1.4.4 实际电源模型及其等效变换

合集下载

第二章电路的等效变换

第二章电路的等效变换

Gk ik i Geq
并联同压,反比分流













两电阻的并联分流:
1 R1 1 R2 R1R2 Req 1 R1 1 R2 R1 R2
1 R1 R2 i1 i i 1 R1 1 R2 R1 R2
i R1
i1
R2
i2
1 R2 R1 i2 i i (i i1 ) 1 R1 1 R2 R1 R2






例2
求:I1 ,I4 ,U4
I3 R I1 I I2 R R I I3 R I4 2 1
+ + + + + 12V12V 2R 2R R 2U 2R 2R U4 U1 2 R 2 U2 U U R 1 _ _ _ _ 4 2R//2 _ _ _ _ 解 ①并联分流:
+ +
+
Req R
注意参考方向
R2 i i 和i1 均是流进时,有: i1 R1 R2






④功率
p1=G1u2, p2=G2u2,, pn=Gnu2 p1: p2 : : pn= G1 : G2 : :Gn 与电导成正比
总功率
p=Gequ2 = (G1+ G2+ …+Gn ) u2 =G1u2+G2u2+ +Gnu2 =p1+ p2++ pn
12
i2
18
i3
9

电路课件——电路等效变换

电路课件——电路等效变换

R
R
d
Rab R
§2-4 电阻的星形联接与三角形联接的
等效变换 (—Y 变换)
c
1. 电阻的 ,Y连接
R1
R2
包含
1
a
b
R3
R4
1d
R12
R31
R1
R2
R3
三端 网络
2
R23
3
2
3
型网络
Y型网络
,Y 网络的变形:
型电路 ( 型)
T 型电路 (Y、星 型)
这两个电路当它们的电阻满足一定的关系时,能够相互等效
开路的电流源可以有电流流过并联电导Gi 。
电压源短路时,电阻中Ri有电流; 电流源短路时, 并联电导Gi中无电流。
(3) 理想电压源与理想电流源不能相互转换。
应用:利用电源转换简化电路计算。
例1.
5A
3
I=?
+ 15v_
7
_
2A
4
8v
+
例2. U=?
7 I
7
I=0.5A
5 10V 10V 6A
+ u
-
-
§2-3 电阻的串联、并联和串并联
1. 电阻串联( Series Connection of Resistors )
(1) 电路特点
R1
Rk
Rn
i
+ u1 _ + U k _ + un _
+
u
_
(a) 各电阻顺序连接,流过同一电流 (KCL);
(b) 总电压等于各串联电阻的电压之和 (KVL)。
i
+ uS _

电工电子学完整ppt课件

电工电子学完整ppt课件

K
u k ( t ) 0 或
u降 u升 或 uR US
k 1
式中 uk(t) 为该回路中第 k 条支路电压,K 为该回路处的支路数
示例
R2 i2
+ US_1
+ u2 _ +
R1 i1
+ _u1
_u3 _ u4 +
_ US4+ R4 i4
R3 i3
① 标定各元件电压、电流参考方向 ② 选定回路绕行方向,顺时针或逆时针 顺时针
小结 · 分析电路前必须选定电压和电流的参考方向
· 参考方向一经选定,必须在图中相应位置标注 (包括方向和符号), 在计算过程中不得任意改变。
· 参考方向也称为假定正方向,以后讨论均在参考方向下进行,不考虑 实际方向。
· 电路中电位参考点可任意选择,参考点一经选定,电路中各点的电位
值就是唯一的,当选择不同的电位参考点时,电路中各点电位值将
Lumped parameter element
集总条件 实际电路的尺寸远小于使用时其最高工作频率所对应的
波长 d
注意
• 采用集总电路模型意味着不考虑电路中电场与磁场的相互作用, 不考虑电磁波的传播现象,认为电能的传送是瞬时完成的
• 集总假设为本课程的基本假设,以后所述的电路基本定律、定理 等均是以该假设为前提成立的
_
R1
+ US2
_
R2
b=3
n=2
R3
l=3
m=2
精品课件
22
2. 基尔霍夫电流定律 (KCL)
在集总参数电路中,任意时刻,对任意节点流出或流入该节点电流的代数 和等于零。
K
ik (t) 0

