有理数和无理数的概念
数的分类自然数整数有理数和无理数

数的分类自然数整数有理数和无理数数是我们日常生活中经常使用到的概念,人们常常根据数的性质和特点进行分类。
数的分类主要可以分为自然数、整数、有理数和无理数四个大类。
下面将详细介绍每个类别以及它们的定义和特点。
1. 自然数自然数是最基本的数,它包括了从1开始一直向上无穷大的正整数。
自然数用N表示,即N={1, 2, 3, 4, ...}。
自然数具有以下特点:- 自然数是整数;- 自然数不包括负数和0;- 自然数之间的运算结果仍然是自然数。
自然数在日常生活中的应用非常广泛,例如计数、排队、年龄等。
2. 整数整数是自然数的扩展,它包括了自然数、0以及自然数的负数。
整数用Z表示,即Z={..., -3, -2, -1, 0, 1, 2, 3, ...}。
整数具有以下特点:- 整数包含了自然数和负数;- 整数之间的运算结果仍然是整数。
整数常常在数学问题的计算中运用,如整数运算、方程式的解等。
3. 有理数有理数是可以表示为两个整数之比的数,其中分母不为0。
有理数包括了整数和分数,并且可以是正数、负数或0。
有理数用Q表示,即Q={m/n | m∈Z, n∈Z, n≠0}。
有理数具有以下特点:- 有理数可以表示为分数的形式;- 有理数包含了整数和分数;- 有理数之间的运算结果仍然是有理数。
有理数在实际应用中广泛存在,如温度、身高、时间等。
4. 无理数无理数是指不能表示为有理数的数,它的小数部分是无限不循环的。
无理数包括了所有不能写成m/n的数,其中m和n都是整数。
无理数用R表示。
无理数具有以下特点:- 无理数不能被表示为分数的形式;- 无理数是无限不循环的小数;- 无理数在数轴上的位置与有理数之间存在间隙。
无理数在几何学和物理学中有广泛应用,如平方根、圆周率等。
综上所述,数的分类分为自然数、整数、有理数和无理数四个大类。
自然数包括了从1开始的正整数,整数包括了自然数、0和负整数,有理数包括了整数和分数,而无理数则是不能用有理数表示的数。
无理数的知识点整理

无理数的知识点整理无理数是数学中的一个重要概念,指的是不能表示为两个整数的比值的数。
与无理数相对的是有理数,有理数可以表示为两个整数的比值。
无理数的出现,打破了数学中只有有理数的局限性,使得数学理论更加完善。
一、无理数的定义无理数是指那些不能表示为两个整数的比值的数。
无理数可以用无限不循环小数来表示,如圆周率π,自然对数的底数e等。
无理数的特点是无限不循环,即小数点后的数字没有重复的规律。
二、无理数的性质1. 无理数的无限性:无理数的小数表示是无限不循环的,它们的小数位数是无穷的,也就是说无理数没有终止的小数位数。
2. 无理数的无重复性:无理数的小数位数没有重复的规律,不存在重复的数字序列。
3. 无理数的无限不循环性:无理数的小数位数没有循环的规律,不存在周期性的数字序列。
4. 无理数的无穷性:无理数的小数位数是无穷的,不存在终止的数字序列。
三、无理数的分类无理数可以分为代数无理数和超越无理数两类。
1. 代数无理数:代数无理数是指那些满足代数方程的无理数,如平方根,立方根等。
代数无理数可以用整系数的多项式方程表示。
2. 超越无理数:超越无理数是指那些不能满足任何代数方程的无理数。
超越无理数不能用整系数的多项式方程表示。
四、无理数的运算无理数的运算与有理数的运算类似,可以进行加、减、乘、除等运算。
但需要注意的是,无理数的运算结果可能是有理数,也可能是无理数。
例如,对于两个无理数的加法运算,结果可能是有理数,也可能是无理数。
五、无理数的应用无理数在数学和物理学中有着广泛的应用。
1. 几何学中的无理数:无理数在几何学中被广泛应用,例如圆的周长和面积的计算中就涉及到无理数。
圆周率π是一个无理数,它的值约为3.14159。
2. 物理学中的无理数:无理数在物理学中也有广泛应用,例如自然对数的底数e是一个无理数,它在指数函数和对数函数中起着重要作用。
3. 算法中的无理数:无理数的计算在算法中也有重要应用,例如在计算机中的浮点数表示中,无理数的表示和运算是必不可少的。
对有理数和无理数的认识

