CFG=∠EFG 是解题关键. 9.B解析:B【解析】【分析】根据翻转变换的性质得到∠ADE=∠A′DE ,∠AED=∠A′ED ,根据三角形的外角的性质计算,即可得到答案.【详解】解:∵'40A EC ∠=︒,'110A DB ∠=︒,沿DE 将ADE 翻折,点A 的对应点为点'A , ∴()11'1809035,'22ADE A DE A DB A DB AED A ED ''∠=∠=︒-∠=︒-∠=︒∠=∠, ∴180°-∠DEC=∠A′EC+∠DEC ,即190'9020702DEC A EC ∠=-∠=-︒=︒︒︒, 703535A DEC ADE ∴∠=∠-∠=︒-︒=︒.故选:B .【点睛】本题考查的是翻转变换的性质,三角形的外角的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不合题意.故选:B .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.D解析:D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,故本选项错误;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项正确.故选:D .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.C解析:C【分析】根据翻折变换的性质得到DC=DE ,BE=BC ,BCD BED ∠=∠,根据已知求出AE 的长,根据三角形周长公式计算即可,根据高相等判断34BCD ABD S S =△△ ,根据△BCD ≅△BDE 判断①的对错,根据等高,则面积的比等于底边的比判断⑤.【详解】根据翻折变换的性质得到DC=DE ,BE=BC=6,BCD BED ∠=∠,故DE ⊥AB 错误,即②错误∴△BCD ≅△BDE ,∴∠CBD =∠EBD,故①正确;∵AB=8,∴AE=AB-BE=2,△AED 的周长为:AD+AE+DE=AC+AE=7,故③正确;设三角形BCD 的高为h ,则三角形BAD 的高也为h ∴116322114822BCD ABD h BC h S S h AB h ⨯⨯⨯⨯==⨯⨯⨯⨯△△=,故④正确; 当三角形BCD 的高为H ,底边为CD ,则三角形BAD 的高也为H ,底边为AD ∴34BCD ABD S C S D AD ==△△,故⑤正确. 故选C.【点睛】本题考查的是翻折变换的知识涉及了三角形全等、等高等知识点,掌握翻折变换的性质、找准对应关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.126°【分析】先由平行线的性质得出∠BFE=∠DEF=18°再根据折叠的性质得出∠CFG=180°-2∠BFE 由∠CFE=∠CFG-∠EFG 即可得出答案【详解】解:∵四边形ABCD 是长方形∴AD ∥解析:126°【分析】先由平行线的性质得出∠BFE=∠DEF=18°,再根据折叠的性质得出∠CFG=180°-2∠BFE ,由∠CFE=∠CFG-∠EFG 即可得出答案.【详解】解:∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠BFE=∠DEF=18°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×18°=126°,故答案为:126°.【点睛】本题考查了翻折变换的性质、平行线的性质;熟练掌握翻折变换,弄清各个角之间的关系是解决问题的关键.14.55°【解析】解析:55°【解析】a b ∥ ,3170∴∠=∠= ,()1218070552∴∠=-⨯= . 15.8【分析】根据题意求出第五次操作后剩余长方形的长和宽的表达式根据题意列出关于a 的方程即可求解【详解】∵第一次操作后长方形纸片的长为a(cm)宽为(126-a )cm ;第二次操作后长方形纸片的长为(12解析:8【分析】根据题意求出第五次操作后,剩余长方形的长和宽的表达式,根据题意,列出关于a的方程,即可求解.