电子电路 电路理论 讲义第4章
电路分析ppt第四章

(b)开路、短路法(即适用于纯电阻电路、也适用于含受控源电路)
原理:
U oc I sc
R0
(c)伏安法(外加电源法)(适用于纯电阻电路及含受控源电路) 原理:
端口也可外 接电流源
R0
Us I
令内部独立源为零 (Uoc=0)
注意:区别 (b),(c) 中电流、电压的方向及内部电源的处理。 (b)开路、短路法:内部独立源不置零 (c)伏安法:内部独立源置零 这两种方法多用于 含受控源电路,纯 电阻电路一般不用
6 I1 +3I=9
I=-6I/3=-2I Isc=I1=9/6=1.5A I=0
Req = Uoc / Isc =9/1.5=6
(3) 等效电路
a
+ Req + Uoc – b 3 U0 -
Uoc=9V Req = 6
U0
3 6 3
9 3V
综合应用题
图示线性电路,已知RX=0时, IX=8A, U=12V; 当RX =时,U X =36V, U=6V 。
则: U=3+(-1)=2(V)
讨
论
(1)叠加定理成立条件是线性电路。 (2)受控源不单独作用,独立源单独作用的含义是令 其他独立源为零,电阻和受控源不动。 独立源为零的含义是:电压源短路,即在该电 压源处用短路替代;电流源开路,即在该电流处用 开路替代。 (3)计算代数和时,注意各分量前的“+‖,“-‖号。 (4)功率不服从叠加定理。 (5)电源单独作用时,可以“单干”,也可以按组。
1 150
1500()
得
I sc
R0
( A)
U oc I sc
例
求U0 。 6 – 6I + a
电路4章syl

1 1A
No
1’
2 + u
2’
i' 1 5Ω
+ 10V No
1’
2 +
u’ 2’
1 1A
No
1’
2 + u
2’
i' 1 5Ω
+ 10V No
1’
2 +
u’ 2’
解:22’端开路时,11’端的输入电阻为
5Ω ,因此右图中流过实际电压源支路的电
流i'为
i '=
10 1A 55
实际电压源支路用1A的电流源替代,u' 不变,替代后的电路与左图相同,故
第四章 网络定理
4-l 叠加定理 4-2 替代定理 4-3 戴维南定理和诺顿定理 4-4 特勒根定理 4-5 互易定理
4-l 叠加定理
线性网络:由线性电源和线性负载组成。
线性性质:
1、齐次性: 单个激励(独立源)作用时,响
应与激励成正比。
2、可加性: 多个激励同时作用时,总响应
等于每个激励单独作用(其余激 励置零)时所产生的响应分量的 代数和。
10
电流源 I 单独作用: 8
1
0.5 - Ux”+
Ux" I (1 0.5)(0.5 0.5)
8 (1 0.5) (0.5 0.5)
0.5
I 8
0.5
3 I
40
得
Ux
U x ' U x"
1 10
I
3 40
I
1 40
I
Rx
Ux Ix
I / 40 I /8
电路邱关源ppt第四章

04
电路的稳态分析
线性电阻电路的稳态分析
总结词
线性电阻电路的稳态分析主要研究电路在稳定状态下的电流、电压和功率等参数。
详细描述
在稳态下,线性电阻电路中的电流和电压不再随时间变化,而是保持恒定。通过使用基尔霍夫定律和 欧姆定律等基本电路定理,可以计算出电路中的电流、电压和功率等参数。这些参数对于理解和分析 电路的性能至关重要。
动态电路的稳态分析
总结词
动态电路的稳态分析主要研究电路在过 渡过程中达到稳定状态时的参数变化。
VS
详细描述
动态电路的稳态分析关注的是电路从一种 稳定状态过渡到另一种稳定状态的过程。 在这个过程中,电路中的元件参数可能会 发生变化,例如电容器的充电和放电、电 感器的磁通量变化等。通过求解微分方程 或积分方程,可以找到电路在过渡过程中 的参数变化规律。
线性电阻元件的功率和能量
总结词
线性电阻元件在电路中主要消耗电能 并将其转换为热能。