第2章 电路分析方法

第2章 电路分析方法

2.7 电路分析方法的仿真分析
1)首先在电子工作平台上画出待分析的电路,然后用鼠标器点击菜
单中的电路(Circuit)选项,进入原理图选项(Schematic Operation), 选定显示节点(Show Nodes)把电路中的节点标志显示在电路图上。 2)用鼠标器点击菜单中的分析(Analysis)选项,进入直流工作点(DC Operating Point)选项,EWB自动把电路中的所有节点的电位数值及 流过电源支路的电流数值,显示在分析结果图(Analysis Graph)中。 3)将开路电压Uoc和等效电阻Req仿真出结果后,在EWB中创建图2-3
∗2.5
替代定理
替代定理可以叙述如下:给定任意一个电路,其 中第k条支路的电压U p和电流I k已知,那么这条 支路就可以用一个具有电压等于U k的独立电压 源,或者用一个具有电流等于I k的独立电流源来 替代,替代后电路中全部电压和电流均保持原值。
∗2.5
替代定理
图2-21 替代定理电路图
∗2.5
替代定理
•用替代定理,可简化电路计算,由替代定理可 得出以下推论:
•网络的等位点可用导线短接;电流为零的支路 可移去。
2.6 戴维宁定理和诺顿定理
2.6.1 戴维宁定理
2.6.2 诺顿定理
2.6 戴维宁定理和诺顿定理
图2-22 戴维宁方法电路
2.6.1 戴维宁定理
戴维宁定理可表述为:任何一个线性含源的二端 网络,对外电路来说,可以用一条含源支路来等 效替代,该含源支路的电压源的电压等于二端网 络的开路电压,其电阻等于含源二端网络化成无 源网络后的入端电阻R0。
别设为2A和1A。为使得电路元件排放规则,可以利用工具按钮
中的(Rotate,Flip Horizontal和Flip Vertical)按钮将水平放置的元件 置为垂直放置、水平转向和上下翻转。然后按照电路结构,连接 元件,如图2-31所示。注意仿真电路必须有接地参考点,而且为 了和仿真节点一致,选取图2-30的节点标号。

第二章 电阻电路的等效变换

第二章   电阻电路的等效变换

注意: 注意: 上的电压; (1)变换后 0是两个元件上的电压; )变换后u 两个元件上的电压 控制变量所在支路不能动 (2)受控源的控制变量所在支路不能动。 )受控源的控制变量所在支路不能动。 2. 利用两类约束找关系 利用两类约束 两类约束找关系
1 对回路列KVL: (1 + R 3 + R 4 )i + 2 R 4 u 3 = u S 对回路列 : 2 受控源的控制量: 受控源的控制量: u 3 = R3 i
2、并联等效电阻 、并联等效电阻
(1)等效条件: )等效条件: (2)分流公式: )分流公式:
G

=

G

Gk ik = G k u = i G等
i1
i2 G2 iS
特殊: 特殊:
G
k
= ∞ ,即 R
k
=
0 ,
i
k
=
i

短路处电流 电流源电流 其它电导电流 电流= 电流, 电导电流= ) (短路处电流=电流源电流,其它电导电流=0)
§2-1 引言 -
由时不变线性无源元件、线性受控源和独立电源 时不变线性无源元件 线性受控源和 元件、 组成的电路,称为时不变线性电路,简称线性电 组成的电路,称为时不变线性电路,简称线性电 路。 如果构成电路的无源元件均为线性电阻,则称为 如果构成电路的无源元件均为线性电阻, 构成电路的无源元件均为线性电阻 线性电阻性电路。 线性电阻性电路。电路中电压源的电压或电流源 的电流,可以是直流, 的电流,可以是直流,也可以随时间按某种规律 变化;当电路中的独立电源均为直流电源 直流电源时 变化;当电路中的独立电源均为直流电源时,称 直流电路。 为直流电路。 简单电阻电路的分析与计算 本章为简单电阻电路的分析与计算,着重介绍 本章为简单电阻电路的分析与计算, 等效变换的概念 的概念。 等效变换的概念。

