(完整word版)传感器课程设计电容传感器

(完整word版)传感器课程设计电容传感器
(完整word版)传感器课程设计电容传感器

燕山大学

课程设计说明书题目:电容式纸张厚度传感器的设计

学院(系):电气工程学院

年级专业: 09级仪表一班

学号:

学生姓名:

指导教师:童凯

教师职称:副教授

燕山大学课程设计(论文)任务书

院(系):基层教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。

燕山大学课程设计评审意见表

摘要

第一章绪论。介绍测厚传感器检测技术的发展概况及本课题研究的背景、目的和研究的主要内容。

第二章电容传感器的结构设计。从电容传感器的基本工作原理出发,分析其用于测厚方面的优缺点,并结合有限元分析软件及电容精确计算公式对传感器的边缘效应做深入研究,对传感器的结构进行优化设计,研制出具

有新型结构的电容传感器。

第三章基于电容传感器的测厚系统电路设计。对测厚系统的整体设计方案做详细阐述,分析电容传感器的等效电路,估算出合适的工作频率范围,并对检测电路的各组成部分分别进行说明和设计。

第四章虚拟仪器技术在电容测厚系统中的应用。根据虚拟仪器技术的应用及特点,选用LABVIEW 作为开发平台,在相应的硬件基础之上,完成数据采集,虚拟仪器面板开发及用户应用程序的创建。

第五章实验与结果分析。通过样机空载及云母纸测厚实验,得到样机各项性能指标,并对测量误差进行分析。

第六章全文总结及展望。对虚拟电容测厚系统的研制工作进行总结,针对不足提出一些设想。

2 电容传感器的结构设计

2.1 电容传感器的工作原理及类型

电容传感器是将被测非电量的变化转换成电容量变化的一种传感器。实际上,它本身(或和被测物)就是一个具有可变参数的电容器。在大多数场合,电容器由两平行极板以及中间的电介质组成,当不考虑边缘效应时,其电容量为

(2-1)

式中,C:两极板间的电容(F);

ε:真空介电常数,为8.854×10-12(F/m),空气的介电常数与真空近

似;

ε:极板之间介质的相对介电常数;

r

s:极板的有效面积(m2);

d:两极板间距(m)。

ε发生变化时,电容量C 也就随之改当被测量的变化能使式中d,S 或

r

变,再通过一定的测量电路将其转化为电压、电流或频率等电信号输出,即可根据输出的电信号判定被测物理量的大小,这也是电容传感器的基本工作原理。

ε中的两个参数保持不变,而改变其中一个来实际应用中,常使d、S、

r

使电容发生变化。于是,电容传感器根据参数变化的不同,分为三种基本类型,即改变极距型,改变面积型和改变介质型。

1.改变极距型电容传感器

改变极距型电容传感器适用于测量微小的线位移,图2-1 为这种类型的

结构原理图。当可动极板随被测量变化而上下移动时,两极板间距变化,从而改变了电容量。若间距减小Δd,则电容增量为

电容相对增量为

可见,输出电容的相对变化与输入位移变化是非线性关系。为了减小非线性,提高灵敏度,一般采用差动式结构。

2.改变面积型电容传感器

改变面积型电容传感器适用于测量角位移或较大的线位移,图2-2 是这种类型的结构原理图。图中,1 均为固定极板,2 为动极板。

图2-2(a)是线位移式,设两极板间初始遮盖面积为s0(s0=ab),当其中一个极板沿水平方向移动x 时,极板有效面积就发生变化,则电容量变化为

图2-2(b)是角位移式,设初始时两极板遮盖角度为π(相对角位移为0),

遮盖面积为s,当其中一个极板转动θ角时,则极板间的电容量变化为

由式(2-4)和式(2-5)很容易看出,改变面积式电容传感器的输出特性是线性的,灵敏度为常数。

3.改变介质型电容传感器

改变介质型电容传感器用于测量电介质的厚度、位移、液位,还可根据极间介质的介电常数的变化来测量温度、湿度、容量等。这种变介质型电容传感器的结构形式很多,图2-3 为检测电介质厚度的结构原理图。

ε。如果极板间的其它介质是图中待测物的厚度为x,相对介电常数为

x

ε的空气,此时总的电容量可写为

介电常数为

若厚度变化Δx,则电容变化ΔCx,那么可以推导得到电容相对变化量为

其中,

式(2-7)与式(2-3)的形式相同,只是多了一个随(d ?x) x 变化而变化的系数Nx, (d ?x) x 越小,则Nx 越大,传感器的灵敏度也愈大,但非线性越严重。

由式(2-6)可见,当传感器面积s 和间距d 一定,x ε也不变时,电容只随电介质厚度x 变化而变化,且x 与电容的倒数成线性关系。若经过一定的测量电路,将电容变化量转换成易于处理的电压、电流等电量变化,获得x 与电量之间的关系,电介质厚度的测量就可以实现了。

2.2 电容传感器在测厚方面的优缺点分析

电容传感器是用于非电量测量的三种经典式传感器之一,它用于介质厚度的测量时,具有如下优点:

1. 机械结构简单。可以不用有机材料和磁性材料构成,能经受相当大的

温度变化及各种辐射作用,因而可以在温度较高,有各种辐射等恶劣环境下工作。

2. 易于实现非接触式测量。以极板间的电场力代替了测量头与被测物的

表面接触,由于电场力极其微弱,不会产生迟滞和变形,消除了接触式测量由于表面应力给测量带来的不利影响。

3. 动态响应速度快。系统固有频率高,可以直接用于某些生产线上的动

态测量。

4. 灵敏度高。如果再采用现代化精密测量方法,就能测量电容纸的7

10 的

变化量。又因为极间的电磁吸引力十分微小,输入能量低,从而保证了比较高的测量精度。

然而,电容传感器也有其自身的缺点,所以它的使用受到一定限制,主要原因有:

1. 输出阻抗高,负载能力差。电容量受电极的几何尺寸等限制,一般为

几个皮法到几百皮法,使传感器的输出阻抗很高,易受外界干扰而产生不稳定现象,所以设计时必须采取屏蔽等措施。

2. 寄生电容影响大。因为传感器的初始电容量小,而电子线路的杂散电

容、引线电缆电容以及传感器内极板与其周围导体构成的电容等所谓“寄生电容”却较大,影响测量精度和灵敏度。所以在传感器结构设计以及检测电路中都应采取相应措施给予减少或消除。

3. 量程较小。由于传感器是依靠极板之间的间隙进行工作的,而间隙不

可能做得太大,则量程受到限制。在测量电介质厚度时,需要根据实际情况恰当选取极板的间距。

4. 边缘效应的影响。前面一些公式的推导都是在假设极板面积无限大而

忽略边缘效应的情况下给出的,实际上极板面积不可能无限大,边缘效应会使传感器灵敏度降低而且产生非线性,因而边缘效应是设计电容传感器时不容忽视的一个重要因素。下面将对边缘效应做进一步讨

论。

2.3 电容传感器的边缘效应研究

电容传感器的边缘效应是指两平行金属极板的面积不是无限大时,边缘会存在发散电场,该发散电场形成附加电容,则实际电容量大于式(2-1)的计算值。。为能找到减小或消除边缘效应的方法,本文通过查阅资料,最后提出减少边缘效应的几项措施。

(1)由边缘效应所形成的附加电容量相当大,不能忽略;

(2)随着两极板间的距离d 增大,ΔC/C0 明显增加,即误差随极板间距的增加而显著增大;

(3)极板厚度h 减小时,ΔC/C0 减小,但没有极板间距改变引起的变化明显。

综上所述,对电容传感器进行结构设计时,需要考虑到边缘效应的影响,根据以上分析,为减少边缘效应的影响,提高测量精度,在设计传感器结构参数时,应遵循以下几点:

1. 在传感器体积大小允许的情况下,尽量增大传感器的有效面积,即增

大半径。

2. 测量介质厚度时,尽量减少极板间距;间距一定时,在加工工艺允许

前提下将极板做得尽量薄,可以采用涂敷式技术,但成本会相应增加。

3 基于电容传感器的测厚系统信号转换电路

电容传感器中电容值以及电容变化量都十分微小,不便于传输或显示,必须借助于转换电路将被测量引起的电容变化转换成与其成单值函数关系的电压、电流或者频率。目前,常用的方法归纳起来主要有[20]-[25]:调频法、充放电法(包括双T型二极管交流电桥电路、脉冲宽度调制电路)、调幅法(包括电桥电路、运算放大器式电路)。

下面简要分析并比较各种电路的工作原理和应用情况,确定本文测厚系统的信号转换电路。

1.调频法

调频法测量电路把电容式传感器作为振荡器谐振回路的一部分,振荡器的振荡频率随电容量的变化而变化。这种电路虽然可将频率作为测量系统的输出量,但此时系统是非线性的,不易校正,需加入鉴频器,将频率的变化转换为振幅的变化,然后经过放大用仪器指示或记录仪记录下来。调频测量电路原理框图如图3-1所示。

图3-1 调频测量电路原理框图

图3-1中,L为振荡回路的电感;C为振荡回路的总电容,包括振荡回路的固有电容C1,传感器引线分布电容C2,以及传感器电容C0±ΔC。调谐振荡器的振荡频率f为

这种电路灵敏度高,频率输出易于数字化处理,但需采取稳频措施以及宽带高精度电路配合,输出非线性也较大,实际电路比图3-1复杂,分布电容难以消除,不适于变间距式或检测薄型非金属材料厚度的高精度电容传感器的设计。

2.充放电法

利用电容充放电原理组成的转换电路,主要包括双T二极管交流电桥电路以及脉冲宽度调制电路。

图3-5为双T二极管交流电桥电路的原理图。其中,ùi表示幅值为U i,频率为f的对称方波的高频电源电压,D1和D2为两只特性相同的理想二极管,固定

电阻R1=R2=R,C1和C2为差动电容传感器的电容,R f为负载电阻(或仪器仪表的输入电阻)。

这种交流电桥电路输出电压高,1千欧负载电阻信号上升时间为20μs左右,能应用于高速机械量的测量。但电源的幅度、频率都需要稳定,且用于非金属材料厚度测量时,非线性误差大,分布电容也无法消除。

图3-2 双T二极管交流电桥电路图3-3 脉冲宽度调制电路

图3-3为脉冲宽度调制电路。该电路由比较器A1、A2,双稳态触发器及电容充放电回路组成。U r为比较器的参考电压,C1、C2为传感器的差动电容,双稳态触发器的两个输出端用作线路输出。

这种脉冲宽度调制电路,只需要电压稳定度较高的直流电源,比其他测量电路中需要高稳定度交流电源易于实现;不需附加解调器,只要经低通滤波器就能获得直流输出。但不论对于改变面积型或变间距型,只有连接成差动形式,变化量与输出量才成线性关系,且由于结构本身特性的限制,很难做到较高的灵敏度。

3.调幅法

调幅法转换电路主要有电桥电路和运算放大器式电路。

电桥电路是将电容传感器接入交流电桥作为电桥的一个臂(另一个臂为固定电容)或两个相邻臂,另外两个臂可以是电阻,也可以是变压器的两个二次线圈。当传感器是差动情况下,可以得到输出与输入的线性关系,但在单电容情况下不成线性关系,其电路图略。

图3-4 电容运算放大器式电路原理图

运算放大器式电路原理图如图3-7 所示。C s 为标准耦合电容,C x 为传感器电容,输入的交流电源电压用i U ?

表示,输出的调幅电压信号用0?