详细描述
线性电阻元件在电路中主要起限流作 用,将电能转换为热能,使元件发热 。其功率和能量可以通过欧姆定律和 焦耳定律进行计算。
电感元件的功率和能量
总结词
电感元件在电路中主要储存磁场能量, 并在电流变化时产生反电动势。
02
详细描述
在电路的暂态过程中,如果既 有外电源激励,又有储能元件 的初始储能,那么电路将会产 生一定的电流或电压,这种响 应称为全响应。全响应等于零 输入响应和零状态响应之和。
03 公式
$y(t) = y_i(t) + y_s(t)$
04 解释
其中$y(t)$表示全响应,$y_i(t)$ 表示零输入响应,$y_s(t)$表示 零状态响应。
电路邱关源ppt第四章
大一电路第四章总结知识点

大一电路第四章总结知识点电路是电子学的基础,是电子设备能够正常工作的重要组成部分。
大一电路课程的第四章主要介绍了放大电路和运算放大器的原理和应用。
通过学习这一章节的内容,我对电路的工作原理和相关的数学模型有了更深入的理解。
以下是我对该章节的总结和知识点的梳理。
一、放大电路的基本原理和分类放大电路是指能够将输入信号经过放大处理后输出的电路。
在第四章中,我们学习了放大电路的基本原理和分类。
放大电路按照放大的方式可以分为电压放大、电流放大和功率放大电路。
常见的放大电路有共射、共集和共基的晶体管放大电路,以及差动放大器和运放等。
各种放大电路有各自的适用范围和特点,在实际中需要根据具体的应用场景选择合适的放大电路。
二、运算放大器及其应用运算放大器是一种特殊的放大电路,在现代电子设备中得到了广泛应用。
运算放大器具有高增益、高输入阻抗、低输出阻抗等优点,被广泛用于信号放大、滤波、比较、计算以及反馈控制等方面。
在第四章中,我们深入学习了运算放大器的原理和应用。
运算放大器是一种差分放大电路,具有两个输入端和一个输出端。
它的输入电阻非常大,可以看作无穷大,输出电阻非常小,可以看作零。
运算放大器具有非常高的增益,通常达到几万甚至几十万倍以上。
通过在输入端加入反馈电阻,我们可以实现运算放大器的各种应用。
运算放大器在实际中有很多应用,比如滤波器、振荡器、比较器、积分器、微分器等。
通过对运算放大器的输入电压和反馈电阻的选择,我们可以实现各种不同的功能。
三、电路分析方法在第四章的学习中,我们还了解了一些常用的电路分析方法。
比如节点分析法、戴维南定理、叠加原理等。
这些方法可以使我们更加方便地对电路进行分析和计算。
节点分析法是一种常用的电路分析方法,通过对电路中各个节点电压的求解,来推导电路中各个元件的电流和电压关系。
戴维南定理是一种用于简化电路的方法,通过将电路中的电压源或电流源用等效电阻替代,简化电路的复杂性,实现更简单的电路分析。
《电路》课件:第四章 电路定理

主要内容: 要求掌握电路分析的的五大主要定理的基 本概念及应用。
(1)叠加定理; (2)替代定理; (3)戴维宁定理与诺顿定理; (4) 特勒根定理; (5)互易定理。
总目录 章目录 返回 上一页 下一页
§4-1 叠加定理
总目录 章目录 返回 上一页 下一页
4.1叠加定理
叠加定理:对于线性电路,任何一条支路的电流, 都可以看成是由电路中各个电源(电压源或电流源) 分别作用时,在此支路中所产生的电流的代数和。
总目录 章目录 返回 上一页 下一页
§4-2 替代定理
总目录 章目录 返回 上一页 下一页
§4-2 替代定理
内容:
在任意电路(线性或非线性,时变或非时变)中, 若已知任意时刻时任意支路的支路电压uk和支路电流ik, 则该支路可用电压为uk的理想电压源替代, 也可用电流为ik的理想电流源替代, 替代后,电路所有的支路电压与支路电流不变。
总目录 章目录 返回 上一页 下一页
已例知1::I=0.2 (A), U=4 (V) 求:I1=?
