七年级数学下册第一章试题
(word版)七年级下学期数学第一章测试题

七年级下学期数学第一章测试题〔总分值100分,时间45分钟〕班级:姓名:号数:评分:一、认真选一选(每题5分,共30分)1.下面的计算正确的选项是()A、a4a3a12B、(ab)2a2b2C、(x2y)(x 2y)x24y2D、a3a7a5a22.下面计算中,能用平方差公式的是()A、(a 1)(a1)B、(b c)(b c)C、(x1)(y1)D、(2m n)(m2n)3、用科学记数法表示:4522,正确的选项是〔〕A、×104B、×10-4C、×10-5D、×105、计算a n1an1n2的结果是()4(a)A、1B、0C、-1D、15、(2a2b)3c(3ab)3等于()A、2a2cB、8C、8a2cD、8327a2c2727c6.m+n=2,mn=-2,那么〔1-m〕〔1-n〕的值为〔〕A.-3B.-1C.1D.5二、认真填一填(每空3分,共30分)7.一种细胞膜的厚度是,用科学记数法表示为______________;8.化简:y3(y3)22(y3)3=__________________9.计算:3a+2a=________;3a·2a=________;3a÷2a=;a 323222=________。
·a=________;a÷a=________;〔-3ab〕10.假设x+y=5,x-y=1,那么xy=________.11(a2b)2(a2b)2A,那么A=_______________;三、计算以下各题(每题6分,共24分)22)2 12.〔23〕0-1+〔-1〕413.(2x1)(2x3)2(x214.[〔x-y〕2-〔x+y〕2]÷〔-4xy〕15.(2x 3y)2(2x 3y)2四、解答(每8分,共16分)16.先化,再求:(a2b)2(ab)(a4b),其中a1,b2021.202117.察以下算式,你了什么律?235;1+2+3=34;⋯7;1+2+3+4=459 1=123;1+2=22222222226666 1〕你能用一个算式表示个律?2〕根据你的律,算下面算式的:12+22+32+⋯+82。
北师大版七年级下册数学第一章单元测试题

北师大版七年级下册数学第一章单元测试题 第2页(共32页)
北师大版七年级下册数学第一章单元测试题 一.选择题(共10小题) 1.化简(﹣x)3(﹣x)2,结果正确的是( ) A.﹣x6 B.x6 C.x5 D.﹣x5 2.下列运算正确的是( ) A.a2•a3=a6 B.(a2)3=a5 C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1 3.下列运算正确的是( ) A.a2•a3=a6 B.5a﹣2a=3a2 C.(a3)4=a12 D.(x+y)2=x2+y2 4.下列运算正确的是( ) A.a+2a=2a2 B.(﹣2ab2)2=4a2b4 C.a6÷a3=a2
D.(a﹣3)2=a2﹣9
5.下列计算正确的是( ) A.3a+4b=7ab B.(ab3)2=ab6 C.(a+2)
2=a2+4 D.x12÷x6=x6 6.地球的体积约为1012立方千米,太阳的体积
约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是( ) A.7.1×10﹣6 B.7.1×10﹣7 C.1.4×106 D.1.4×107 第3页(共32页) 第4页(共32页) 第5页(共32页)
三.解答题(共10小题) 21.已知ax=5,ax+y=30,求ax+ay的值.
22.已知2x+5y=3,求4x•32y的值. 23.计算:12×(﹣)+8×2﹣2﹣(﹣1)2. 第6页(共32页)
24.先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.
25.已知2x=3,2y=5.求: (1)2x+y的值; (2)23x的值; (3)22x+y﹣1的值.
26.(1)若xn=2,yn=3,求(x2y)2n的值. (2)若3a=6,9b=2,求32a﹣4b+1的值. 第7页(共32页)
27.计算: (1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23; (2)(﹣4xy3)•(xy)+(﹣3xy2)2.
北师大版数学七年级下册第一章测试题

北师大版数学七年级下册第一章测试题一、选择题1、在下列四个数中,哪个数是质数?A. 7.2 BB. 9.5C. 11D. 142、下列哪个数不是正整数?A. 20B. -5C. 0D. 303、下列哪个数是负分数?A. 1/3B. -2/3C. 0D. 5/7二、填空题1、请在下方空白处填入合适的答案:3/4 + 5/6 = _________.2、请在下方空白处填入合适的答案:已知x = -5,那么x + 2 = _________.三、解答题1、请计算:1/2 + 2/3 - 3/4 + 4/5 - 5/62、请计算:(-5) + (-2) + (-9) + (-4) + (7)3、请解答:如果一个数的倒数是-0.5,那么这个数是多少?四、附加题请在下方空白处解答:请计算:(1/3 - 1/4) + (2/5 - 3/8)这道题考察了我们对分数加减法的理解和掌握,需要我们细心计算,才能得到正确的答案。
北师大版八年级下册数学第一章测试题一、填空题1、在一个等腰三角形中,已知底边长为5,两条相等的边长为____。
2、如果一个矩形的长为6,宽为4,那么这个矩形的周长是____。
3、一个三角形的内角之和是180度,那么这个三角形的外角之和是____。
二、选择题1、下列哪个图形是轴对称图形?A.圆形B.方形C.三角形D.以上都不是2、下列哪个方程式有两个不相等的实数根?A. x² + 2x + 1 = 0B. x² + 2x + 2 = 0C. x² + 2x + 3 = 0D. x² + 2x + 4 = 0三、解答题1、已知:如图,AB=AC,AD=AE,求证:BD=CE。
2、证明:如果一个四边形是平行四边形,那么它的对边相等。
3、求证:在一个三角形中,至少有一个角大于或等于60度。
四、应用题1、一个矩形的长是6厘米,宽是4厘米。
如果将这个矩形的长和宽都增加1厘米,那么这个矩形的面积会增加多少?2、一个等腰三角形的底边长为5厘米,两条相等的边长为多少厘米?如果这个等腰三角形的面积为25平方厘米,那么这个三角形的底边长为多少厘米?七年级生物下册第一章测试题一、选择题1、下列哪个选项不是生物的特征?A.生长和繁殖B.运动和活动C.遗传和变异D.细胞和组织2、下列哪个选项不属于生命系统的结构层次?A.细胞B.组织C.器官D.原子和分子3、下列哪个选项不是植物体的组成部分?A.细胞B.组织C.器官D.系统二、填空题1、生物的主要特征包括______、______、______和______。
北师大版七年级下册数学第一章测试题

北师大版七年级下册数学第一章测试题北师大版七年级下册数学第一章测试题一.选择题(共10小题)1.计算(-x^2y)^2的结果是()A。
x^4y^2B。
-x^4y^2C。
x^2y^2D。
-x^2y^22.下列计算正确的是()A。
(-x^3)^2 = x^6B。
(-3x^2)^2 = 9x^4C。
(-x)^2 = x^2D。
x^8 ÷ x^4 = x^43.计算(2x+1)(x-1)-(x^2+x-2)的结果,与下列哪一个式子相同?()A。
x^2-2x+1B。
x^2-2x-3C。
x^2+x-3D。
x^2-34.若x^2+4x-4=0,则3(x-2)^2-6(x+1)(x-1)的值为()A。
-6B。
6C。
18D。
305.已知(x-2015)^2+(x-2017)^2=34,则(x-2016)^2的值是()A。
4B。
8C。
12D。
166.已知a-b=3,则代数式a^2-b^2-6b的值为()A。
3B。
6C。
9D。
127.已知正数x满足x^2+6x=62,则x+的值是()A。
8B。
4C。
-1+√17D。