U 表示。由运算放大器的工作原理可知,在开环放大倍数A 和输入阻抗较大的理想情况下

式中“-”号表示输出电压与输入电压的相位相反,若传感器之间电介质为空气,则C =0εs /d ,代入上式取有效值得

这样,通过反馈运算方法,将C x ~d 的非线性关系,变成了U 0~d 的线性关系。本文2.1 节已经介绍了变介质型电容传感器用于检测电介质厚度的基本原理。当传感器两极板间放入被测物的厚度为x 时,传感器电容

其中d 为两极板间距,s 为极板面积,x ε 为被测物相对介电常数。代入

式(3-6)整理后得到

由此可知,运算放大器式调幅电路从原理上克服了电容传感器用于薄型非金属材料厚度测量时的非线性缺点,且电路结构简单。

基本的运算放大电路的缺点是,其输出电压初始值不为零,所以本文综合以上各种电路的特点设计了一种可调零式运算放大器转换电路。

4 可调零式电容运算放大器转换电路

及其参数设计

图3-5 可调零式电容运算放大器式电路原理图

4.1电容设计与计算

电容极板半径为3mm,基板间距为4mm大小的电容,有电容计算公式C=s ε/d 可求得电容C=6.252525pF,可认为电容值为6.25pF。

4.2其他参数的设计

采用10V,1KHz的交流电压,由于输出电压是毫伏级,设放大电路放大

倍数为100,则由公式可得出AD620运算放大器外接电路约为0.248KΩ,电容传感器灵敏度为1/d=1/2mm,测量电路灵敏度为1000/(4*2)mV/pf=125 mV/pf

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

传感器电容式湿度传感器的应用重点

题目传感器电容式湿度传感器的应用 姓名 学号 系(院)_电子电气工程学院_ 班级 目录 前言 (3) 1. 绪论 (1) 1.1电容式传感器的工作原理 (1)

1.2电容式传感器的特点 . (4) 2. 系统设计 (6) 2.1硬件电路设计 (6) 2.2 湿敏电容器的特性 (8) 2.3 电容式传感器数据处理 (8) 2.4测试结果 (8) 结论 (10) 参考文献 (11) 淄博职业学院 前言 人类的生存和社会活动与湿度密切相关,随着现代化的实现,很难找出一个与湿度无关的领域来。在电子科学技术日益发达的今天, 人类对自身的生活环境及工作环境要求越来越高。湿度的监测与控制在国民经济各个部门,如国防、科研、煤炭开采和井下监测以及人生活等诸多领域有着非常广泛的应用。众所周知, 湿度的测量较复杂,而对湿度进行控制更不易。人们熟知的毛发湿度计、干湿球湿度计等已不能满足现代工作条件和环境的要求。为此,人们研制了各种湿度传感器,其中电阻和电容型湿度传感器以其测量范围宽, 响应速度快, 测量精度高, 稳定性好, 体积小, 重量轻,制造工艺简单等显示出极大的优越性, 在实际中得到了广泛应用。由于应用领域不同,对湿度传感器的技术要求也不同。从制造角度看,同是湿度传感器,材料、结构不同,工艺不同。其性能和技术指标有很大差异,因而价格也相差甚远。湿度是一个重要的物理量,航天航空,计量等许多环境中需要在高温下进行湿度的测量,很多行业中,如发电、纺织食品、医药、仓储、农业等,对温度、湿度参量的要求都非常严格,目前,在低温条件下,(通常是指100℃以下),湿度

测量已经相对成熟,有商品化产品,并广泛应用于各种行业,另外有许多以行业需要在高温环境下测量湿度,如航天航空、机车舰船、发电变电、冶金矿山、计量科研、电厂、陶瓷、工业管道、发酵环境实验箱、高炉等场合,这时,湿度测量结果往往不如低温环境下的测量结果理想,另外,在恶劣的环境下工作,例如气流速度、温度、湿度变化非常剧烈或测量污染严重的工业化气体时,将使精度大大下降。然而,随着科技的进步,人们对湿度的测量设备进行了越来越深层的研究,本文就以电容型湿度传感器进行阐述。 1. 绪论 1.1电容式传感器的工作原理 电容式传感器是将被测量的变化转换为电容量变化的一种装置,它本身就是一种可变电容器。由于这种传感器具有结构简单,体积小,动态响应好,灵敏度高,分辨率高,能实现非接触测量等特点,因而被广泛应用于位移、加速度、振动、压力、压差、液位、等分含量等检测领域。 这里主要介绍电容式传感器的原理、结构类型、测量电路及其工程应用。当被测量的变化使S 、d 或ε任意一个参数发生变化时,电容量也随之而变,从而完成了由被测量到电容量的转换。当式中的三个参数中两个固定,一个可变,使得电容式传感器有三种基本类型:变极距型电容传感器、变面积型电容传感器和变介电常数型电容传感器。电容式传感器的测量电路就是将电容式传感器看成一个电容并转换成电压或其他电量的电路。因此,常用的测量电路主要有桥式电路、调频电路、脉冲宽度制电路、运算放大器电路、二极管双T 形交流电桥和环行二极管充放电法等。调频电路实际是把电容式传感器作为振荡器谐振回路的一部分, 当输入量导致电容量发生变化时,振荡器的振荡频率就发生变化。虽然可将频率作为测量系统的输出量,用以判断被测非电量的大小,但此时系统是非线性的,不易校正,因此必须加入鉴频器,将频率的变化转换为电压振幅的变化,经过放大就可以用仪器指示或记录仪记录下来。

电容式液位传感器课程设计 1

电容式智能液位仪

目录 目录 摘要 (2) 1.导言 (3) 2.传感器 (4) 2.1理想的电容式传感器 (4) 2.2电路模型 (5) 2.3传感器特性 (6) 2.4传感器结构 (7) 3.硬件电路设计 (11) 3.1硬件电路划分 (11) 3.2单片机的选用 (11) 3.3直流充放电式电容测量电路设计 (13) 3.4信号调理电路设计 (14) 3.5单片机电路及模数转化电路设计 (15) 3.6通信电路设计 (16) 4.系统软件设计 (18) 4.1编程环境与编程语言 (18) 4.2软件总体设计 (18) 5.电容测量电路的实验结果和分析 (19) 5.1实验过程及结果 (19) 5.2实验分析 (21) 参考文献 (22) 摘要