对有理数和无理数的认识摘要:本文将对有理数和无理数的由来、概念及性质作一介绍,试图对数学中关于有理数和无理数的知识作一个梳理和拓展,以此帮助初中读者加深对实数的认识。
关键词:有理数 无理数 代数无理数与超越无理数一、 有理数1、有理数的由来在远古时候人们的生活经历探索,由模型到符号的演变发展成现在数及其符号,算术运算和早期代数也随之发展起来,在这里不做详细说明(大家可以参考由[英国] 蒂莫西·高尔斯的《数学史》译:刘熙文献),今日的算术和维叶塔以前的算术的区别在于对“不可能”到可能“可能”态度的转变,17世纪以前的代数家赋予这个名词有绝对的意义,认定了自然数是一切算术运算的特有数域,他们把可能性或者说,限制了的可能性,视为这些运算的内在性质。
也既是算术的直接运算乘法(ab)、加法(a+b )、自乘(ba )在自然数域中是全可能的,然而逆运算除法(ba ),减法(a-b )、开方(b a )要在只在有限制的条件下成立。
维塔娜以前的代数学家只满足于陈述这些事实,他们不能对这些问题做更深入的分析。
然而算术直接运算之所以全可能,是因为这些运算只不过是一系列重复运算,一步步深入到自然数中,然自然数我们先验假定为无限。
若要除去这个假定,我们把算术域限于一个有限集合(比如1000以内自然数)因此998+456>1000、600 X 50>1000就变的没意义了,然而相对式子也就失去意义。
或者限于奇数,对乘法还是全可能(奇数之积任为奇数),然而加法就不成立了。
因此在自然数域中算术运算是全可能的。
那么问题来了,能否把把数域扩大使得算术逆运算也成立,然而对于减法,我们只要把负数和0加进去就可以了。
对于除法,只要把正负分数加进去就使得除法也全可能。
因此由正负整数,正负分数和0组成的数域称为有理数域。
(希腊文称为λογος,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。
有理数和元理数的定义

有理数和元理数的定义好的,以下是为您生成的关于“有理数和无理数的定义”的文章:---# 【有理数和无理数的定义】## 开场白嘿,朋友!你有没有在数学课上被有理数和无理数搞得晕头转向?其实啊,这俩家伙就在我们的生活中,只是我们可能没有特意去留意。
想象一下,当我们在买东西计算价格,或者测量房间的大小的时候,这些数字背后可都藏着有理数和无理数的身影呢!今天,咱们就一起来揭开它们神秘的面纱。
## 什么是有理数和无理数?简单来说,有理数就是能写成两个整数之比的数,像咱们熟悉的整数、有限小数、无限循环小数都是有理数。
比如说 3 可以写成 3/1,0.25 可以写成 1/4,0.3333... 可以写成 1/3。
无理数呢,则是无限不循环小数,不能写成两个整数之比。
最典型的就是圆周率π,约等于 3.1415926...,还有像根号 2 约等于1.4142135... 这些数。
在生活中,有理数就像我们买东西时找的零钱,清楚明白,有固定的规律。
而无理数呢,就像是一些难以捉摸的神秘现象,没有规律可循。
这里要纠正一个常见的误区,有人可能会觉得无限小数就是无理数,其实不是的,只有无限不循环小数才是无理数,无限循环小数那可是有理数哦!## 关键点解析### 有理数的核心特征或要素1. 整数:像 -2、0、5 这样的整数,是有理数中最直观的一部分。
比如说你有 5 个苹果,这个 5 就是整数形式的有理数。
2. 有限小数:比如 0.5 ,它可以写成 1/2,有明确的结束点。
就像你跑步跑了 0.5 公里,距离是有限且明确的。
3. 无限循环小数:像 0.333... 可以写成 1/3,虽然它的小数位一直延续,但有循环规律。
就像时钟的指针,一直在转,但总是按照一定的规律循环。
### 无理数的核心特征或要素1. 无限性:无理数的小数位是无限延伸的,没有尽头。
比如π,计算起来永远没有结束。
2. 不循环性:没有重复出现的数字序列。
这就好像是随机生成的一串没有规律的数字。
有理数与无理数辨析