第2章 电路的等效变换

第2章 电路的等效变换

Reห้องสมุดไป่ตู้ = nR
u1 = u n
二、电阻的串联
4.功率关系 功率关系 各电阻消耗的功率: 各电阻消耗的功率: p1=R1i 2, p2=R2i 2,…, pn=Rni 2 所以有: 所以有: 各电阻消耗功率之比: 各电阻消耗功率之比: p1: p2 : … : pn= R1 : R2 : … :Rn 总功率: 总功率: p=Reqi 2 = (R1+ R2+ …+Rn ) i 2 =R1i 2+R2i 2+ …+Rni 2 =p1+ p2+…+ pn …
1 / R1 R2 i1 = i= i 1 / R1 + 1 / R2 R1 + R2
º 若R1=R2=R,则有: ,则有:
i2 = −
1/ R2 R1 i=− i 注意方向! 1/ R1 + 1/ R2 R1 + R2 (注意方向
Req = RR = R R+R 2
i1 = i 2 i1 = i n
B
A
C
A
(1)电路等效变换的条件 明 确 (2)电路等效变换的对象 (3)电路等效变换的目的
两电路具有相同的VCR 两电路具有相同的VCR 未变化的外电路A 未变化的外电路A中 的电压、 的电压、电流和功率 化简电路, 化简电路,方便计算
二、电阻的串联
1.电路特点 电路特点: 电路特点 R1 i + Rk Rn + un _ _
2.1 电阻的串并联及其等效变换 一、电路的等效变换
二端电路(网络) 1. 二端电路(网络) 任何一个复杂的电路, 向外引出两个端钮, 任何一个复杂的电路, 向外引出两个端钮,且从一个 端子流入的电流等于从另一端子流出的电流,则称这一电 端子流入的电流等于从另一端子流出的电流, 或一端口网络) 路为二端网络 (或一端口网络)。

第二章 等效变换


例2:
求图2-9a电路中电流 I1, I2, I3 , I4。
I
I2 I1
解: 思路
Δ→Y
Req
I
Rb
48 2, 同理, 求得 : Rc 2, Rd 1, Req (1 Rb ) //(5 Rd ) Rc 4 4 48 1 Rb 18 I 3 A, 由分流公式, 可得: I1 I 1A, I 2 I I1 2 A 2 Req 1 Rb 5 Rd U db 5 I1 1 I 2 I3 0.75 A, I 4 I1 I 3 1.75 A 4 4
根据电路的对称性, 可知 c, d, e三点等电位, 故可用导线短接。
8 2 8 2 3 3 2 16 Req [( 2 // 1) 2] //(2 // 1) 2 // 2 8 2 3 3 15 3 3
§2-4电阻的Y-Δ 等效变换
R1, R2, R3 Y(星)形连接 R3, R4, R5 R1, R3, R4 Δ(三角)形连接 R2, R3, R5

'' Req R1 Req 6 6 12 ③
15 10 6 ②R R2 R34 15 10
'' eq ' R2 Req
Req R1 R2 //(R3 R4 ) R1
R2 ( R3 R4 ) 15(5 5) 6 12 R2 R3 R4 15 5 5
6 9 54 断开时,Req 2+4) 3 6) ( //( 3.6 6 9 15
结论:若电路中两点电位相等,则: ①可将这两点短路 ② 可将这两点之间连接的支路断开 对某些对称性电路可采用此方法处理