-1-√178.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角线剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A。
abB。
(a+b)^2C。
(a-b)^2D。
a^2-b^29.设(5a+3b)^2=(5a-3b)^2+A,则A=A。
30abB。
60abC。
15abD。
12ab10.已知(x-y)^2=49,xy=2,则x^2+y^2的值为()A。
53B。
45C。
47D。
51二.选择题(共10小题)11.计算:(-5a^4)•(-8ab^2)=40a^5b^2.12.若2•4m•8m=216,则m=3/2.13.若x+3y=0,则2x•8y=-48xy.14.已知(x-1)(x+3)=ax^2+bx+c,则代数式9a-3b+c的值为12.15.已知(a+b)^2=7,(a-b)^2=4,则ab的值为-3/2.16.若(m-2)^2=3,则m^2-4m+6的值为7.17.观察下列各式及其展开式:a+b)^2=a^2+2ab+b^2a+b)^3=a^3-3a^2b+3ab^2-b^3a+b)^4=a^4-4a^3b+6a^2b^2-4ab^3+b^4a+b)^5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5…请你猜想(a-b)^10的展开式第三项的系数是120.分析】直接计算即可得出结果,注意符号的变化和运算顺序.解答】解:(﹣2)2+2×(﹣3)+2016=4+(﹣6)+2016=2014.故选:D.点评】此题考查了加减乘方运算的综合运用能力,需要注意计算顺序和符号变化.3.(2016•泰安)已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值是()A.﹣3B.﹣2C.0D.1分析】根据已知条件,化简3(2+x)(2﹣x)﹣(x﹣3)2,然后代入2x2﹣3x=2计算即可.解答】解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=12﹣3x2﹣x2﹣6x﹣x2+6x﹣9=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣5x2﹣6=﹣5×2﹣6=﹣16.故选:B.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.4.(2016•南京)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.分析】根据已知条件,可以列出方程组,然后解方程求出ab和a2+b2的值.解答】解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.5.(2016•南昌)已知x﹣=3,求x2+和x4+的值.分析】根据已知条件,可以求出x的值,然后代入计算x2+和x4+的值.解答】解:由x﹣=3,得x=1/3.因此,x2+=(1/3)2=1/9,x4+=(1/3)4=1/81.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意代入计算的过程和细节.6.(2016•南京)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,求多项式A.分析】根据已知条件,可以列出关于A的方程,然后解方程求出多项式A.解答】解:将A﹣(x﹣2)2=x(x+7)两边同时加上(x﹣2)2,得A=x(x+7)+(x﹣2)2.因此,多项式A=x2+7x+x2﹣4x+4=x2+3x+4.故选:A.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.7.(2016•南昌)已知a+b=5,ab=6,求下列各式的值:1)a2+b22)(a﹣b)2.分析】根据已知条件,可以列出方程组,然后解方程求出a和b的值,代入计算各式的值.解答】解:由a+b=5,ab=6,得a=2,b=3或a=3,b=2.1)当a=2,b=3时,a2+b2=22+32=13;当a=3,b=2时,a2+b2=32+22=13.2)当a=2,b=3时,(a﹣b)2=(2﹣3)2=1;当a=3,b=2时,(a﹣b)2=(3﹣2)2=1.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程以及代入计算的细节.8.(2016•南昌)已知(x﹣y)2=9,x2+y2=5,求[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y的值.分析】根据已知条件,可以化简出题目中的式子,然后代入计算即可.解答】解:将[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y化简得y2﹣x2÷xy.由(x﹣y)2=9,得x﹣y=3或x﹣y=﹣3.当x﹣y=3时,解得x=2,y=﹣1,因此y2﹣x2÷xy=1/2;当x﹣y=﹣3时,解得x=﹣1,y=2,因此y2﹣x2÷xy=﹣1/2.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.9.(2016•南昌)若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.分析】根据完全平方式的定义,可以列出方程,然后解方程求出k的值.解答】解:由4a2﹣(k﹣1)a+9是一个关于a的完全平方式,得k2﹣4×4×9(﹣1)=0.因此,k2﹣144=0,解得k=﹣12或k=12.故选:D.点评】此题考查了完全平方式的定义和解方程的能力,需要注意列方程和解方程的过程.10.(2016•南昌)若ax=2,ay=3,则a3x2y=______.分析】根据已知条件,可以将a3x2y化简为ax×ay×ax×ay×ax,然后代入计算即可.解答】解:a3x2y=ax×ay×ax×ay×ax=2×3×2×3×2=72.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.二.填空题(共10小题)18.若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.解:k=12或k=﹣12.19.若ax=2,ay=3,则a3x2y=______.解:a3x2y=72.20.我国南宋数学家XXX用三角形解释二项和的乘方规律,称之为“XXX三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是______.解:(x﹣)2016展开式中含x2014项的系数是2015×(﹣1)×(﹣2)×…×(﹣2013)=2015×2013!/2!=﹣xxxxxxxx00.21.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.解:(x﹣1)(x﹣2)﹣(x+1)2=(x2﹣3x+2)﹣(x2﹣2x+1)=﹣x+1,其中x=2.22.(1)计算:(﹣2)2+2×(﹣3)+2016.(2)化简:(m+1)2﹣(m﹣2)(m+2).解:(1)(﹣2)2+2×(﹣3)+2016=2014.2)(m+1)2﹣(m﹣2)(m+2)=m2+2m+1﹣(m2﹣4)=6m+5.23.已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值.解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣16.24.先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.解:(2a+b)(2a﹣b)﹣a(8a﹣2ab)=4a2﹣b2﹣8a2+2ab2=﹣4a2+2ab2﹣b2=﹣20,其中a=﹣1/2,b=2.25.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.26.已知x﹣=3,求x2+和x4+的值.解:由x﹣=3,得x=1/3.即(x﹣2016+1)2+(x﹣2016﹣1)2=34。