【详解】∵第一次操作后长方形纸片的长为a( cm),宽为(12.6-a)cm;第二次操作后长方形纸片的长为(12.6-a)cm,宽为(2a-12.6)cm;第三次操作后长方形纸片的长为(2a-12.6)cm,宽为(25.2-3a)cm;第四次操作后长方形纸片的长为(25.2-3a)cm,宽为(5a-37.8)cm;第五次操作后长方形纸片的长为(5a-37.8)cm,宽为(63-8a)cm;又∵第五次操作后,剩下图形的长与宽之比为2:1,∴5a-37.8=2×(63-8a),解得:a=7.8.故答案是:7.8【点睛】本题主要考查折叠的性质以及一元一次方程的应用,根据题意找出等量关系,列出方程,是解题的关键.16.100°【分析】由∠1:∠2:∠3=13:3:2和三角形内角和定理求出∠1=130°∠3=20°根据折叠的性质即可求解【详解】解:∵∠1:∠2:∠3=13:3:2∴∠1=130°∠3=20°∴∠DC解析:100°【分析】由∠1:∠2:∠3=13:3:2和三角形内角和定理求出∠1=130°,∠3=20°,根据折叠的性质即可求解.【详解】解:∵∠1:∠2:∠3=13:3:2,∴∠1=130°,∠3=20°,∴∠DCA=20°,∠EAB=130°,∵∠PAC=360°﹣2∠1=100°,∴∠EPD=∠APC=180°﹣∠PAC﹣∠DCA=60°,由翻折的性质可知:∠E=∠3=20°,∴∠α=180°﹣60°﹣20°=100°.故答案为:100°.【点睛】本题考查了折叠变换的性质、三角形内角和定理;熟练掌握翻折变换的性质和三角形内角和定理是解题的关键.17.6≤m<12【分析】如图连接PC作CH⊥AB于H首先证明P1P2=2PC求出PC的取值范围即可解决问题【详解】解:如图连接PC作CH⊥AB于H∵点P关于直线ACBC对称的点分别为P1P2∴CP=CP解析:6≤m<12【分析】如图,连接PC,作CH⊥AB于H.首先证明P1P2=2PC,求出PC的取值范围即可解决问题.【详解】解:如图,连接PC ,作CH ⊥AB 于H .∵点P 关于直线AC ,BC 对称的点分别为P 1,P 2,∴CP =CP 1=CP 2,∴P 1P 2=2PC ,在Rt △ACH 中,∵∠AHC =90°,AC =6,∠A =30°,∴CH =12AC =3, ∵点P 在边AB 上运动(不与端点重合),∴3≤PC <6,∴线段P 1P 2的长度m 的取值范围是6≤m <12,故答案为6≤m <12.【点睛】本题考查轴对称,直角三角形的性质,垂线段最短等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.18.65【解析】【分析】根据翻折的定义可以得到各角之间的关系从而可以得到∠AEF+∠BEG 的度数从而可以解答本题【详解】解:由题意可得∠AEA=2∠AEF ∠BEB=2∠BEG ∴(∠AEA+∠BEB )∵∠解析:65【解析】【分析】根据翻折的定义可以得到各角之间的关系,从而可以得到∠AEF+∠BEG 的度数,从而可以解答本题.【详解】解:由题意可得,∠A’EA=2∠AEF,∠BEB’=2∠BEG.∴AEF ∠+BEG ∠=12(∠A’EA+∠BEB’). ∵∠A’EA+∠BEB’+∠A’EB’=180°,50A EB ''︒∠=∴∠A’EA+∠BEB’=130°,∴AEF ∠+BEG ∠=12⨯130°=65°. 故答案为65.【点睛】本题考查翻折变换、矩形的性质,解题的关键是明确题意,找出所求问题需要的条件. 19.14【分析】根据折叠的性质得到AD=BD 即可求出答案【详解】由折叠得:AD=BD ∵∴的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm 故答案为:14【点睛】此题考查折叠的性质:折叠前后对解析:14【分析】根据折叠的性质得到AD=BD ,即可求出答案.【详解】由折叠得:AD=BD ,∵6cm AC =,8cm BC =,∴ACD △的周长=AC+AD+CD=AC+BC=6cm+8cm=14cm ,故答案为:14.【点睛】此题考查折叠的性质:折叠前后对应的线段相等,熟记性质是解题的关键.20.