2020-2021宁波市高一数学上期末模拟试题(带答案)

合集下载

2020-2021高一数学上期末第一次模拟试题含答案(3)

2020-2021高一数学上期末第一次模拟试题含答案(3)

2020-2021高一数学上期末第一次模拟试题含答案(3)一、选择题1.已知()f x 在R 上是奇函数,且2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则 A .-2B .2C .-98D .982.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-153.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)4.函数()()212log 2f x x x =-的单调递增区间为( ) A .(),1-∞ B .()2,+∞ C .(),0-∞D .()1,+∞5.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦6.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>7.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .38.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U10.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。

2020-2021高一数学上期末第一次模拟试卷含答案(4)

2020-2021高一数学上期末第一次模拟试卷含答案(4)

2020-2021高一数学上期末第一次模拟试卷含答案(4)一、选择题1.若函数()f x =的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞2.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>3.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .14.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-15.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>6.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .147.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭8.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U9.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+10.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y11.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.通过研究函数()4221021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个14.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________.15.函数()()4log 5f x x =-+________. 16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 18.函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.19.已知正实数a 满足8(9)aaa a =,则log (3)a a 的值为_____________.20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.22.已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =. (1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由; (2)对于[]2,6x ∈,()()()log 17amf x x x >--恒成立,求实数m 的取值范围.23.已知定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,()20201f =,且当1x >时,()0f x >. (1)求()1f ;(2)求证:()f x 在定义域内单调递增;(3)求解不等式12f<.24.已知函数()f x =(1)判断函数()f x 在区间[0,)+∞上的单调性,并用定义证明;(2)函数2()()log 2g x f x x =+-在区间(1,2)内是否有零点?若有零点,用“二分法”求零点的近似值(精确到0.3);若没有零点,说明理由.1.118≈, 1.225≈ 1.323≈,2log 1.250.322≈,2log 1.50.585≈,2log 1.750.807≈)25.已知()f x 是定义在R 上的奇函数,当0x >时,为二次函数且顶点为(1,1),(2)0f =.(1)求函数()f x 在R 上的解析式;(2)若函数()f x 在区间[1,2]a --上单调递增,求实数a 的取值范围. 26.已知函数()()()9log 91xkx R x k f =++∈是偶函数.(1)求k 的值; (2)若不等式()102x a f x --≥对(],0x ∈-∞恒成立,求实数a 的取值范围. (注:如果求解过程中涉及复合函数单调性,可直接用结论,不需证明)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出280m m m ⎧⎨=-<⎩V >,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ; ∴不等式mx 2-mx +2>0的解集为R ; ①m =0时,2>0恒成立,满足题意; ②m ≠0时,则280m m m ⎧⎨=-<⎩V >; 解得0<m <8;综上得,实数m 的取值范围是[0,8) 故选:A . 【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.2.D解析:D 【解析】 【分析】由对数的运算化简可得2log a =log b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log log 42a ====28222log 61log 6log 6log log 83b ====,2<<,所以222log log log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.3.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.4.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.5.