浙教版七年级下册数学第一章 平行线 单元测试卷及答案

浙教版七年级下册数学第一章平行线单元测试卷一、单选题(共10题;共30分)1.如图,直线a∥b,∠1=50°,∠2=30°,则∠3的度数为()A. 30°B. 50°C. 80°D. 1 00°2.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )A. 先向左转130°,再向左转50°B. 先向左转50°,再向右转50°C. 先向左转50°,再向右转40°D. 先向左转50°,再向左转40°3.下图中与是内错角的是()A. B.C. D.4.如图,以下条件能判定EG∥HC的是()A. ∠FEB=∠ECDB. ∠AEG=∠DCHC. ∠GEC=∠HCFD. ∠HCF=∠AEG5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上。
如果∠2=44°,那么∠1的度数是()A. 14°B. 15°C. 16°D. 1 7°6.如图,在“A”字型图中,AB、AC被DE所截,则∠ADE与∠DEC是()A. 内错角B. 同旁内角C. 同位角 D. 对顶角7.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A. 30°B. 60°C. 80°D. 1 20°8.如图,给出了过直线AB外一点P,作已知直线AB的平行线的方法,其依据是()A. 同位角相等,两直线平行B. 内错角相等,两直线平行C. 同旁内角互补,两直线品行D. 过直线外一点有且只有一条直线与这条直线平行9.如图,直线l1∥l2,AB与直线l1垂直,垂足为点B,若∠ABC=37°,则∠EFC的度数为()A. 127°B. 133°C. 137°D. 1 43°10.有下列说法:①△ABC在平移的过程中,对应线段一定相等.②△ABC在平移的过程中,对应线段一定平行.③△ABC在平移的过程中,周长不变.④△ABC在平移的过程中,面积不变.其中正确的有()A. ①②③B. ①②④C. ①③④D.②③④二、填空题(共6题;共24分)11.如图所示,与∠C构成同旁内角的有________个.12.如图,已知∠1=∠2,则图中互相平行的线段是________;理由是:________.13.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是________°.14.如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有________对;若∠BAC=50°,则∠EDF=________15.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=________°.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是________.(填序号)能够得到AB∥CD的条件是________.(填序号)三、解答题(共8题;共66分)17.(6分)如图,李老师在黑板上画了一个图形,请你在这个图形中分别找出角A的一个同位角、内错角和同旁内角,并指出是哪两条直线被哪条直线所截形成的.18.(6分)MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.19.(8分)如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m,南北宽20 m的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜,若每条道路的宽均为1 m,求蔬菜的总种植面积是多少?20.(8分)如图,已知AB∥CD∥EF,PS ⊥ GH交GH于P.在∠FRG=110°时,求∠PSQ.20.(8分)如图,B处在A处的南偏西42°的方向,C处在A处的南偏东16°的方向,C处在B处的北偏东72°的方向,求从C处观测A、B两处的视角∠ACB的度数.22.(10分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.23.(10分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证:①BD∥CE②DF∥AC.24.(10分)如图,直线l1∥l2,∠BAE=125°,∠ABF=85°,则∠1+∠2等于多少度?参考答案一、单选题(共10题;共30分)1. D2. B3. A4. C5.C6. A7. A8. A9. A 10. C二、填空题(共6题;共24分)11. 3 12. AD ∥BC,内错角相等,两直线平行13. 105 14.6,15. 46°16.①④,②③⑤.三、解答题(共8题;共66分)17. 解:∠A的同位角是∠BCE,是直线AB、BC被AE所截而成;∠A的内错角是∠ACF,是直线AB、GF被AC所截而成;∠A的同旁内角是∠B,是直线AC、BC被AB所截而成.18. 解:延长MF交CD于点H∠1=90∠FH,2140∴∠CHF=1405-902=50°,∠CHF=∠2,AB∥CD19.解:如图,将三条道路都平移到边上去,则空白部分的面积(即蔬菜的总种植面积)不变,因此,蔬菜的总种植面积为(20-2×1)(32-1)=558(m2).20.解:∵AB∥EF,∴∠FRG=∠APR,∵∠FRG=110°,∴∠APR=110°,又∵PS⊥GH,∴∠SPR=90°,∴∠APS=∠APR-∠SPR=20°,∵AB∥CD,∴∠PSQ=∠APS=20°.21.∵AD,BE是正南正北方向,∴BE∥AD,∵∠EBA=42°,∴∠BAD=∠EBA=42°,∵∠DAC=16°,∴∠BAC=∠BAD+∠DAC=42°+16°=58°,又∵∠EBC=72°,∴∠ABC=72°-42°=30°,∴∠ACB=180°-∠ABC-∠BAC=180°-58°-30°=92°.22.解:∵ AB∥CD,∴∠B+∠BCE=180°(两直线平行,同旁内角互补). ∵∠B=65°,∴∠BCE=115°.∵ CM平分∠BCE,∴∠ECM= ∠BCE =57.5°.∵∠ECM +∠MCN +∠NCD =180°,∠MCN=90°,∴∠NCD=180°-∠ECM-∠MCN=180°-57.5°-90°=32.5°23.证明:∵∠1=∠DMF,∠1=∠2,∴∠2=∠DMF,∴BD∥CE,∴∠C=∠DBA,∴∠FRG=∠APR,∵∠FRG=110°,∴∠APR=110°,又∵PS⊥GH,∴∠SPR=90°,∴∠APS=∠APR-∠SPR=20°,∵AB∥CD,∴∠PSQ=∠APS=20°.21.∵AD,BE是正南正北方向,∴BE∥AD,∵∠EBA=42°,∴∠BAD=∠EBA=42°,∵∠DAC=16°,∴∠BAC=∠BAD+∠DAC=42°+16°=58°,又∵∠EBC=72°,∴∠ABC=72°-42°=30°,∴∠ACB=180°-∠ABC-∠BAC=180°-58°-30°=92°.22.解:∵ AB∥CD,∴∠B+∠BCE=180°(两直线平行,同旁内角互补). ∵∠B=65°,∴∠BCE=115°.∵ CM平分∠BCE,∴∠ECM= ∠BCE =57.5°.∵∠ECM +∠MCN +∠NCD =180°,∠MCN=90°,∴∠NCD=180°-∠ECM-∠MCN=180°-57.5°-90°=32.5°23.证明:∵∠1=∠DMF,∠1=∠2,∴∠2=∠DMF,∴BD∥CE,∴∠C=∠DBA,∵∠C=∠D,∴∠D=∠DBA,∴AC∥DF.24.解:如图,过点A向左作AC∥l1.过点B向左作BD∥l2,则∠1=∠3,∠2=∠4.∵l1∥l2, ∴AC∥BD,∴∠CAB+∠DBA=180°,∵∠3+∠4+∠CAB+∠DBA=125°+85°=210°,∴∠3+∠4=30°,∴∠1+∠2=30°.。