【分析】过点C 作CM ⊥AB 交AB 于点M 交AD 于点P 过点P 作PQ ⊥AC 于点Q 由AD 是∠BAC 的平分线得出PQ =PM 这时PC +PQ 有最小值即CM 的长度运用勾股定理求出AB 再运用得出CM 的值即PC +PQ 的 解析:24 5【分析】过点C 作CM ⊥AB 交AB 于点M ,交AD 于点P ,过点P 作PQ ⊥AC 于点Q ,由AD 是∠BAC 的平分线.得出PQ =PM ,这时PC +PQ 有最小值,即CM 的长度,运用勾股定理求出AB ,再运用1122ABC S AB CM AC BC =⋅=⋅△,得出CM 的值,即PC +PQ 的最小值. 【详解】如解图,过点C 作CM AB ⊥,交AB 于点M ,交AD 于点P ,过点P 作PQ AC ⊥于点Q ,∵AD 是BAC ∠的平分线,∴PQ PM =,这时PC PQ +有最小值,即CM 的长度,∵6AC =,8BC =,90ACB ∠=︒, ∴10AB ===. ∵1122ABC S AB CM AC BC =⋅=⋅△, ∴6824105AC BC CM AB ⋅⨯===,即PC PQ +的最小值为245. 故答案为245.【点睛】本题主要考查了轴对称问题,解题的关键是找出满足PC +PQ 有最小值时点P 和Q 的位置.三、解答题21.(1)见解析;(2)见解析【分析】(1)根据题意,过点A 作直线a 的对称点1A ,过点C 作直线a 的对称点1C ,然后顺次连线,即可得到图形;(2)过点B 作直线b 的对称点B 2,连接CB 2与直线b 相交于点P ,则点P 为所求.【详解】解:(1)如图所示:111A B C 为所求;(2)如图,点P 为所求.【点睛】本题考查了轴对称的性质,画轴对称图形,解题的关键是熟练掌握轴对称的性质进行解题. 22.(1)4,1;(2)5【分析】(1)利用轴对称的性质求出MQ 即可解决问题;(2)利用轴对称的性质求出NR 即可解决问题.【详解】(1)∵P ,Q 关于OA 对称,∴OA 垂直平分线段PQ ,∴MQ =MP =4,∵MN =5,∴QN =MN ﹣MQ =5﹣4=1.(2)∵P ,R 关于OB 对称,∴OB 垂直平分线段PR ,∴NR =NP =4,∴QR =QN+NR =1+4=5.【点睛】本题考查轴对称的性质,解题的关键是理解题意,熟练掌握轴对称的性质属于中考常考题型.23.70B ∠=,10BC =,15AD =.【分析】根据轴对称的性质,对应边相等,对应角相等即可得出答案.【详解】∵△ABC 和△ADE 关于直线l 对称,∴ABC ∆≌ADE ∆,∴B D ∠=∠,BC DE =,AB AD =.∵70D =∠,15AB =,10DE =,∴70B ∠=,10BC =,15AD =.【点睛】此题考查轴对称的性质,两个图象关于某直线对称,对应边相等,对应角相等. 24.(1)见解析 (2)见解析 (3)见解析【分析】(1)根据轴对称的性质解答即可;(2)连接1AC 并延长,交直线l 于点P ,点P 即为所求;(3)直线AC 与直线l 的交点Q 即为所求.【详解】解:(1)如图,111A B C △即为所求.(2)如图,连接1AC 并延长,交直线l 于点P ,点P 即为所求.∵点C 1点C 关于直线l 对称,∴||PA PC -=AC 1,∴连接1AC 并延长,交直线l 于点P ,点P 即为所求.(3)如图,直线AC 与直线l 的交点Q 即为所求,∵点C 1点C 关于直线l 对称,∴1QA QC +=QA+QC=AC ,∴直线AC 与直线l 的交点Q.【点睛】此题考查轴对称图形的作图方法,轴对称图形的性质,线段和差的作图,正确理解轴对称图形的性质是解题的关键.25.(1)∠A′BD=80°;(2)∠2=40°、∠CBE=90°;(3)不变,理由见解析.【分析】(1)由折叠的性质可得50A BC ABC ∠=∠='︒,由平角的定义可得∠A′BD=180°-∠ABC-∠A′BC ,可得结果;(2)由(1)的结论可得∠DBD′=80°,由折叠的性质可得∠2=12∠DBD′=12×80°=40°,由角平分线的性质可得∠CBE=∠A′BC+∠D′BE=12×180°=90°; (3)由折叠的性质可得,∠1=∠ABC=12∠ABA′,∠2=∠EBD=12∠DBD′,可得结果. 