有理数与无理数辨析四川省邻水县九龙中学 任贤德 2006.8在初中,我们已学过实数的有关概念,实数包括有理数和无理数。
很多同学对于有理数和无理数概念的理解较模糊,对学习造成一定影响,甚至到了高中,也存在这种现象。
为此,有必要对此进行辨析。
有理数包括整数、有限小数和无限循环小数,如:218、18.25、1..6等。
我们可将整数、有限小数的小数位后面添加0,把它看成是以0为循环节的无限循环小数,如:218=218..0 ,18.25=18.25.0,在此观点下,有理数就可看成是无限循环小数。
而有理数又可化为分数,整数可看成是分母为1的分数,如:218=218/1,有限小数化成分数,先去掉小数点得到的数作为分子,若小数点后的位数有n 位,则分母就为n 10,如18.25=1825/100=73/4,无限循环小数可化为分数(其化法见后),如:1..6=4/3,所以有理数都可表示成分数,即表示成q/p(其中p 、q 是整数,且p 、q 互质)。
分数化小数时,若除不尽,则得到的小数一定是无限循环小数,因此分数与小数可以互化。
与此相对,无理数就是无限不循环的小数,如:2、3、π=3.1415926……、e=2.71828……、0.101001000……。
有人说无理数就是开方开不尽的数,这种理解是片面的,当然开方开不尽的数是无理数,但如π=3.1415926……、e=2.71828……并不是因为开方开不尽而得到的数,又如0.101001000……,1的后面依次多一个0,也不是因为开方开不尽而得到的数,所以前面对于无理数的理解是错误的,必须纠正。
下面再来谈谈有关的几个问题:1.(混)循环小数化为分数(此法证明须用到无穷递缩等比数列,证明较繁,故略去)(1) 无限循环小数化分数无限循环小数化分数时,其分母为9···90···0,其中9的个数为一个循环节的数字个数,0的个数为循环节前、小数点后0的个数,其分子为一个循环节的数字。
有理数与无理数

40
2.2.4实数集是不可数的
定理6
实数集是不可数的。 证明:1)构造法 2)区间套法 定理7 存在着无理的实数。
41
2.2.5代数数
a0 xn a1xn1 a2 xn2 ... an1x an 0
代数基本定理 n次方程(1)在复数域中有n 个根。 定义 一个实数或复数叫做代数数,如果它 是某一个整系数方程的根。 定义 任何不是代数数的实数叫做超越数。 定理8 代数数的集合是可数的。 定理9 存在超越数。
38
几个对等集的例子:
A
A B
B
A
B
39
2.2.3有理数集是可数的
定义
凡与集N对等的集A都叫做可数集, 或称集 A是可数的。 定理1 正有理数的集合是可数的。 定理2 一个有限集和一个可数集如无公共 元素,那么它们的和集是可数的。 定理3 两两不相交的有限个可数集的和集 是可数的。 系1 全体整数的集合是可数的。 系2 全体有理数的集合是可数的。 定理4 两两不相交的可数个有限集的和集 是可数的。 定理5 两两不相交的可数个可数集的和集
17
2.1.5有理数域 数学造型:从0和1出发,通过有理运算可以 造出全部有理数。 有理数域兊服了自然数系的缺陷,相对来说 是比较完美的:对四则运算是封闭的,而且 具有稠密性。 数域是抽象代数的一个基本概念,有理数域 只是数域的一种(最小的数域).
18
2.1.6第一次数学危机
一个正方形的对角线与其 一边的长度是不可公度的 「万物皆数」
书里的著名对话说明远在康托尔 的集合论创始之前,伽利略对 无限已经有了很好的理解。
36
2.2.1一段富有启发性的历史对话
有理数与无理数教案