北师大版七年级数学下册第一章整式的乘除基础达标测试题(附答案详解)

北师大版七年级数学下册第一章整式的乘除基础达标测试题(附答案详解)1.下列算式能用平方差公式计算的是 ( )A .(2a +b )(2b -a)B .C .(3x -y )(-3x +y)D .(-m + n )(- m - n)2.计算(2a 3)2的结果是( )A .2a 5B .4a 5C .2a 6D .4a 63.下列计算正确的是( )A .B .C .D . 4.下列运算中,正确的是( )A .236x x x ⋅=B .232x x x ÷=C .()3328x x -=-D .()2224x y x y +=+5.计算的32a a ÷结果是( )A .5aB .1a -C .aD .2a6.三个连续偶数,中间一个数是k ,它们的积为( )A .8k 2-8kB .k 3-4kC .8k 3-2kD .4k 3-4k7.如果a+2b+3c=12,且a 2+b 2+c 2=ab+bc+ca ,则a+b 2+c 3=( )A .12B .14C .16D .188.下列运算正确的是( )A .3﹣1=﹣3B .x 3﹣4x 2y+4xy 2=x (x+2y )2C .a 6÷a 2=a 4D .(a 2b )3=a 5b 3 9.下列各式运算中结果是的是( )A .B .C .D .10.下列计算正确的是( )A .a•a 2=a 2B .(x 3)2=x 5C .(2a)2=4a 2D .(x+1)2=x 2+1 11.计算:()322422a a a -+⋅=__________.12.如果281x mx -+是一个完全平方式,那么m 的值为___________.13.计算(1)()2354a a a ⋅+=______;(2)()()32322⎡⎤-⋅-=⎣⎦______. 14.(﹣4a 3+12a 2b ﹣7a 3b 3)(﹣4a 2)=___________.15.(-a)3(-a )2(-a)=_______16.图中阴影部分的面积为____________________.(结果要求化简)17.(5+2)2=__.18.一张边长为a 的大正方形卡片和三张边长为b 的小正方形卡片(12a <b <a )如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab ﹣9,则小正方形卡片的面积是_____.19.设x ,y 为实数,则代数式2x 2+4xy +5y 2-4x +2y +5的最小值为________.20.若a m =3,a n =4,则a m+n =_____.21.先化简,再求值:2(2)-(2)(2)x x x +-+,其中1x =-.22.何老师安排喜欢探究问题的小明解决某个问题前,先让小明看了一个有解答过程的例题.例:若,求m 和n 的值. 解:因为所以所以所以所以为什么要对进行了拆项呢?聪明的小明理解了例题解决问题的方法,很快解决了下面两个问题.相信你也能很好的解决下面的这两个问题,请写出你的解题过程.解决问题:(1)若,求的值; (2)已知满足,求的值.23.小红家有一块L 形菜地,要把L 形菜地按如图所示分成面积相等的两个梯形种上不同的蔬菜.已知这两个梯形的上底都是a 米,下底都是b 米,高都是(b -a )米.(1)请你算一算,小红家的菜地面积共有多少平方米?(2)当a =10,b =30时,面积是多少平方米?24.(Ⅰ)分解因式:2()4()a a b a b ---.(Ⅱ)先化简,再求值: (3x -1) (3x + 1) - ( x + 3 ) (9 x - 6 ) .其中 x = - 1721. 25.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:222()2a b a ab b +=++.对于方案一,小明是这样验证的:Q 大正方形面积可表示为:2()a b +,也可以表示为:22222a ab ab b a ab b +++=++, 222()2a b a ab b ∴+=++.请你仿照上述方法根据方案二、方案三,写出公式的验证过程.(1)方案二:(2)方案三:26.先化简再求值:()()()22a b a b b a b b +-++-,其中a=3,b=-1.27.先化简,再求值:()()()222222433xy x xy y x y y x y ⎡⎤--+----⎣⎦,其中2, 3.3x y ==- 28.(1)32(3)()(3)a a a ----g ;(2)433265()(2)()a a a +--g ; (3)8022016201711(1)(25)()()(4)24--+---+⨯-; (4)20172018(2)2-+.参考答案1.D【解析】试题分析:中不存在相同的相项故A不能用平方差公式;,B不能用平方差公式;,C不能用平方差公式;,D能用平方差公式.考点:平方差公式.2.D【解析】试题分析:根据幂的乘方和积的乘方的运算法则求解.试题解析:(2a3)2=4a6.故选D.考点:幂的乘方与积的乘方.3.D【解析】【分析】根据幂的乘方、同底数幂的乘除法及合并同类项法则分别计算,即可得答案.【详解】A.a+2a=3a,故该选项计算错误,B.(-a)3=-a3,故该选项计算错误,C.a3÷a=a2,故该选项计算错误,D.,计算正确,故选D.【点睛】本题考查幂的乘方、同底数幂的乘除法及合并同类项法则,熟练掌握运算法则是解题关键. 4.C【解析】分析:根据同底数幂的乘法,同底数幂的除法,积的乘方,以及完全平方公式的意义,对各选项计算后即可解答.详解:选项A ,235x x x ⋅= ;选项B ,232x x ÷= 32x ;选项C , ()3328x x -=- ;选项D , ()22x y += 2242x xy y ++.由此可得。
七年级数学下册第一章单元测试题

单元测试卷一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab 32中,单项式有个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎭⎫⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。
⑵()()=+-55x x 。
浙教版七年级数学下第一章《平行线》常考题(解析版)

浙江七年级数学下第一章《平行线》常考题注意事项∶1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 所有答案都必须写到答题卷上。
选择题必须使用2B铅笔填涂;非选择题必须使用黑色字迹的签字笔或钢笔书写,字体要工整,笔迹要清楚。
3.本试卷分试题卷和答题卷两部分,满分100分。
考试时间共90分钟。
一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2021·浙江嘉兴·七年级期末)如图,直线a,b被直线c所截,∠1的同旁内角是()A.∠2 B.∠3 C.∠4 D.∠5【答案】A【分析】根据同旁内角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角进行求解.【详解】解:直线a,b被直线c所截,∠1的同旁内角是∠2,故选:A.【点睛】本题考查了同旁内角的定义,能熟记同旁内角的定义的内容是解此题的关键,注意数形结合.2.(本题3分)(2021·浙江杭州·七年级期中)下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行【答案】A【分析】根据平行线的定义及平行公理进行判断.【详解】解:A中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误.B、C、D正确.故选:A.【点睛】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.3.(本题3分)(2021·浙江萧山·七年级期中)如图,下列条件能判断a//b的有()A.∠2=∠4 B.