【详解】解:(1)∵∠ABC=50°∴∠A′BC=∠ABC=50°∴∠A′BD=180°-∠ABC-∠A′BC=180°-50︒-50°=80°(2)由(1)的结论可得∠DBD′=80° ∴∠2=12∠DBD′=12×80°=40° 由角平分线的性质可得 ∴∠CBE=∠A′BC+∠D′BE=12×180°=90° (3)不变由折叠的性质可得∠1=∠ABC=12∠ABA′,∠2=∠EBD=12∠DBD′ ∴∠1+∠2=12 (∠ABA′+∠DBD′)=12×180°=90° 不变,永远是平角的一半.【点睛】此题主要考查折叠问题,熟练掌握折叠的性质和角平分线的性质是解题关键. 26.(1)图见解析;(2)111(1,2),(3,1),(1,2)A B C ----.【分析】(1)分别作各点关于y 轴的对称点,再顺次连接即可; (2)根据各点在坐标系中的位置写出各点坐标即可.【详解】(1)如图;(2)111(1,2),(3,1),(1,2)A B C ----【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.。
初中数学同步训练必刷基础卷(北师大版七年级下册 5.1轴对称现象)

初中数学同步训练必刷基础卷(北师大版七年级下册 5.1轴对称现象)一、选择题1.下列深圳交通的标志图案中,是轴对称图形的是()A.深圳巴士B.深圳东部公交C.深圳航空D.深圳地铁2.下列标志中,可以看作是轴对称图形的是().A.B.C.D.3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.以下是“有机食品”、“安全饮品”、“循环再生”、“绿色食品”的四个标志,其中是轴对称图形的是()A.B.C.D.5.将英语单词“LOVE”的每一个字母都看成一个图形,其中不是..轴对称图形的是()A.B.C.D.6.在一些汉字的美术字中,有一些是轴对称图形,下面四个美术字中,可以近似地看作是轴对称图形的是()A.B.C.D.7.如图所示,图中是轴对称图形的是()A.B.C.D.8.下列轴对称图形中,对称轴最少的是()A.B.C.D.9.将正方形网格图中的某两个白色方格涂上颜色,使整个图形有四条对称轴.正确的涂色位置是()A.①②B.①④C.②③D.①③10.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.二、填空题11.下列图形中,是轴对称图形的有个.12.小明从镜子里看到对面电子钟的像如图所示,则实际时间是.13.写出一个有3条对称轴的平面图形.14.从“2~9”这8个阿拉伯数字中写一个...轴对称图形的数字.15.如图所示的五角星是轴对称图形,它的对称轴共有条.三、解答题16.画出如图中△ABC关于直线MN的对称三角形。
17.判断下列图形是否为轴对称图形?如果是,说出它有几条对称轴。
18.判断下列图形(如图所示)是不是轴对称图形。
答案解析部分1.答案:D解析:解:A、此图案不是轴对称图形,故此选项不符合题意;B、此图案不是轴对称图形,故此选项不符合题意;C、此图案不是轴对称图形,故此选项不符合题意;D、此图案是轴对称图形,故此选项符合题意.故答案为:D.分析:把一个平面图形沿一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形,据此一一判断得出答案.2.答案:D解析:解:A、该图形是中心对称图形,不是轴对称图形,故本项不符合题意;B、该图形是中心对称图形,不是轴对称图形,故本项不符合题意;C、该图形是中心对称图形,不是轴对称图形,故本项不符合题意;D、该图形是轴对称图形,本项符合题意.故答案为:D.分析:根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形,据此判断即可.3.答案:D解析:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故答案为:D.分析:轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;据此逐一判断即可.4.答案:D解析:解:选项D中的图形能找到一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合,所以D选项的图形是轴对称图形.