设计一种多功能智能化液位检测装置,采用A Tmega8作为硬件电路核心,以圆柱形电容探头为液位检测传感器,利用电容频率转换原理将电容变化为频率变化,利用单片机检测频率,软件计算液位高度。本装置具有机械去液面波动,用软件进行温度修正、线性校正、用户自校正,通信和多液体选择等功能。 本文主要创新之处是提出一种适合于波动液面液位检测的智能液位仪,具有温度补偿、用户自校正和通信等功能。本文设计了高度为100cm的柱形电容液位检测传感器,电容器具有结构简单,电路实现容易,利用555振荡电路实现了电容到频率的转换,利用程序实现频率到高度转换,理论正确可靠,推算过程合理,利用软件分段修正减小了线性误差。在电容的两端装有液位缓冲器,采用机械的方式减小液面波动。由实验测试可知,本液位检测装置性能稳定,检测可靠,测量精度达到1cm, 分辨率可0.1cm,达到车载式喷雾机液位检测的要求。利用此方案可根据需要设计各种量程的液位检测装置,适用性较广。 ·2· 1.导言

模电课程设计:纸张厚度检测电路设计

课题名称:纸张厚度检测电路●张骏0862310129 徐伟0862310128 朱昊进0862310131 计算机及信息工程学院通信工程1班 指导老师:江冰 完成时间:2009年12月24日

关键词:纸张厚度电压比较器 Key Words:Paper thickness Voltage comparator Amplifier circuit 摘要: 纸张厚度检测是保证纸张品质的重要部分。本文将介绍一种基于LM339电压比较器的纸张厚度检测电路,它能够解决如何快速有效的检测纸张厚度,以提高实际生产中产品的检测效率。 Summary: Paper thickness detection is an important part to keep the quality of the paper. This passage will introduce a common circuit of paper thickness detection based on LM339 voltage comparator, which can solve the problem that how to detect the quality of the paper quickly and effectively, that to improve the efficiency of detection in the practical production.

目录Content 前言 关键词 2 摘要 2 目录 3 正文 电路研究意义 4 应用价值 4 总体方案框架图 4 原电路分析 4 Electronic Workbench 模拟 5 方法对比6参考文献9附件 电路原理图10 元器件清单10 实物照片11 LM339电压比较器介绍11

压力传感器的分类及应用原理

压力传感器的分类及应用原理 教程来源:网络作者:未知点击:28 更新时间:2009-2-16 10:11:30 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情2、陶瓷压力传感器原理及应用 抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。 陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。 3、扩散硅压力传感器原理及应用 工作原理 被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一

《传感器与测试技术》

1?传感器的特性一般指输入、输出特性,有动、静之分。静态特性指标的 有____ 、____ 、—、—、等。P18— P20 2. 对于测量方法,从不同的角度有不同的分类,按照测量结果的显示方式,可以分为—和_。P7 3. 对于测量方法,从不同的角度有不同的分类,按照是否在工位上测量可以 分为_和________ 。P7 4. 对于测量方法,从不同的角度有不同的分类,按照测量的具体手段,可以 分为_、_和________ 。P7 5. 某0.1级电流表满度值X m = 100mA,测量60mA的绝对误差为—。 &服从正态分布的随机误差具有如下性质 ______ 、—、____ 。P13 7. ____________________________ 硅光电池的光电特性中,当___________ 时,光电流在很大范围内与照度呈__________ 。 P230 8、把被测非电量的变化转换成线圈互感变化的互感式传感器是根据 的基本原理制成的,其次级绕组都用______ 形式连接,所以又叫差动变压器式传感 器。P67 9、霍尔传感器的霍尔电势U H为_若改变—或 _就能得到变化的霍尔电势。 P183 10、电容式传感器中,变极距式一般用来测量—的位移。 11、压电式传感器具有体积小、结构简单等优点,但不适宜测量________ 的被测量,特别是不能测量_________ 。 12、差动电感式传感器与单线圈电感式传感器相比,线性 _____ 灵感度提高倍、测量精度高。 13、热电偶冷端温度有如下补偿方法:、、、仪表机械零点调整法。 P210 14. 空气介质变间隙式电容传感器中,提高其灵敏度和减少非线性误差是矛盾 的,为此实际中大都采用_______式电容传感器。

压力传感器分析

压力传感器 压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面主要介绍这类传感器。 本次选用上海葩星信息科技有限公司的PXF1030型压阻式压力传感器。 压阻式压力传感器原理 压阻式压力传感器是利用单晶硅材料的压阻效应和集成电路技术制成的传感器。压阻式传感器常用于压力、拉力、压力差和可以转变为力的变化的其他物理量(如液位、加速度、重量、应变、流量、真空度)的测量和控制。 压阻效应 当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化(应变),而且前者的灵敏度比后者大50~100倍。 电阻式压力传感器与压阻式压力传感器的对比 电阻式压力传感器传动 电阻式传感器是将输入的机械量应变ε转换为电阻值变化的变换元件。电阻变换器的输入量为应变ε-ΔL/L,即材料的长度相对变化量,它是一个无量纲的相对值。通常ε-10-6为一个微应变。电阻变换器的输出量为电阻值的相对变化量ΔR/R0电阻变换器有金属电阻变换器和半导体电阻变换器两种类型。根据半导体材料的压阻效应Δρ/ρ-πσ且σ-Eε其中σ是应力(F/S);π是压阻系数,E是弹性模量,所以电阻的相对变化为(ΔR/R)≈πEε。要测量其他物理量,如压力、力等,就需要先将应变片贴在相应的弹性元件上,这些物理量被转换为弹性元件的应变,再经应变片将应变转换为电阻输出量。