∠1+∠2=180°C.∠1=∠3 D.∠2+∠3=180°【答案】A【分析】根据平行线的判定定理逐个判断即可.【详解】解:A.根据∠2=∠4能推出a∥b,故本选项符合题意;B.根据∠1+∠2=180°不能推出a∥b,故本选项不符合题意;C.根据∠1=∠3不能推出a∥b,故本选项不符合题意;D.根据∠2+∠3=180°不能推出a∥b,故本选项不符合题意;故选:A.【点睛】本题考查了平行线的判定定理,能熟记平行线的判定定理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.4.(本题3分)(2021·浙江浙江·七年级期中)北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的(如图).下面四个图案中,可以通过平移图案得到的是()A.B.C.D.【答案】A【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答.【详解】解:观察各选项图形可知,A选项的图案可以通过平移得到.故选:A.【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键.5.(本题3分)(2021·浙江省衢州市衢江区实验中学七年级期末)如图,直线l1∥l2,直线l与l1,l2分别交于A,B两点,若∠1=60°,则∠2的度数是()A.60°B.100°C.120°D.140°【答案】C【分析】根据l1∥l2,∠1=60°,可以得到∠ABE=∠1=60°,再根据∠2+∠ABE=180°,即可求解.【详解】解:∵l1∥l2,∠1=60°,∴∠ABE=∠1=60°,∵∠2+∠ABE=180°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,求一个角的邻补角,解题的关键在于能够熟练掌握相关知识进行求解.6.(本题3分)(2021·浙江·杭州市丰潭中学七年级期中)一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是()A.先右转45°,再左转45°B.先左转45°,再右转135°C.先左转45°,再左转45°D.先右转45°,再右转135°【答案】A【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等画出图形,根据图形直接解答即可.【详解】解:A选项画图如下:可得平行,且与原来方向相同;B选项画图如下:可得不平行;C选项画图如下:可得不平行; D 选项画图如下:可得平行,但与原来方向相反; 故选A . 【点睛】本题考查平行线的性质,根据题意画出图形是解答此题的关键.7.(本题3分)(2021·浙江杭州·七年级期中)如图,//l m ,1115∠=︒,295∠=︒,则3∠=( )A .120︒B .130︒C .140︒D .150︒【答案】D 【分析】先根据两直线平行,同旁内角互补,求出∠4,再求出∠2的邻补角∠5,然后利用三角形外角性质即可求出∠3. 【详解】解:∵l ∥m ,∠1=115°, ∴∠4=180°-∠1=180°-115°=65°, 又∠5=180°-∠2=180°-95°=85°, ∴∠3=∠4+∠5=65°+85°=150°.故选:D .【点睛】本题考查了平行线的性质和三角形外角的性质,解题的关键是作出辅助线,构造同旁内角. 8.(本题3分)(2021·浙江浙江·七年级期末)如图,点E 在BC 的延长线上,对于给出的四个条件:①∠1=∠3;②∠2+∠5=180°;③∠4=∠B ;④∠D +∠BCD =180°.其中能判断AD ∥BC 的是( )A .①②B .①④C .①③D .②④【答案】B 【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可. 【详解】①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC =180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ;④∵∠D +∠BCD =180°,∴AD ∥BC . 综上,只有①④能判断AD ∥BC . 故选:B . 【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.9.(本题3分)(2021·浙江镇海·七年级期中)如图,已知AP 平分BAC ∠,CP 平分ACD ∠,1290∠+∠=︒.下列结论正确的有( )①//AB CD ;②180ABE CDF ∠+∠=︒;③//AC BD ;④若2ACD E ∠=∠,则2CAB F ∠=∠.A .1个B .2个C .3个D .4个【答案】C 【分析】由三个已知条件可得AB ∥CD ,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC ∥BD ,可知③错误;由2ACD E ∠=∠及CP 平分ACD ∠,可得∠ACP =∠E ,得AC ∥BD ,从而由平行线的性质易得2CAB F ∠=∠,即④正确. 【详解】∵AP 平分BAC ∠,CP 平分ACD ∠∴∠ACD =2∠ACP =2∠2,∠CAB =2∠1=2∠CAP ∵1290∠+∠=︒∴∠ACD +∠CAB =2(∠1+∠2)=2×90゜=180゜ ∴//AB CD 故①正确 ∵//AB CD ∴∠ABE =∠CDB ∵∠CDB +∠CDF =180゜ ∴180ABE CDF ∠+∠=︒ 故②正确由已知条件无法推出AC ∥BD 故③错误∵2ACD E ∠=∠,∠ACD =2∠ACP =2∠2 ∴∠ACP =∠E ∴AC ∥BD ∴∠CAP =∠F∵∠CAB =2∠1=2∠CAP ∴2CAB F ∠=∠ 故④正确故正确的序号为①②④故选:C.【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.10.(本题3分)(2021·浙江浙江·七年级期末)如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是()A.50°、130°B.都是10°C.50°、130°或10°、10°D.以上都不对【答案】C【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少20°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【详解】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∴这两个角的度数是10°和10°;若这两个角互补,则180﹣x=3x﹣20,解得:x=50,∴这两个角的度数是50°和130°.∴这两个角的度数是50°、130°或10°、10°.故选:C.【点睛】此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用.二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2019·浙江·七年级课时练习)L1,l2,l3为同一平面内的三条直线,如果l1与l2不平行,l2与l3不平行,则l1与l3的位置关系是___________.【答案】相交或平行【解析】【分析】根据关键语句“若1l与2l不平行, 2l与3l不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若1l与2l不平行,2l与3l不平行,则1l与3l可能相交或平行,故答案为:相交或平行.【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交. 12.(本题3分)(2020·浙江浙江·七年级期末)如图,1∠与2∠是同位角的是__________.【答案】①②【分析】根据同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角.