而A、B、C中的图形不能找到一条直线,使这个图形沿这条直线折叠,直线两旁的部分能够互相重合,所以A、B、C选项的图形不是轴对称图形.故答案为:D.分析:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,则这个图形是轴对称图形.据此判断各个选项中的图形即可.5.答案:A解析:解:A、没有对称轴,不是轴对称图象,符合题意;B、有无数条对称轴,是轴对称图形,不符合题意;C、数轴方向上有一条对称轴,是轴对称图形,不符合题意;D、水平方向上有一条对称轴,是轴对称图形,不符合题意;故答案为:A.分析:根据轴对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,关键是找到对称轴.6.答案:C解析:解:A.不是轴对称图形,不符合题意;B.不是轴对称图形,不符合题意;C.可以近似地看作是轴对称图形,符合题意;D.不是轴对称图形,不符合题意;故答案为:C.分析:轴对称图形为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
七年级数学下册 5.2探索轴对称的性质 检测(含答案)

【解答】解:根据轴对称的性质得:∠B′OG=∠BOG 又∠AOB′=70°,可得∠B′OG+∠BOG=110°
∴∠B′OG= ×110°=55°. 14.如图所示:点 P 为∠AOB 内一点,分别作出 P 点关于 OA、OB 的对称点 P1,P2,连接 P1P2 交 OA 于
M,交 OB 于 N,△PMN 的周长为 15cm,P1P2= 15cm . 【解答】解:∵P 点关于 OA、OB 的对称点 P1、P2, ∴PM=P1M,PN=P2N, ∴△PMN 的周长=PM+MN+PN=P1M+MN+P2N=P1P2, ∵△PMN 的周长是 15, ∴P1P2=15. 故答案为:15cm.
4.下列语句:①两个图形关于某直线对称,对应点一定在该直线的两旁;②平面上完全相同的两个图形一
定关于某条直线对称;③如果线段 AB 和 A′B′关于某条直线对称,则 AB=A′B′;④如果 M,N 两
点到直线 L 的距离相等,那么 M,N 两点关于直线 L 对称.其中正确的有( )
A.1 个
B.2 个
定关于某条直线对称;③如果线段 AB 和 A′B′关于某条直线对称,则 AB=A′B′;④如果 M,N 两
点到直线 L 的距离相等,那么 M,N 两点关于直线 L 对称.其中正确的有( )
A.1 个
七年级数学上册《轴对称的认识》练习题二

练习题二
1.如图是在一面镜子里看到的一个用火柴摆的一个算式,该算式实际摆的是什么情况呢?请画出来,如果该算式并不正确,那么请移动两根火柴使之变为正确的式子.
2.如图是一个比较复杂的轴对称图形,请参照这个图形设计一个比较简单,又与这个图有一些相同特点的轴对称图形.
3.下面给出的是某某企业一种生产设备的图片,如果换个角度拍照,就得到反映其中一件设备的轴对称图形,请通过想象把它画出来.
参考答案
1.
可将式子中的“=”改为“<”.
2.无确定答案,如
3.略.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
A
B
E C '
D C
22.5
图1
图2
图3
图5
图6
图4
轴对称测试题
一、选一选,牛刀初试露锋芒!(每小题3分,共30分) 1.下列图形中,轴对称图形的个数是( )
A .4个ﻩ
B.3个
C.2个 ﻩ
D.1个
2.下列分子结构模型平面图中,有一条对称轴的是( )
3.如图1,将长方形ABCD 纸片沿对角线BD 折叠,使点C 落在C '处,
BC '交AD 于E,若22.5DBC ∠=°,则在不添加任何辅助线的情况下, 则图中45︒的角(虚线也视为角的边)的个数是( )
A.5个 ﻩﻩ B.4个ﻩﻩ C.3个 D.2个 4.下列说法中错误的是( )
A .两个关于某直线对称的图形一定能够完全重合 B.对称图形的对称点一定在对称轴的两侧
C.成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴 D .平面上两个能够完全重合的图形不一定关于某直线对称
5.如图2,△A OD 关于直线l 进行轴对称变换后得到△BO C,下列说法中不正确的是( ).