电容式传感器在液位测量中的应用

电容式传感器在液位测量中的应用 【摘要】本文主要介绍了电容式传感器在液体测量中的一项应用——电容式液位计。电容式液位计是企业自动化的重要检测工具.本文介绍的电容式传感器做成水位测量计报警系统,结构简单,具有极高的抗干扰性和可靠性,解决了温度、湿度、压力及物质的导电性等因素对测量过程的影响。 【关键词】电容式液位计;测量原理;连接电路 洪水灾害是我国发生频率高、危害范围广、对国民经济影响最为严重的自然灾害。洪灾会造成江、河、湖、库水位猛涨,堤坝漫溢或溃决。所以一个安全,可靠,及时的水位测量系统显得尤为重要,目前我国较多使用的是浮子式水位测量计,虽然结构简单,但是干扰性较差,抗腐蚀能力也较低。本文根据检测与转化技术中的电容式传感器做成水位测量计报警系统,结构简单,具有极高的抗干扰性和可靠性,解决了温度、湿度、压力及物质的导电性等因素对测量过程的影响。能够测量强腐蚀性的液体,如酸、碱、盐、污水等。 1.解决方案 由于较多的降雨,水库的水位会增加,所以可以利用电容式传感器做成水位测量计。 1.1检测原理 电容式液位计是根据电容的变化来实现液位高度测量的液位仪表,电容式液位计的主要构件包括容式物位传感器和检测电容的线路。电容式液位计在测量时是将一根金属棒探入被测量容器的溶液中,将金属棒作为电容的一极,将容器壁作为电容的另一极。 电容式液位计在工作时,两个电极之间分别处于两种介质之中,而这两种介质的介电常数肯定是不同的,液体的介电常数ε1和气体的介电常数ε2之间存在一个差,这样同一段距离中ε1与ε2的比例不同,加和的结果也不同。 电容式液位计测量时,加设ε1>ε2,那么当液位升高时,ε1占据的比例增大而ε2占据的比例减小,两个电极之间的总的介电常数值也就会随之增大,而电容量也就会相应增加,通过对电容量增加值的测算就可以得到液位高度值。 在液位的连续测量中,多用同心圆柱式电容器,同心圆柱式电容器的电容量: C=■ 式中:

MEMS压力传感器原理与应用.

MEMS压力传感器原理与应用 摘要:简述MEMS压力传感器的结构与工作原理,以及应用技术,MEMS压力传感器Die的设计、生产成本分析,从系统应用到销售链。 关键词:MEMS压力传感器 惠斯顿电桥 硅薄膜应力杯 硅压阻式压力传感器硅电容式压力传感器 MEMS(微电子机械系统)是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。 MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者 都是在硅片上生成的微机械电子传感器。 硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 MEMS硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用MEMS技术直接将四个高精密半导体应变片刻制在其表面应力最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空

电容式导电液体液位传感器

传感器课程设计说明书 电容式导电液体液位传感器Capacitive conductive liquid level sensor 学院名称:机械工程学院 专业班级: 学生: 学生学号: 指导教师: 指导教师职称:教授 2012年 1 月

电容式导电液体液位传感器 专业班级:**** 学生:**** 指导老师:**** 职称:**** 摘要在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法取代。目前国外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。 本设计采用一种简单方便的电容式液位测量方法,电容式传感器是将被测非电量的变化转化为电容变化量的一种传感器,它具有结构简单、分辨力高、可实现非接触测量,并能在高温、辐射和强烈震动等恶劣条件下工作等优点,是很有发展前途的一种传感器。 本电容式液位测量设计方式是用等径的长直圆筒容器,液位的高低正比于导电液体与测杆中导电金属铜之间电容的大小,通过测量电路的转换,就可以很方便地测量出液面的位置。 此课程设计的目的是为了熟练掌握电容传感器的基本知识和各种测量电路的原理运用;基本掌握测量液位方法的基本思路和方法;能够利用所学的基本知识和技能,解决简单的传感器测量问题;培养综合利用传感器进行测量设计的能力。 关键词:液位测量电容式传感器测量电路电容传感器测量

水位传感器结构及工作原理

1、水位传感器组成及工作原理 水位传感器是一种测量液位的压力传感器.静压投入式液位变送器(液位计)是基于所测液体静压与该液体的高度成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号(一般为4~20mA/1~5VDC)。分为两类:一类为接触式,包括单法兰静压/双法兰差压液位变送器,浮球式液位变送器,磁性液位变送器,投入式液位变送器,电动内浮球液位变送器,电动浮筒液位变送器,电容式液位变送器,磁致伸缩液位变送器,侍服液位变送器等。第二类为非接触式,分为超声波液位变送器,雷达液位变送器等。 静压投入式液位变送器(液位计)适用于石油化工、冶金、电力、制药、供排水、环保等系统和行业的各种介质的液位测量。精巧的结构,简单的调校和灵活的安装方式为用户轻松地使用提供了方便。4~20mA、 0~5v、 0~10mA等标准信号输出方式由用户根据需要任选。 利用流体静力学原理测量液位,是压力传感器的一项重要应用。采用特种的中间带有通气导管的电缆及专门的密封技术,既保证了传感器的水密性,又使得参考压力腔与环境压力相通,从而保证了测量的高精度和高稳定性。 是针对化工工业中强腐蚀性的酸性液体而特制,壳体采用聚四氟乙烯材料制成,采用特种氟胶电缆及专门的密封技术进行电气连接,既保证了传感器的水密性、耐腐蚀性,又使得参考压力腔与环境压力相通,从而保证了测量的高精度和高稳定性。 工作原理: 用静压测量原理:当液位变送器投入到被测液体中某一深度时,传感器迎液面受到的压力公式为:Ρ = ρ . + Po式中: P :变送器迎液面所受压力 ρ:被测液体密度 g :当地重力加速度 Po :液面上大气压 H :变送器投入液体的深度 同时,通过导气不锈钢将液体的压力引入到传感器的正压腔,再将液面上的大气压 Po 与传感器的负压腔相连,以抵消传感器背面的 Po , 使传感器测得压力为:ρ . ,显然 , 通过测取压力 P ,可以得到液位深度。 功能特点:

电容式液位传感器

嘉兴学院毕业设计(论文)外文翻译 原文题目: Capacitive Liquid Level Sensor 译文题目:电容式液位传感器 学院名称:机电工程学院专业班级:电气081班学生姓名:毛勇 电容式液位传感器 这篇申请包含了1990年1月18日提交的辑07/466,936号描述的电容式液位传 感器和1990年1月18日提交的辑07/466,938号描述的容性液界面传感器共同 专利申请材料。 1.本发明的背景 本发明涉及到的是电容式液位传感器。这种液位传感器发现被许多的仪器使 用,其中一个用于从要分析的样品或试剂的容器里的液体中退出的机器人探测 器,就用到了该传感器。 在这样的机器人系统,它有容器内液位水平的知识,这样用于退出液体的探 测器能够被控制,以尽量减少与容器的内容接触。这种方式可以减少样品和试剂 之间的交叉污染,使清洗探头这样的尖端工作变得更为简单。在这种机器人系统 的探测器引入液体容器,最好保持低于液体的表面。 为了实现这一目标,各种液位传感器已被开发。这些就是所谓的电容式液 位传感器。这些都是基于任何导体都有有限电容的事实。当探测器真的接触液体, 液体的高介电常数和更大的表面面积会增加探测器的电容。这些电容的变化可以 相当小,因此敏感的检测设备是必需的。 现有技术已知的设备,适用于检测像桥梁,RC或LC振荡器和频率计计数 器(包括外差),锁相环,过零间对米,一个RC或LC滤波器的幅度变化,通过 一个RC或LC电路的相移的变化这样微小变化的电容。 其中现有的液位传感器是美国金士顿公司第3391547专利,使液罐的电容液 位探测器公诸于世。他采用了电容式探测器,置于液体中,作为电桥电路的一条

(完整word版)电容传感器测量纸张厚度

本次课程设计主要讲解电容式传感器的使用中的一部分,传感器技术是现代信息技术的主要内容之一。传感器是将能够感受到的及规定的被测量按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成,其中敏感元件是指传感器中能直接感受或响应被测量(输入量)的部分;转换元件是指传感器中能将敏感元件感受的或响应的被探测量转换成适于传输和测量的电信号的部分。电容式传感器不但广泛应用于位移、振动、角度、加速度等机械量的精密测量而且还逐步地扩大应用于压力、差压、液面、料面、成分含量等方面的测量。根据δ εεS r o =C 可以把电容传感器分为极距变化型电容传感器、面积变化型电容传感器、介质变化型电容传感器。根据实际不同的需求,可以利用不同的电路来实现所需要的功能。 电容式传感器的特点:(1)小功率、高阻抗。电容传感器的电容量很小,一般为几十到几百微微法,因此具有高阻抗输出;(2)小的静电引力和良好的动态特性。电容传感器极板间的静电引力很小,工作时需要的作用能量极小和它有很小的可动质量,因而具有较高的固有频率和良好的动态响应特性;(3)本身发热影响小(4)可进行非接触测量。 布料厚度测量是基于变介电常数电容传感器的一种精密测量,它可以实现简单的厚度测量,根据电容电路的特性分析可以知道所测布料的厚度。 关键词:厚度测量装置,电容传感器,运算放大电路,仿真

第一章对布料厚度测量装置所做的调研 (3) 1.1厚度测量装置在工业环境下的意义 (3) 1.2 厚度测量装置的研究现状 (3) 1.3 简述设计的整体思路 (4) 第二章电容测厚装置的介绍 (6) 2.1 详细介绍电容测厚装置 (6) 2.2设计匹配电路 (8) 第三章仿真设计及分析 (9) 3.1 仿真电路的建立 (9) 3.2 仿真结果的分析 (13) 第四章对课程设计进行试验 (15) 4.1 实验过程 (15) 4.2 分析仿真与试验结果的差异 (15) 第五章设计体会 (16)

电容式压力传感器的检测电路及仿真

电容式压力传感器的检测电路及仿真 摘要 本文详细的描述了电容式压力传感器的结构,工作原理,特性,发展现状和趋势等。并且在此基础上提出了电容式压力传感器的检测电路及其仿真方法,详细的分析了压力大小与电路输出电压之间的关系。 关键词:传感器,工作原理,特性,检测电路,发展 I

目录 摘要....................................................................................................I 1 绪论 (3) 2 压力传感器的结构 (3) 3 压力传感器的工作原理 (3) 4 电容式压力传感器 (5) 4.1 电容式传感器的原理及其分类 (5) 4.1.1 电容式传感器的原理 (5) 4.1.2 电容式传感器的分类 (6) 4.2 电容式压力传感器的工作原理 (7) 4.3 电容式压力传感器的特性 (7) 4.4 电容式压力传感器的等效电路 (8) 5 电容式压力传感器的检测电路 (9) 5.1 检测电路 (9) 5.2 结果分析 (11) 5.3 影响电容传感器精度的因素及提高精度的措施 (12) 5.3.1 边缘效应的影响 (12) 5.3.2 寄生电容的影响 (12) 5.3.3 温度影响 (12) 6 电容式压力传感器的应用 (13) 7 电容式压力传感器的发展 (13) 8 结论 (14) 致谢 (16) 参考文献 (17) I I

1绪论 科学技术的不断发展极大地丰富了压力测量产品的种类,现在,压力传感器的敏感原理不仅有电容式、压阻式、金属应变式、霍尔式、振筒式等等但仍以电容式、压阻式和金属应变式传感器最为多见。金属应变式压力传感器是一种历史较长的压力传感器,但由于它存在迟滞、蠕变及温度性能差等缺点,其应用场合受到了很大的限制。压阻式传感器是利用半导体压阻效应制造的一种新型的传感器,它具有制造方便,成本低廉等特点,因此在非电物理量的测试、控制中得到了广泛的应用。尤其是在航天、航空、常规武器、船舶、交通运输、冶金、机械制造、化工、轻工、生物医学工程、自动测量与计量、称量等技术领域。电容式压力传感器是应用最广泛的一种压力传感器。 2压力传感器的结构 压力传感器的结构如图1 所示。固定电极的半径为r0 ,厚度为h 的膜片组成可动电极,固定电极与可动电极间距离为d ,用绝缘体将可动电极固定。 图 1压力传感器结构图 3压力传感器的工作原理 在流体压力p 的作用下,膜片弯曲变形,则在r 处的挠度为 式中:μ为弹性元件材料的泊松比,E 为杨氏模量。在r = 0 处,挠度最大,为 3