解一
94 I1 5 2.6(A)
解二
5I1 (0.2 I1 6)3 (0.2 I1) 2 9
I1 2.6(A)
I1 2.6(A)
总目录 章目录 返回 上一页 下一页
§4-3 戴维南定理与诺顿定理
I2
KS1IS
U R1
R2
R1 R1 R2
IS
I2 = I2'+ I2'' = KE2U + KS2IS
I2'
I2''
总目录 章目录 返回 上一页 下一页
例1:
求:I 及9Ω电阻上的功率? 解:
最新第四章节-电路定理教学讲义PPT课件

U
K = Us / U
UL= K IL RL
四、可加性 (additivity property)
us1
R
r1
例7
us2
R
r2
us1
r1+ r2
us2 R
k1 us1 R k1 r1 例8
k2 us2 R k2 r2
例9
us1 us2
R
r
线性
k1 us1
k1 r1+ k2 r2
k2 us2 R
k us1 k us2 R
一端口网络,对外电路来说,可以用一个独立电压源Uoc 和电阻Req的串联组合来等效替代;其中电压Uoc等于端 口开路电压,电阻Req等于端口中所有独立电源置零后端 口的等效电阻(输入电阻)。
例1 解:
求:I及9Ω电 阻上的功率?
+
I 3 0.2(A) 96
I 6 20.8(A) 69
P 9 0.2290.3(W 6) P 9 0.8295.7(W 6)
III1(A )
P9I2R9(W)
6
例2
求图中电压u。
+ 10V
解: (1) 10V电压源单独作用,
4A电流源开路 6
+10 I1''–
+
+
4 U1" Us'' 4A
–
–
I1
10 64
1A
Us'= -10 I1'+U1’= -10 I1'+4I1' = -101+41= -6V
I14 4641.6A U1446649.6V
电路学 第四章
第4章电路定理(Circuit Theorems)¨重点:1、熟练掌握叠加定理;2、熟练掌握戴维南和诺顿定理;3、掌握替代定理,特勒根定理和互易定理;Un Re gi st er ed§4-1 叠加定理(Superposition Theorem)定义:对于线性电路,任何一条支路中的电流(或电压),都可以看成是由电路中各个独立电源(电压源或电流源)分别单独作用时,在此支路中所产生的电流(或电压)的代数和。
所谓电源的单独作用,即是在电路中只保留一个电源,而将其它电源置零。
电源置零:电流源置零,则是电流源断路电压源置零,则是电压源短路一、定义Un Re gi st er ed二、叠加定理的应用B原电路U 1单独作用B''''''BU 2单独作用+I 1=I 1′+I1〞I 2=I 2′+I 2〞I 3=I 3′+I 3〞Un Re gi sU S1R 1S1US1R 1R 1S1+例:2121R R R U U S +´=¢22111R R R R I U S ´+´=¢¢221112121R R R R I R R R U U U U S S ´+´++´=¢¢+¢=Un e gi st er e应用叠加定理要注意的问题:1、叠加定理只适用于线性电路(电路参数不随电压、电流的变化而改变),不适用于非线性电路。
2、叠加时电源分别考虑,电路的结构和参数不变。
置零的恒压源短路,置零的恒流源开路3、叠加定理只适用于线性电路求电压和电流;不能用叠加定理求功率。
4、叠加时注意参考方向下求代数和。
Un Re gi st er ed5、含受控源电路亦可用叠加,参加叠加的是独立源,受控源应始终保留。
要注意每个分图中受控源控制量的区别6、运用迭加定理时也可以把电源分组求解,每个分电路的电源个数可以不止一个。
【学习课件】第四章线性网络定理电路理论教学
4 8V +
_
D
C_ +
50 10V
4
5 E
1A
A Ux
B
50
4 4
5
Rd
2021/7/13
Rd =50+4//4+5 =57
28
D
C +A
4 +
8V _
50 4