【详解】解:这四个图中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,符合的有图①②.故答案为:①②.【点睛】本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.13.(本题3分)(2021·浙江浙江·七年级期中)如图,将三角形ABC沿水平方向向右平移1个单位到三角形DEF 的位置,已知3CE =,则BF 的长为________.【答案】5 【分析】根据平移的性质得BE =CF =1,从而易得BF 的长. 【详解】由平移的性质得:BE =CF =1 ∴BF =BE +CE +CF =1+3+1=5 故答案为:5. 【点睛】本题考查了平移的性质,因此掌握平移的性质是解题的关键.14.(本题3分)(2021·浙江诸暨·七年级期中)一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,若第一次向左拐40°,则第二次向右拐的角度是__________度. 【答案】40° 【分析】因为最后汽车沿原来的方向前进,所以两次拐的方向相反,角的度数相等. 【详解】解:两次拐完汽车沿原来的方向前进,所以前后拐的方向应该相反,角的大小相等,拐的两角处在同位角的位置. 故答案为;40. 【点睛】考查了平行线的性质.解题的关键是注意两直线平行,同位角相等定理与数形结合思想的应用.15.(本题3分)(2020·浙江浙江·七年级期末)将一块三角板ABC (90BAC ∠=︒,30ABC ∠=︒)按如图方式放置,使A ,B 两点分别放在直线m ,n 上,对于给出的四个条件,①125.5∠=︒,25530'∠=︒;②2=21∠∠;③1290∠+∠=︒,④12ACB ∠=∠+∠;⑤21ABC ∠=∠-∠.能判断直线//m n 的有________(填序号).【答案】①⑤ 【分析】根据平行线的判定解答即可. 【详解】解:①∵25.5°+∠ABC=55.5°=∠2=55°30',所以,m ∥n ; ②没有指明∠1的度数,当∠1≠30°,∠2≠∠1+30°,不能判断直线m ∥n,故∠2=2∠1,不能判断直线m ∥n ;③∠1+∠2=90°,不能判断直线m ∥n ; ④∠ACB=∠1+∠2,不能判断直线m ∥n ; ⑤∠ABC=∠2-∠1,判断直线m ∥n ; 故答案为:①⑤. 【点睛】本题考查平行线的性质和判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 16.(本题3分)(2021·浙江镇海·七年级期中)如图,已知//AB CD ,BF 平分ABE ∠,//BF DE ,且40D ∠=︒,则BED ∠的度数为______.【答案】140° 【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平行线的性质解答. 【详解】解:如图,延长DE 交AB 的延长线于G , ∵//AB CD ,∴∠D =∠AGD =40°,∵BF//DE,∴∠AGD=∠ABF=40°,∵BF平分∠ABE,∴∠EBF=∠ABF=40°,∵BF//DE,∴∠BED=180°﹣∠EBF=140°.故答案为:140°.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.17.(本题3分)(2021·浙江乐清·七年级期末)将一副三角板如图1所示摆放,直线GH MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D //以每秒2°的速度顺时针旋转,设时间为t秒,如图2,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,则所有满足条件的t的值为___.【答案】30或120【分析】根据题意得∠HAC=∠BAH+∠BAC=t°+30°,∠FDM=2t°,(1)如图1,当DE//BC时,延长AC交MN于点P,分两种情况讨论:①DE在MN上方时,②DE在MN下方时,∠FDP=2t°﹣180°,列式求解即可;(2)当BC//DF时,延长AC交MN于点I,①DF在MN上方时,∠FDN=180°﹣2t°,②DF在MN下方时,∠FDN=180°﹣2t°,列式求解即可.【详解】解:由题意得,∠HAC=∠BAH+∠BAC=t°+30°,∠FDM=2t°,(1)如图1,当DE//BC时,延长AC交MN于点P,①DE在MN上方时,∵DE//BC,DE⊥DF,AC⊥BC,∴AP//DF,∴∠FDM=∠MP A,∵MN//GH,∴∠MP A=∠HAC,∴∠FDM=∠HAC,即2t°=t°+30°,∴t=30,②DE在MN下方时,∠FDP=2t°﹣180°,∵DE//BC,DE⊥DF,AC⊥BC,∴AP//DF,∴∠FDP=∠MP A,∵MN//GH,∴∠MP A=∠HAC,∴∠FDP=∠HAC,即2t°﹣180°=t°+30°,∴t=210(不符合题意,舍去),(2)当BC//DF时,延长AC交MN于点I,①DF在MN上方时,∠FDN=180°﹣2t°,∵DF//BC,AC⊥BC,∴AI//DF,∴∠FDN+∠MIA=90°,∵MN//GH,∴∠MIA=∠HAC,∴∠FDN+∠HAC=90°,即180°﹣2t°+t°+30°=90°,∴t=120,②DF在MN下方时,∠FDN=180°﹣2t°,∵DF//BC,AC⊥BC,DE⊥DF,∴AC//DE,∴∠AIM=∠MDE,∵MN//GH,∴∠MIA=∠HAC,∴∠EDM=∠HAC,即2t°﹣180°=t°+30°,∴t=210(不符合题意,舍去),综上所述:所有满足条件的t的值为30或120.故答案为:30或120.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2020·浙江奉化·七年级期中)如图,已知BE平分∠ABC,点D在射线BA上,且∠ABE=∠BED .(1)判断BC与DE的位置关系,并说明理由.(2)当∠ABE=25°时,求∠ADE的度数.【答案】(1)BC∥DE,理由见解析;(2)50°【分析】(1)根据BE平分∠ABC,可得∠EBC=∠ABE.再根据∠ABE=∠BED,即可得出∠BED=∠EBC,根据平行线的判定可得BC∥DE.(2)根据BE平分∠ABC,且∠ABE=25°,可得∠ABC=50°.再根据DE∥BC,即可得出∠ADE=∠ABC=50°.【详解】解:(1)BC∥DE .理由:∵BE平分∠ABC∴∠ABE=∠EBC∵∠ABE=∠BED∴∠EBC=∠BED∴BC∥DE .(2)∵BE平分∠ABC ,∠ABE=25°,∴∠ABC=2∠ABE=50°∵BC∥DE∴∠ADE=∠ABC=50°.【点睛】本题考查平行线的判定和性质,角平分线的定义,能熟练地运用平行线的性质和判定进行推理是解题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.19.(本题6分)(2020·浙江浙江·七年级期中)根据图形填空: (1)若直线,ED BC 被直线AB 所截,则1∠和_____是同位角; (2)若直线,ED BC 被直线AF 所截,则3∠和_____是内错角; (3)1∠和3∠是直线,AB AF 被直线______所截构成的内错角; (4)2∠和4∠是直线AB ,______被直线BC 所截构成的_____角.【答案】(1)2∠;(2)4∠;(3)ED ;(4)AF ,同位 【分析】(1)根据图形及同位角的概念可直接进行求解; (2)根据图形及内错角的概念可直接进行求解; (3)根据图形及内错角的概念可直接进行求解; (4)根据图形及同位角的概念可直接进行求解. 【详解】 解:由图可得:(1)若直线,ED BC 被直线AB 所截,则1∠和2∠是同位角; 故答案为2∠;(2)若直线,ED BC 被直线AF 所截,则3∠和4∠是内错角; 故答案为4∠;(3)1∠和3∠是直线,AB AF 被直线ED 所截构成的内错角; 故答案为ED ;(4)2∠和4∠是直线AB ,AF 被直线BC 所截构成的同位角; 故答案为AF ,同位.