电容式液位传感器系统

电容式液位传感器系统 1设计原理 采用筒式电容传感器采集液位的高度。主要利用其两电极的覆盖面积随被测液体液位的变化而变化,从而引起对应电容量变化的关系进行液位测量。由于从传感器得出的电压一般在0~30mv之间,太小不易测量,所以要通过放大电路进行放大。从放大电路出来的是模拟量,因此送入ADC0809转换成数字量,ADC0809连接于单片机,把信号送入单片机。显示电路连接于单片机用于显示水位的高度。。2.系统框图 被测物理量:主要是指非电的物理量,在这里为水位。 传感器:将输入的物理量转换成相应的电信号输出,实现非电量到电量的变换。传感器的精度直接影响到整个系统的性能,所以是系统中一个重要的部件。 放大,整形,滤波:传感器的输出信号一般不适合直接去转换数字量,通常要进行放大,滤波等环节的预处理来完成。

A/D转换器:实现将模拟量转换成数字量,常用的是并行比较型、逐次逼近式、积分式等。在此用到逐次逼近式。 单片机:目前的数据采集系统功能和性能日趋完善,因此主控部分一般都采用单片机。 3 传感器原理 电容式液位传感器系统; 它利用被测体的导电率, 通过传感器测量电路将液位高度变化转换成相应的电压脉冲宽度变化, 再由单片机进行测量并转换成相应的液位高度进行显示,该系统对液位深度具有测量、显示与设定功能, 并具有结构简单、成本低廉、性能稳定等优点。 3.1 传感器的组成 图为传感器部分的结构原理图。它主要是由细长的不锈钢管(半径为R1 ) 、同轴绝缘导线(半径为R0 ) 以及其被测液体共同构成的金属圆柱形电容器构成。该传感器主要利用其两电极的覆盖面积随被测液体液位的变化而变化, 从而引起对应电容量变化的关系进行液位测量。 图3-1-2传感器原理图 3.2 测量原理

浮球式与电容式液位开关区别

浮球式与电容式液位开关区别? 随着时代经济、技术的发展,传感器成为了设备中代替人工重要零件。而液位开关也随之发展起来,其中浮球式和电容式两种液位开关也现在常用的传感器之一。液位开关的主要功能都是检测液位、控制液位,区别在于其他的工作原理、技术参数等,那么这两种液位开关有什么区别呢? 区别一:外观 虽然液位开关至属于电子元器件类产品,但是外观也是和我们的使用息息相关,比如和安装有关等。浮球式液位开关的结构通常都是一个密封的管子上有一个浮球,浮球可上下移动。而电容式通常都是扁平式的结构,这样的结构更便于安装。 区别二:工作原理 浮球式液位开关的外观结构与其工作原理息息相关,浮球式液位开关密封的管内含有一个干簧管,而浮球内部是一个环形磁铁,还有固定环,浮球与磁簧开关在相关位置上。 当浮球随着液体的上下降而浮动时,浮球内的磁铁去吸引磁簧开关的接点,产生开与关的动作,随后给出信号。

电容液位开关通过测探介质的导电率或绝缘率决定是否有液体的存在,简单可以理解为根据电容值的大小来判断液体是否达到了固定水位。电容在液位开关及其所处的介质之间形成。当检测到有液体时,电容值变化极大。 区别三:清洁、卫生程度 浮球式液位开关是需要直接接触液体才能检测液位的变化,而浮球内部又具有一个带有磁性的磁体,易吸附水中的杂质产生水垢。在清洗方面也不方便,比如浮球式与管内中间的部分等。且浮球式液位开关不符合食品卫生认证标准。 电容式液位开关结构简单,且只要将电容式液位开关贴紧容器壁即可检测。因为其是在容器壁外检测,并不直接接触液体,所以清洗更加简单,卫生也有所保证。

区别四:安装方式 浮球式液位安装需要开孔,而电容式液位开关只需贴紧容器外壁即可。 区别五:精测精度 电容式液位开关精测精度为在±3mm以内,而浮球式液位开关通常在±3mm又可能会更高。 区别六:应用环境 浮球式液位开关因为其结构设计原因,浮球极易出现卡死的现象,所以不能用于检测黏稠的液体,以及含有杂质的液体也容易会导致浮球卡死。电容式液位开关因为可以隔着介质检测液体,所以无论容器内的液体是具有杂质,还是黏稠性高,具有腐蚀性等都不会影响。 区别七:价格 浮球式液位开关对比其他的液位开关,价格都相对比较便宜,而电容式液位开关价格对比光电式、超声波式的价格会比较便宜,但是价格相对浮球来说浮球式的液位开关一般会更便宜。但是综合稳定性和和其他方便等因素来说电容式的比较稳定。

电容式液位传感器设计

目录 第1章摘要 (2) 第2章引言 (3) 第3章电容式液位传感器结构与测量原理 (4) 3.1电容式液位传感器的结构 (4) 3.2电容式液位传感器的工作原理 (6) 第4章测量电路设计 (9) 4.1测量电路 (9) 4.2整流电路 (13) 4.3放大电路 (13) 第5章误差分析 (14) 5.1机械结构参数的影响 (14) 5.2测量电路的影响 (15) 第6章结论 (15) 心得体会 (15) 参考文献 (16)

第1章摘要 在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行精确测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法取代。目前国内外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。 车用燃油油位的计量,从而向当今高精度、数字化、集成化、智能本设计采用一种与介质无关的电容式液位测量方法,解决了传统电容测量与被测介质有关的技术难题。它可以应用于动态液位测量,尤其是在被测液体本身介质常数和液位,随时间和环境等因素容易发生变化的场合,如化的科学技术全面发展更迈进了一步,对满足石油化工等液位检测领域的迫切需求具有重大的理论和应用价值,前景十分广阔。 消除电容式液位测量方法中介质介电常数的因素是关键,设计符合测量方法的电容极板,通过电容电压转换电路处理为直流电压信号,由数据采集卡采集后送入单片机或计算机,最终实现算法的设计。其中电容极板设计时需注意消除和减小边缘效应和寄生电容的影响,同时要保证平板电容良好的绝缘性能和抗外界干扰性。

电容式液位传感器设计

河南城建学院 《安全检测与监控》课程设计 班级 0232131 学号 023213128 姓名李保林 专业安全工程 课程名称安全检测与监控 指导教师祁林王曦 市政与环境工程学院 2014年12月26日