10V RL
等效电路
U
33 5
E
B
1A
Ed =Ux =9V
Rd =57
Rd 57 +
Ed _ 9V
33
U
2021/7/13
29
第三步:求解未知电压U。
B
原电路
I1' A I2'
R1
I3'
+ R3
R2
+
_ E1
B
E1单独作用
I A '' 1
I2''
R1 R3
I3''
R2 +
E2 _
B
E2单独作用
I 1 = I 1 '+ I 1 "I 2 = I 2 '+ I 2 "I 3 = I 3 '+ I 3 "
2021/7/13
10
10 例
4A
10 10
-
u'=4V
u"= -42.4= -9.6V
2021/7/13 共同作用:u=u'+u"= 4+(- 9.6)= - 5.6V14
例3 求电压Us 。
电子电工技术第四章 电路的暂态过程分析
设一阶线性电路中所求变量为 f (t) ,变量的初始值为 f (0 ) ,变量在过渡过程结束后的稳态值为 f () ,时间常
数为 ,则我们可直接写出全响应的表达式为
f (t)
f ' (t)
f "(t)
f () [ f (0 )
t
f ()]e
式中,f '(t) 和 f "(t) 分别表示全响应中对应齐次方程的解和对 应非齐次方程的特解。
uC
t
E(1 e
)
3(1
t
e 2106
)
3(1
e5105 t
)
三、RC电路的全响应
由电容元件的初始储能和外接激励共同作用所产生的电路
响应,称为RC电路的全响应。
在图示电路中,电容元件
已具有初始储能 uC (0 ) U0 <U S
当开关S在 t 0 时刻合向电路 ,根据KVL,列出t ≥ 0 的电路
0
从理论上讲电容二端的电压经过无限长时间才能衰减至零
,但在工程上一般认为换路后,经过4 ~ 5 时间过渡过程即结
束。如图所示曲线分别为 uC 、i 、uR 随时间变化的曲线。
uC,uR
i
U
uC
t
t
uR
-U
US R
例 4-3 在图中,开关S长期合在位置1上,当t 0 时把它
合在位置2上,求换路后电容元件上电压uC和放电电流 i 。
第一节 储能元件和换路定则
由于电路结构(例如电路的接通、断开、短路等)或参
数的变化而引起电路从一种状态转变到另一种状态称之为换路
。
当初始时刻无储能,电容、电感中储存的能量与任一时刻
电压与电流的关系为
电路与电子学第四章
2、PN结加反向电压:PN结所处的状态称为反向截 止,其特点:PN结反向电流小,PN结电阻大。 相当于开关打开 3、伏安特性:
令 则
I Is( e
qU / kT
1)
kT / q U T I IS ( e
U /U T
1)
PN结的击穿特性
(1)雪崩击穿 材料掺杂浓度较低的PN结中,当PN结反向电压增加时,空间电荷区中 的电场随着增强,这样通过空间电荷区的电子和空穴就会在电场作用下 获得能量增大,在晶体中运行的中子和空穴将不断的与中性原子发生碰 撞,通过这样的碰撞可使束缚在共价键中的价电子碰撞出来,产生自由电 子-空穴对,新产生的载流子在电场作用下再去碰撞其他中性原子,又产 生的自由电子空穴对,如此连锁反应使得阻挡层中的载流子的数量急剧 增加,因而流过PN结的反向电流就急剧增大。 (2)齐纳击穿(隧道击穿) 当PN结两边的掺杂浓度很高时,阻挡层将变很薄,在这种阻挡层中, 载流子与中性原子相碰撞的机会极小,因而不容易发生碰撞。显然, 强电场直接将Si-Si共价键电子拉开成为自由电子产出大量的载流子, 使PN结的反向电流剧增,呈现反向击穿现象。 齐纳击穿一般发生在低反压、高掺杂的情况下。
正离子
在N型半导中,电子是多数载流子, 空穴是少数载流子。
2. P型半导体
+4 +4 +4
在硅或锗的晶体中 掺入少量的三价元 素,如硼,则形成P 型 半导体。
负离子 硼原子
+4 +3 +4 +4
空穴 填补空位
+4 +4 +4
P 型半导体结构示意图
空穴是多数载流子
负离子 电子是少数载流子
在P型半导中, 空穴是多数载流子,电子是少数载流子。