A .∠DAO =∠C BO,∠ADO=∠BCO
B .直线l 垂直平分AB 、CD C.△AO D 和△BO
C 均是等腰三角形 D.A
D =B C,OD=OC
6.将一个正方形纸片依次按图a ,图b 的方式对折,然后沿图c 中的虚线裁剪, 最后将图d 的纸再展开铺平,所看到的图案是( ).
a
b
c d
7.如图3,有一张直角三角形纸片,两直角边AC=5cm,B C=10cm ,
△AB C折叠,使点B与点A重合,折痕为DE ,则△AC D的周长 为( )
A.10 cm ﻩ
B.12c mﻩ
C.15cm
D.20cm
8.图4是小明在平面镜里看到的电子钟示数,这时的实际时间是( )
A.12:01
B.10:51 C.10:21 D .15:10 9.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图5所示 的图形,两条直角边在同一直线上.则图中等腰三角形有( )个. A .1个
B.2个
C.3个 ﻩ D .4个
10.如图6,AB AC =,120BAC ∠=︒,AB 的垂直平分线交B C于点D,那么DAC ∠
的度数为( ).
A.90︒ B.80︒ C.70︒ D.60︒
A
B
C
D
--
图11
题号 1
2
3
4
5
6
7
8
9 10 答案
二、填一填,狭路相逢勇者胜!(每小题3分,共30分)
11.在一些缩写符号:① SO S,② C CTV ,③ BBC,④ WWW ,⑤ TNT 中,成轴对称图形的
是 (填写序号)
12.已知等腰三角形的顶角是底角的4倍,则顶角的度数为 .
13.如图7,公路BC 所在的直线恰为AD 的垂直平分线,则下列说法中:①小明从家到书店
与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远. 正确的是 .(填写序号)
14.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.
如“王、中、田”,请你再举出三个可以看成是轴对称图形的汉字 .(笔画的粗细和书写的字体可忽略不记).
15.如图8(下页),AD是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD=2,AD=3,
则图中阴影部分的面积是 .
16.从汽车的后视镜中看见某车车牌的后5位号码是
,则该车的后5位号码实际
是 .
17.下午2时,一轮船从A 处出发,以每小时40海里的速度向正南方向行驶,下午4时,到达
B 处,在A 处测得灯塔
C 在东南方向,在B 处测得灯塔C在正东方向,则B 、C之间的距离是 .
18.如图9,在ABC ∆中,ABC ACB ∠=∠,AB =25cm,A B的垂直平分线交A B于点D,交A
C于点E,若BCE ∆的周长为43cm ,则底边BC 的长为 .
19.如图10,把宽为2c m的纸条ABCD 沿EF GH ,同时折叠,B 、C 两点恰好落在AD 边的P
点处,若△P FH 的周长为10cm,则长方形ABCD 的面积为 .
20.在△AB C中,已知AB =AC ,∠A =36°,A B的垂直平分线MN 交AC 于D . 在下列结论中:
①∠C =72°;②BD 是∠ABC 的平分线;③∠B DC=100°;④△ABD 是等腰三角形;⑤AD=BD=BC. 上述结论中,正确的有 .(填写序号) 三、想一想,百尺竿头再进步!(共60分)
21.(7分)如图11,在ABC △中,90C =∠,AD 平分BAC ∠,DE AB ⊥,如果5cm DE =,
32CAD =∠,求CD 的长度及B ∠
的度数. A
E
P
D G
F
B
A C
D 图10
图8
图9
--
图12
22.(7分)如图12,已知AB ⊥CD ,△A BD、△BC E都是等腰三角形,如果CD =8cm,B E=
3cm. 求A E的长.
23.(8分)如图13,校园有两条路OA 、OB,在交叉口附近有两块宣传牌C 、D,学校准备在
这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.
24.(8分)如图14,在正方形网格上有一个△ABC. (1)画△A BC 关于直线MN 的对称图形(不写画法);
(2)若网格上的每个小正方形的边长为1,求△ABC 的面积.
25.(10分)(1)观察图15①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;
(2)借助图15⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图14①~④的图案不能重合). 图13
图14
26.(10分)如图16,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=1
25°. 求∠ACB和∠BAC的度数.27.(10分)如图17,在等腰△ABC中,AB=AC,AD是BC边上的高,
点E、F分别是边AB、AC上的中点,且EF∥BC.
(1)试说明△AEF是等腰三角形;
(2)试比较DE与DF的大小关系,并说明理由.
图17
--。