有理数与无理数教案教学目标1.理解有理数和无理数的定义,能够区分它们。
2.掌握有理数和无理数的性质及运算规则。
3.能够应用所学知识解决实际问题。
4.培养学生的逻辑思维和问题解决能力。
教学内容1. 有理数的定义与性质•有理数的定义:有理数是可以表示为两个整数比值(分子与非零分母)的实数。
•有理数的性质:–加法性质:有理数的加法满足交换律、结合律和存在零元素。
–乘法性质:有理数的乘法满足交换律、结合律和存在单位元素。
–分配律:对于任意三个有理数a、b、c,满足a × (b + c) = a ×b + a × c。
2. 无理数的定义与性质•无理数的定义:无理数是不能表示为两个整数比值的实数,它们不能被写成分母不为零时两个整除关系式所表示的形式。
•无理数的性质:–无限不循环小数:无理数的十进制表示是无限不循环小数。
–无理数的无穷性:无理数在实数轴上无限延伸,且不断存在着新的无理数。
3. 有理数与无理数的运算•加法与减法:有理数与有理数相加减,结果仍为有理数;有理数与无理数相加减,结果为无理数。
•乘法与除法:有理数与有理数相乘除,结果仍为有理数;非零有理数与无理数相乘除,结果为无理数。
4. 应用题解决实际问题•利用有理数和无理数解决实际问题,如长度、面积、体积等计算问题。
教学方法1.导入新知识:–引入一个实际问题,让学生思考并讨论如何表示这个问题中的数字。
–提出“能否将所有实际问题中出现的数字都表示为两个整数比值?”的问题,引出有理数和无理数的概念。
2.理论讲解:–结合教材内容,对有理数和无理数进行详细讲解,并给出具体例子加深学生对概念的认识。
–引导学生发现有理数和无理数的性质,并进行归纳总结。
3.实例演示:–通过一些实例演示有理数和无理数的运算法则,引导学生掌握运算规则。
–提供一些实际问题,让学生应用所学知识解决问题,并在解决问题的过程中加深对有理数和无理数的理解。
4.小组合作:–将学生分成小组,让他们合作解决一些有关有理数和无理数的问题。
有理数与无理数概念整理

数的分类⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负分数正分数分数负整数正整数整数有理数0 这是一种分类方法,另一种还没介绍。
注意点1. 正数与整数不要混淆。
2. 有限小数、无限循环小数都可以化成分数都是分数.例如:,32-0.25,.3.0,-20%,都是分数。
但500%是整数。
3. 无限不循环小数是无理数。
比如π-,5π,1-π, 1010010001.1(每两个一之间增加一个0)。
5π不是分数 几个易混淆概念⎪⎩⎪⎨⎧正数非负数0 ⎪⎩⎪⎨⎧负数非正数0⎪⎩⎪⎨⎧正整数非负整数0 ⎪⎩⎪⎨⎧负整数非正整数0练习:判断下列各数,并把它们填写在相应的数集中:-10,-6.37,-213,0,0.12,71,7,-6.2%,2π,..65.1,π-, 1010010001.1(每两个一之间增加一个0)整数集:{…}正数集{…}分数集:{…}负整数集:{…}有理数集:{…}非负有理数集:{ …}非正数集:{…}非负整数集:{…}无理数集:{…}答案:判断下列各数,并把它们填写在相应的数集中:-10,-6.37, 0,0.12,-213, 71,7,-6.2%,200%,2π,..65.1,π-, 1010010001.1(每两个1之间增加一个0)整数集:{-10,0,7,200%, …}正数集{0.12,71,7,200%,2π,..65.1, 1010010001.1(每两个1之间增加一个0) …} 分数集:{-6.37,0.12,-213,71 ,-6.2%,..65.1 …} 负整数集:{-10 …}有理数集:{-10,-6.37, 0,0.12,-213, 71,7,-6.2%,200%, ..65.1, …} 非负有理数集:{ 0,0.12, 71,7,200%, ..65.1 …} 非正数集:{-10,-6.37, 0,-213 , -6.2%,π- …}非负整数集:{ 0,7,200% …} 无理数集:{2π, π-, 1010010001.1(每两个1之间增加一0) …}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数和无理数 1定义:有理数:我们把能够写成分数形式
n
m (m 、n 是整数,n≠0)的数叫做有理数.
无理数:①无限②不循环小数叫做无理数。
如圆周率、√2(根号2)等。
2有理数的分类
整数和分数都可以写成分数的形式,它们统称为有理数。
零既不是正数,也不是负数。
有限小数和无限循环小数都可以看作分数,也是有理数.
3无理数的两个前提条件:(1)无限(2)不循环
4区别:(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数。
(2)任何一个有理数后可以化为分数的形式,而无理数则不能。
实数的分类
实数⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负分数正分数分数负整数正整数整数有理数0
注意: 通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。
如果用字母表示数,则a >0表明a 是正数;a <0表明a 是负数;a 0表明a 是非负数;a 0表明a 是非正数.
几个易混淆概念
⎪⎩⎪⎨⎧正数非负数0 ⎪⎩⎪⎨⎧负数非正数0 ⎪⎩⎪⎨⎧正整数非负整数0 ⎪⎩
⎪⎨⎧负整数非正整数0。