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞; 对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.6.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.7.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.8.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.9.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-,此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.10.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.11.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.3【解析】【分析】令(为奇数)作出两个函数的图象后可判断零点的个数【详解】由题意令则零点的个数就是图象交点的个数如图所示:由图象可知与的图象在第一象限有一个交点在第三象限有一个交点因为当为正奇数时的解析:3 【解析】 【分析】令()2n s x x =(n 为奇数,3n >),()21021h x x x =-++,作出()s x 、()h x 两个函数的图象后可判断()g x 零点的个数. 【详解】由题意,令()*2,,5n s x x n N n =∈≥,()21021h x x x =-++,则()()()g x s x h x =-,()g x 零点的个数就是()(),s x h x 图象交点的个数,如图所示:由图象可知,()s x 与()h x 的图象在第一象限有一个交点,在第三象限有一个交点, 因为当n 为正奇数时()2ns x x =的变化速度远大于()h x 的变化速度,故在第三象限内,()s x 、()h x 的图象还有一个交点,故()(),s x h x 图象交点的个数为3,所以()g x 零点的个数为3. 故答案为:3. 【点睛】本题主要考查了函数的零点的判定,其中解答中把函数的零点问题转化为两个函数的图象的交点个数求解是解答的关键,着重考查了数形结合思想的应用,属于中档试题.14.【解析】【分析】由函数是偶函数求出这样可求得集合得的取值范围从而可得结论【详解】∵函数是偶函数∴即平方后整理得∴∴由得∴故答案为:【点睛】本题考查函数的奇偶性考查解一元二次不等式解题关键是由函数的奇 解析:[2015,2019]【解析】 【分析】由函数()f x 是偶函数,求出a ,这样可求得集合D ,得b 的取值范围,从而可得结论. 【详解】∵函数()12bf x x a a -=-+-是偶函数,∴()()f x f x -=,即1122b bx a a x a a ---+-=--+-, x a x a -=+,平方后整理得0ax =,∴0a =,∴2{|20}{|20}D x x x x x =+≤=-≤≤, 由b D ∈,得20b -≤≤. ∴22015201532019a b ≤-+≤. 故答案为:[2015,2019]. 【点睛】本题考查函数的奇偶性,考查解一元二次不等式.解题关键是由函数的奇偶性求出参数a .15.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可.【详解】要使函数()()4log 5f x x =-+有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.16.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得解析:10,2⎡⎫⎪⎢⎣⎭【解析】 【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围. 【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1 即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤<故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题.17.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考 解析:4 【解析】 【分析】设()2sin 1xg x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++xy x x 的最大值与最小值的和即可. 【详解】∵函数2sin 21=+++xy x x , ∴设()2sin 1x g x x x =++,则()()2sin 1xg x x g x x --=-=-+, ∴()g x 是奇函数, 设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -, 又()max max 22g x y M =+=+,()min min 22g x y M =+=-, ∴max min 224y y M M +=++-=, 故答案为:4.【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1xg x x x =++的奇偶性以及最值是解题的关键,属于中档题.18.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围. 【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.19.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题 解析:916【解析】 【分析】将已知等式8(9)aaa a =,两边同取以e 为底的对数,求出ln a ,利用换底公式,即可求解. 【详解】8(9)a a a a =,8ln ,l )l n 8(ln 9(9ln n )a a a a a a a a +==,160,7ln 16ln 3,ln ln 37a a a >∴=-=-Q ,ln 3ln 39log (3)116ln 16ln 37a a a a ∴==+=-.故答案为:916. 【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.20.5【解析】【分析】由求出的范围根据正弦函数为零确定的值再由三角函数值确定角即可【详解】时当时的解有的解有的解有故共有5个零点故答案为:5【点睛】本题主要考查了正弦函数余弦函数的三角函数值属于中档题解析:5 【解析】 【分析】由[]0,2x π∈,求出cos x π的范围,根据正弦函数为零,确定cos x 的值,再由三角函数值确定角即可. 【详解】cos x πππ-≤≤Q ,()()sin cos 0f x x π∴==时, cos 0x =,1,1-,当[]0,2x π∈时,cos 0x =的解有3,22ππ,cos 1x =-的解有π, cos 1x =的解有0,2π,故共有30,,,,222ππππ5个零点, 故答案为:5 【点睛】本题主要考查了正弦函数、余弦函数的三角函数值,属于中档题.