第二章 等效变换


即 若 干 电 阻 串 联 等 效 于 一 个 电 阻 , Req=R1+R2+···+Rn
uk Rki Rk R eq u
—— 分压公式
2、 并联
电阻首尾分别相联, 处于同一电压下的连接方式, 称为并联
(图2-3a)。
VCR:
i i1 i 2 i n
u R1 u R2 u Rn
讨论:若要求电流 i1, i2, i3, 怎么办? 回到原电路来分析!
u 4 R 4 i 4 15 V
i2 u 4 / R 2 2 .5 A
i1 u 4 / R1 5 A
i3 u 4 / R 3 7 . 5 A
3、电压源与电流源(或电阻)的并联
任何二端网络和电压源并联,从端口看,均等效作一个电压源。
''
②R
'' eq

R 2 R eq R 2 R 34
6
'

15 10 15 10
6
R eq R 1 R 2 //( R 3 R 4 ) R 1
R2 ( R3 R4 ) R2 R3 R4
15 ( 5 5 ) 15 5 5
12
小结:1、串联电路的特点: ①流过每个电阻的电流相同; ②总电压等于各电阻电压的代数和;
③端口总电阻等于所有串联电阻的和。 2 、并联的电路特点: ①u1=u2=u3=„„ = u ②i1+i2+i3+ „„ = i ③G= G1+G2+G3+ „„ 或:
1 R

1 R1

第二章 电路的等效变换

的电压、电流关系,因而可以互相代换; (2)代换的效果是不改变外电路(或电路未变
化部分)中的电压、电流和功率。
应用等效电路的概念,可以把由多个元件组 成的电路化简为只有少数几个元件甚至一个元 件组成的电路,从而使所分析的问题得到简化。
注意:
等效只是针对外电路而言,对 其内部电路是不等效的。
i
i
i
2Ω 2Ω u
(i
S+ iS'
)
i 1=i 2–i S
方法二: 将N2变换成电压源;
i 1=
uS – uS' R1+R'2
i 2=i 1+i S
电压源与电流源变换公式:
i R
1 变换条件
i 2
uS+
u
i=i iS u=u
G u

1
i=
uS – R
u
=
uS R

u R
电压源
电流源

2
i =i S–u G
1Ω u 5Ω
u
iS
i iS u
对外等效,但内 部电流不等效
对外等效,但内部电压不等效
应用电路等效变换的方法分析电路时,只可用变换后 的电路求解外部电路的电压、电流;求解内部电路的电压、 电流时要在原电路中求解。
§2—1 电阻的串联和并联
i R1
R2
iR
u1
u2
u
i
u
i
U1=
R1 U R1+R2
R=R1+R2
I
2I
2Ω 8Ω

I 2Ω
+

4I

1.5电源及电源等效变换法


+ U _ 1
R1 IS
a + U _ 1
R1 IS I R I1 R1 IS
a
I R
(2)由图(a)可得: (b) b I R1 IS-I 2A-4A -4A
U1 10 I R3 A 2A R3 5 理想电压源中的电流 I U1 I R3-I R1 2A-(-4)A 6A
1
2A 3 + 6V – 6 + 12V – (a) 1 2
解:
I 2A 3 2A

1 1 2V
6 (b)
由图(d)可得
– 2 I 4A (c) 2
82 I A 1A 2 2 2
2 2V 2 2 + 8V – (d)
+
+
+ 2 2V 2
I

I
试用电压源与电流源等效变换的方法计算图示 例3: 电路中1 电阻中的电流。 2
2 3 + a + a 2 + 2V b + 5V (c) + U b a
+ 5V – (a)
U
b
2
3 5A (b)
U
解:
+
2 + 5V – (a) U a 5A b (b) 3 + U b a
+ + 5V – (c)
U
a

b
1.5.4 电源等效变换法
一、电源等效变换法的解题步骤
(通常画在右边) 1、整理电路,将所求支路画到一边; 2、将所求支路以外的部分, 用电压源、电流源相互等效的方法进行化简; 3、化简结果,包含所求支路在内是一个简单电路;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档