第一部分:方案论证 (1) 1.1设计原理 (1) 第二部分:单元电路设计 (2) 2.1传感器设计 (2) 2.1.1传感器原理 (2) 2.1.2传感器的组成 (2) 2.1.3 测量原理 (3) 2.2将电容转化成电信号部分 (4) 2.3 电信号放大电路设计 (4) 2.4 A/D转换器设计 (5) 2.5 控制电路的设计 (7) 2.6 显示电路设计 (8) 2.7 软件系统的设计 (10) 第三部分:元器件清单 (14)

第一部分:方案论证 1.1设计原理 本设计采用筒式电容传感器采集液位的高度。主要利用其两电极的覆盖面积随被测液体液位的变化而变化,从而引起对应电容量变化的关系进行液位测量。由于从传感器得出的电压一般在0~30mv之间,太小不易测量,所以要通过放大电路进行放大。从放大电路出来的是模拟量,因此送入ADC0809转换成数字量,ADC0809连接于单片机,把信号送入单片机。通过单片机控制水泵的运转。显示电路连接于单片机用于显示水位的高度。该显示接口用一片MC14499和单片机连接以驱动数码管。 1.2.系统框图 被测物理量:主要是指非电的物理量,在这里为水位。

传感器:将输入的物理量转换成相应的电信号输出,实现非电量到电量的变换。传感器的精度直接影响到整个系统的性能,所以是系统中一个重要的部件。 放大,整形,滤波:传感器的输出信号一般不适合直接去转换数字量,通常要进行放大,滤波等环节的预处理来完成。 A/D转换器:实现将模拟量转换成数字量,常用的是并行比较型、逐次逼近式、积分式等。在此用到逐次逼近式。 单片机:目前的数据采集系统功能和性能日趋完善,因此主控部分一般都采用单片机。 显示设备:在此用到8段数码管。 控制设备:控制电动机的运行或关闭。 第二部分:单元电路设计 2.1传感器设计 2.1.1传感器原理 电容式液位传感器系统; 它利用被测体的导电率, 通过传感器测量电路将液位高度变化转换成相应的电压脉冲宽度变化, 再由单片机进行测量并转换成相应的液位高度进行显示,该系统对液位深度具有测量、显示与设定功能, 并具有结构简单、成本低廉、性能稳定等优点。 2.1.2传感器的组成

电容式液位传感器教学提纲

电容式液位传感器

电容式水位显示器的设计与制作 1.实验目的 能在设计与制作实验的过程中,结合所学理论知识,进行电子应用电路的设计、组装与调试,以此来掌握使用电容式传感器,模拟和数字分立元器件设计一个电容式水位显示器的方法和实践技能,为以后从事生产和科研工作打下一定的基础。 2.设计方案 本设计制作实验要求用电容传感器,设计并制作一个电容式水位显示器,对水位可以按高,中,低三档进行检测,并对每种水位,给出对应的LED,进行显示。 通过电容传感器,将水位值的变化转换为电容值的变化,再使用频压转换器,将电容值的变化转换为方波信号频率的变化,利用频压转换器的频率与电压对应关系,将电容值变化与电压值变化联系起来,最后显示。设计流程图如图2.1所示 图2.1 电容式水位显示器组成框图 3.实验原理 3.1脉冲电路 将电容传感器作为振荡电路的电容,通过经典的555定时器多谐振荡,将电容值的变换转换成正弦波频率的变换。。555定时器电路如图3.1所示。

图3.1 555定时器构成的多谐振荡器 分析:C2为电容传感器的等效电容,通过改变C2的大小可以明显改变示波器中方波的频率。 3.2 频压转换电路 采用KA331经典频压转换电路(电路仿真中LM331与KA331基本相同),实现信号频率值到电压值的变化。频压转换电路如图3.2所示。 图3.2 频压转换电路 频率电压对应关系:i t t S L o f C R R R 09 .2V 4.实验过程记录 4.1实验现象与分析

实物连接图见附录,将电容传感器与对应的普通导线悬于空中,KA331的电压输出为3.6V左右,慢慢浸没入水瓶中,输出电压开始缓慢下降,直至电容传感器触碰水瓶底部,电压下降至2.8V左右,在电压输出后附加电压比较电路,将2.8V至3.6V划分为3个区段,分别驱动不同颜色的LED灯即可。 从3.6V下降至2.8V的下降程度并不显著,调整KA331的输出取样电阻的阻值后,输出电压的变化率有明显变动,可以减小电阻值,使得变化更为显著,方便对不同电压进行进行分辨,驱动不同档位的LED小灯。 4.2调试问题 1)由于电容传感器与普通导线的相对位置不固定,且都有一定程度的弯曲,使得555输出的方波脉冲的频率处于跳变中,没有接固定电容稳定,并联一个固定电容可将频率跳变减弱,使之处于比较稳定的频率值,由于此次实验没有合适的小电容,并联大电容会导致电容传感器浸没入水中后,方波脉冲频率变化不明显,无法满足设计要求; 2)KA331输出的电压值课通过改变输出1号引脚接地电阻和2号引脚的可变电阻进行调整,使得方波的频率与对应的电压输出值满足比较良好的线性关系,但本次实验只要求分辨3种不同水位的高低情况,故调节至有明显电压变化即可,不用调出比较良好的对应关系式,若需要精确输出可以再此进行调节。 5.实验小结 通过本次电子线路设计,使我们复习了已经学习的555构成的多谐振荡电路,并加以动手操作实现,巩固了已有知识,还自行查找KA331的芯片资料,对其中的典型频压转换电路进行分析学习,从中验证了很多学习中的理论知识,在实际实物制作中,更加体现了一些电容、电阻等元件参数的选择与比例分配,并在调试电路中得到老师的指导,学习到一些调试电路的基本技巧,加强了自我的动手能力,在制作实物过程中与同学的探讨,更加深了一些知识的印象和理解,对原有的以及新学习的知识有了更为清晰的理解,积累了一点点经验,为以后从事生产和科研工作打下一定的基础。

相关文档
最新文档