【点睛】本题主要考查内错角及同位角的概念,熟练掌握同位角及内错角的概念是解题的关键.20.(本题8分)(2021·浙江东阳·七年级期末)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠l=∠CGD()∴∠2=∠CGD∴.CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴,∴AB∥CD()【答案】见解析【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥C D.【详解】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.21.(本题8分)(2021·浙江·绍兴市柯桥区杨汛桥镇中学七年级开学考试)如图,已知AB //CD,E是直线AB上的一点,CE平分∠ACD,射线CF⊥CE,∠1=32°,(1)求∠ACE的度数;(2)若∠2=58°,求证:CF//AG.【答案】(1)∠ACE=32°;(2)见解析.【分析】(1)根据平行线的性质可得∠1=∠DCE=32°,然后根据角平分线定义即可得到结论;(2)根据根据垂直的定义得∠FCE=90°,再求出∠FCH=58°,然后根据平行线的判定定理即可得到结论.【详解】(1)∵AB//CD,∴∠1=∠DCE=32°,∵CE平分∠ACD,∴∠ACE=∠DCE=32°;(2)∵CF⊥CE,∴∠FCE=90°,∴∠FCH=90°﹣32°=58°,∵∠2=58°,∴∠FCH=∠2,∴CF//AG.【点睛】本题考查了平行线的判定和性质,角平分线定义,正确的识别图形是解题的关键.22.(本题9分)(2021·浙江浙江·七年级期中)已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,∠FGN,求∠MHG的度数.连接GN,若∠N=∠AGM,∠M=∠N+12【答案】(1)见解析;(2)见解析;(3)60°【分析】(1)根据已知条件和对顶角相等即可证明;(2)如图2,过点M作MR∥AB,可得AB∥CD∥MR.进而可以证明;(3)如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,过点H作HT∥GN,可得∠MHT=∠N=2α,∠GHT=∠FGN=2β,进而可得结论.【详解】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM =2α,∠CHM =β,则∠N =2α,∠M =2α+β,握平行线的判定与性质.23.(本题12分)(2021·浙江杭州·七年级期末)如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________;(2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)【答案】(1)60°;(2)n °+40°;(3)n °+40°或n °-40°或220°-n ° 【分析】(1)过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; (2)同(1)中方法求解即可;(3)分当点B 在点A 左侧和当点B 在点A 右侧,再分三种情况,讨论,分别过点E 作EF ∥AB ,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n =20时,∠ABC =40°, 过E 作EF ∥AB ,则EF ∥CD ,∴∠BEF =∠ABE ,∠DEF =∠CDE ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠BEF =∠ABE =20°,∠DEF =∠CDE =40°,∴∠BED =∠BEF +∠DEF =60°;(2)同(1)可知:∠BEF =∠ABE =n °,∠DEF =∠CDE =40°,∴∠BED =∠BEF +∠DEF =n °+40°;(3)当点B 在点A 左侧时,由(2)可知:∠BED =n °+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°, ∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章整式的运算单元测试 1一、 耐心填一填每小题3分,共30分1.单项式32n m -的系数是 ,次数是 . 2.()()23342a b ab -÷= . 3.若A=2x y -,4B x y =-,则2A B -= .4.()()3223m m -++= .5.2005200640.25⨯= .6.若23nx =,则6n x = . 7.已知15a a +=,则221aa +=___________________.441a a +=___________________. 8.用科学计数法表示: 000024⋅-= .9.若10m n +=,24mn =,则22mn += . 10.()()()24212121+++的结果为 . 二、 精心选一选每小题3分,共30分 11.多项式322431x x y xy -+-的项数、次数分别是 .A .3、4B .4、4C .3、3D .4、312.三、用心想一想21题16分,22~25小题每小题4分,26小题8分,共40分.21.计算:16822a a a ÷+ 2()()().52222344321044x x x x x ⋅+-+- 3()()55x y x y --+- 4用乘法公式计算:21005. 22.已知0106222=++-+b a b a ,求20061ab-的值 23. 先化简并求值: )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .24.已知9ab =,3a b -=-,求223a ab b ++的值.25. 在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算: ()1把这个数加上2后平方.()2然后再减去4. ()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗26.请先观察下列算式,再填空:181322⨯=-, 283522⨯=-.①=-22578× ; ②29- 2=8×4;③ 2-92=8×5;④213- 2=8× ;………⑴通过观察归纳,你知道上述规律的一般形式吗 请把你的猜想写出来.⑵你能运用本章所学的平方差公式来说明你的猜想的正确性吗附加题:1.把1422-+x x 化成k h x a ++2)(其中a,h,k 是常数的形式2.已知a -b=b -c=35,a 2+b 2+c 2=1则ab +bc +ca 的值等于 . 绝密★档案B第一章整式的运算单元测试2一、填空题:每空2分,共28分1.把下列代数式的字母代号填人相应集合的括号内:A. xy+1B. –2x 2+yC.3xy 2-D.214-E.x 1-F.x 4G.x ax 2x 8123--H.x+y+zI.3ab 2005-J.)y x (31+ K.c 3ab 2+ 1单项式集合 { …}2多项式集合 { …}3三次多项式 { …}4整式集合 { …}2.单项式bc a 792-的系数是 . 3.若单项式-2x 3y n-3是一个关于x 、y 的五次单项式,则n = .4.2x+y 2=4x 2+ +y 2. 5.计算:-2a 221ab+b 2-5aa 2b-ab 2 = . 6.32243b a 21c b a 43⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-= . 7.-x 2与2y 2的和为A,2x 2与1-y 2的差为B, 则A -3B= .8.()()()()()=++++-884422y x y x y x y x y x .9.有一名同学把一个整式减去多项式xy+5yz+3xz 误认为加上这个多项式,结果答案为 5yz-3xz+2xy,则原题正确答案为 .10.当a = ,b = 时,多项式a 2+b 2-4a+6b+18有最小值.二、选择题每题3分,共24分1.下列计算正确的是A 532x 2x x =+B 632x x x =⋅C 336x x x =÷D 623x x -=-)(2.有一个长方形的水稻田,长是宽的2.8倍,宽为6.5210⨯,则这块水稻田的面积是A1.183710⨯ B 510183.1⨯ C 71083.11⨯ D 610183.1⨯3.如果x 2-kx -ab = x -ax +b, 则k 应为Aa +b B a -b C b -a D -a -b4.若x -30 -23x -6-2 有意义,则x 的取值范围是A x >3 Bx ≠3 且x ≠2 C x ≠3或 x ≠2 Dx < 25.计算:322)2(21)x (4554---÷⎪⎭⎫ ⎝⎛--π-+⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛得到的结果是A8 B9 C10 D116.若a = -0.42, b = -4-2, c =241-⎪⎭⎫⎝⎛-,d =041⎪⎭⎫⎝⎛-, 则 a 、b 、c 、d 的大小关系为A a<b<c<d Bb<a<d<c C a<d<c<b Dc<a<d<b7.下列语句中正确的是Ax -3.140 没有意义B 任何数的零次幂都等于1C 一个不等于0的数的倒数的-p 次幂p 是正整数等于它的p 次幂D 在科学记数法a×10 n 中,n 一定是正整数8.若k xy 30x 252++为一完全平方式,则k 为A 36y 2B 9y 2C 4y 2 Dy 2三、1.计算13xy -2x 2-3y 2+x 2-5xy +3y 22-51x 25x 2-2x +13-35ab 3c ⋅103a 3bc ⋅-8abc 2420052006315155321352125.0)()()()(-⨯+⨯- 5〔21xyx 2+yx 2-y +23x 2y 7÷3xy 4〕÷-81x 4y 6))((c b a c b a ---+ 2.用简便方法计算: 17655.0469.27655.02345.122⨯++ 29999×10001-100002 3.化简求值:14x 2+yx 2-y -2x 2-y 2 , 其中 x=2, y=-52已知:2x -y =2, 求:〔x 2+y 2-x -y 2+2yx -y 〕÷4y 4.已知:aa -1-a 2-b= -5 求: 代数式 2b a 22+-ab 的值. 5.已知: a 2+b 2-2a +6b +10 = 0, 求:a2005-b 1的值. 6.已知多项式x 2+nx+3 与多项式 x 2-3x+m 的乘积中不含x 2和x 3项,求m 、n 的值.7.请先阅读下面的解题过程,然后仿照做下面的题.已知:01x x 2=-+,求:3x 2x 23++的值.若:0x x x 132=+++,求:200432x x x x ++++ 的值.附加题:1.计算:2200320052003200320032004222-+2.已知:多项式42bx ax x 323+++能被多项式6x 5x 2+-整除,求:a 、b 的值 .绝密★档案C第一章整式的运算单元测试3一.填空题.1. 在代数式4,3x a ,y +2,-5m 中____________为单项式,_________________为多项式. 2.多项式13254242+---x y x y x π是一个 次 项式,其中最高次项的系数为 .. 3.当k = 时,多项式8313322+---xy y kxy x 中不含xy 项. 4.)()()(12y x y x x y n n --⋅--= .5.计算:)2()63(22x y x xy -÷-= .6.29))(3(x x -=-- 7.-+2)23(y x =2)23(y x -.8. -5x 2 +4x -1=6x 2-8x +2.9.计算:31131313122⨯--= . 10.计算:02397)21(6425.0⨯-⨯⨯-= . 11.若84,32==n m ,则1232-+n m = .12.若10,8==-xy y x ,则22y x += . 13.若22)(14n x m x x +=+-, 则m = ,n = .14.当x = 时,1442+--x x 有最大值,这个值是 .15. 一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个 两位数为 .16. 若 b 、a 互为倒数,则 20042003b a⨯= . 二.选择题.1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有 个. A.1个 B.2个 C.3个 D.4个2.下列各式正确的是A.2224)2(b a b a +=+B.1)412(02=-- C.32622x x x -=÷- D.523)()()(y x x y y x -=--3.计算223)31(])([-⋅---a 结果为 A.591a B.691a C.69a - D.891a - 4.2)21(b a --的运算结果是 A.2241b a + B.2241b a - C.2241b ab a ++ D.2241b ab a +- 5.若))((b x a x +-的乘积中不含x 的一次项,则b a ,的关系是A.互为倒数B.相等C.互为相反数D.b a ,都为06.下列各式中,不能用平方差公式计算的是A.)43)(34(x y y x ---B.)2)(2(2222y x y x +-C.))((a b c c b a +---+D.))((y x y x -+-7. 若y b a 25.0与b a x 34的和仍是单项式,则正确的是 A.x=2,y=0B.x=-2,y=0C.x=-2,y=1D.x=2,y=1 8. 观察下列算式:12=2,22=4,32=8,42=16,52=32,62=64,72=128,82=256,……根据其规律可知108的末位数是 ……………………………………………A 、2B 、4C 、6D 、89.下列各式中,相等关系一定成立的是A 、22)()(x y y x -=-B 、6)6)(6(2-=-+x x xC 、222)(y x y x +=+D 、)6)(2()2()2(6--=-+-x x x x x10. 如果3x 2y -2xy 2÷M=-3x+2y,则单项式M 等于A 、 xy ;B 、-xy ;C 、x ;D 、 -y12. 若A =5a 2-4a +3与B =3a 2-4a +2 ,则A 与BA 、A =B B 、A >BC 、A <BD 、以上都可能成立三.计算题. 125223223)21(})2()]()2{[(a a a a a -÷⋅+-⋅- 2)2(3)121()614121(22332mn n m mn mn n m n m +--÷+-- 3)21)(12(y x y x --++ 422)2()2)(2(2)2(-+-+-+x x x x524422222)2()2()4()2(y x y x y x y x ---++四.解答题.已知将32()(34)x mx n x x ++-+乘开的结果不含3x 和2x 项.1求m 、n 的值;2当m 、n 取第1小题的值时,求22()()m n m mn n +-+的值.五.解方程:3x+2x -1=3x -1x+1.六.求值题:1.已知()2x y -=62536,x+y=76,求xy 的值. 2.已知a -b=2,b -c=-3,c -d=5,求代数式a -cb -d÷a-d 的值. 3.已知:2424,273b a == 代简求值:2(32)(3)(2)(3)(3)a b a b a b a b a b ---+++- 7分七.探究题.观察下列各式: 2(1)(1)1x x x -+=-1根据前面各式的规律可得:1(1)(...1)n n x x x x --++++ = .其中n 为正整数2根据1求2362631222...22++++++的值,并求出它的个位数字.。