三、解答题21.(1)23()(2)14f x x =-+;(2)[1,4];(3)[2,)+∞. 【解析】 【分析】(1)由()()22f x f x +=-,得对称轴是2x =,结合最小值可用顶点法设出函数式,再由截距求出解析式;(2)根据二次函数的单调性确定函数的最大值和最小值,然后求解. (3)求出()f x 在[0,3]的最大值4,对函数()2lg 1lg mg x x x=+-换元lg t x =,得()21m g x y t t ==+-,[1,2]t ∈,由421mt t≤+-用分离参数法转化. 【详解】(1)∵()()22f x f x +=-,∴对称轴是2x =,又函数最小值是1,可设2()(2)1f x a x =-+(0a >),∴(0)414f a =+=,34a =. ∴23()(2)14f x x =-+. (2)若2a b ≤≤,则min ()1f x a ==,7(1)24f =<,∴3b ≥且23()(2)14f b b b =-+=,解得4b =.∴1,4a b ==,不变区间是[1,4];若02a b <<≤,则()f x 在[,]a b 上是减函数,∴223()(2)14433()(2)14f a a b a b f b b a⎧=-+=⎪⎪∴==⎨⎪=-+=⎪⎩或4,因为02a b <<≤,所以舍去;若2a b ≤<,则()f x 在[,]a b 上是增函数,∴223()(2)143()(2)14f a a a f b b b⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,∴,a b 是方程()f x x =的两根,由()f x x =得23(2)14x x -+=,124,43x x ==,不合题意. 综上1,4a b ==;(3)23()(2)14f x x =-+,[0,3]x ∈时,max ()(0)4f x f ==, 设2lg 1lg my x x=+-,令lg t x =,当[10,100]x ∈时,[1,2]t ∈. 21my t t=+-, 由题意存在[1,2]t ∈,使421mt t≤+-成立,即225m t t ≥-+, [1,2]t ∈时,22525252()48t t t -+=--+的最小值是222522-⨯+⨯=,所以[2,)m ∈+∞.【点睛】本题考查求二次函数解析式,考查二次函数的创新问题,考查不等式恒成立和能成立问题.二次函数的解析式有三种形式:2()(),f x a x m h =-+12()()(),f x a x x x x =--2()f x ax bx c =++,解题时要根据具体的条件设相应的解析式.二次函数的值域问题要讨论对称轴与区间的关系,以确定函数的单调性,得最值.难点是不等式问题,对于任意的1[0,3]x ∈,说明不等式恒成立,而存在[10,100]x ∈,说明不等式“能”成立.一定要注意是转化为求函数的最大值还是最小值.22.(1)2a =,单调递减,理由见解析;(2) 07m << 【解析】 【分析】(1)代入(3)1f =解得a ,可由复合函数单调性得出函数的单调性,也可用定义证明; (2)由对数函数的单调性化简不等式,再由分母为正可直接去分母变为整式不等式,从而转化为求函数的最值. 【详解】(1)由()3log 4log 2log 21a a a f =-==,所以2a =. 函数()f x 的定义域为()1,+∞,()()()222212log 1log 1log log 111x f x x x x x +⎛⎫=+--==+ ⎪--⎝⎭. 因为211y x =+-在()1,+∞上是单调递减, (注:未用定义法证明不扣分)所以函数()f x 在定义域()1,+∞上为单调递减函数. (2)由(1)可知()()()221log log 117x mf x x x x +=>---,[]2,6x ∈,所以()()10117x mx x x +>>---. 所以()()()2201767316m x x x x x <<+-=-++=--+在[]2,6x ∈恒成立.当[]2,6x ∈时,函数()2316y x =--+的最小值min 7y =.所以07m <<. 【点睛】本题考查对数函数的性质,考查不等式恒成立,解题关键是问题的转化.由对数不等式转化为整式不等式,再转化为求函数最值.23.(1)0;(2)证明见解析;(3)()()1,02019,2020x ∈-U 【解析】 【分析】(1)取1x y ==,代入即可求得()1f ;(2)任取210x x >>,可确定()()22110x f x f x f x ⎛⎫-=>⎪⎝⎭,根据单调性定义得到结论; (3)利用12f=将所求不等式变为f f<,结合定义域和函数单调性可构造不等式组求得结果. 【详解】(1)取1x y ==,则()()()111f f f =+,解得:()10f = (2)任取210x x >>则()()()221111x f x f x f x f x x ⎛⎫-=⋅-= ⎪⎝⎭()()221111x x f f x f x f x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭210x x >>Q 211x x ∴> 210x f x ⎛⎫∴> ⎪⎝⎭,即()()210f x f x -> ()f x ∴在定义域内单调递增(3)()20201f ff=+=Q12f∴=12ff ∴<=由(2)知()f x 为增函数220190x x ⎧->⎪∴< 解得:()()1,02019,2020x ∈-U 【点睛】本题考查抽象函数单调性的证明、利用单调性求解函数不等式的问题;关键是能够通过单调性的定义证明得到函数单调性,进而根据函数单调性将函数值的比较转化为自变量的比较;易错点是忽略函数定义域的要求,造成求解错误. 24.(1)见解析;(2)有,1.5 【解析】 【分析】(1)由条件利用函数的单调性的定义即可证得函数f (x )在区间[)0,+∞上的单调性.(2)结合函数单调性,由零点存在性定理得出连续函数()g x 在区间()1,2上有且仅有一个零点,由二分法即可得出零点的近似值(精确到0.3). 【详解】(1)函数()f x 在区间[)0,+∞上是增函数, 设[)12,0,x x ∈+∞,且12x x <,则()()120f x f x -===<,所以()()12f x f x <,故函数()f x 在区间[)0,+∞上是增函数. (2)()2log 2g x x =-是增函数,又因为()21log 1210g =-=-<,()22log 2210g =-=>, 所以连续函数()g x 在区间()1,2上有且仅有一个零点0x因为()21.5log 1.52 1.2250.58520.190g-≈+-=-<, 所以()0 1.5,2x ∈又因为()21.75log 1.752 1.3230.80720.130g =-≈+-=->, 所以()0 1.5,1.75x ∈又1.75 1.50.250.3-=<,所以()g x 零点的近似值为1.5. 【点睛】本题考查了用定义证明函数单调性,零点存在性定理的应用,二分法求零点的近似值,属于中档题.25.(1)()222,02,0x x x f x x x x ⎧-+>=⎨+≤⎩(2)(]1,3【解析】 【分析】(1)当0x >时,设出二次函数顶点式,结合(2)0f =求得二次函数解析式.根据奇函数的性质,求得当0x <时,()f x 的解析式,从而求得()f x 在R 上的解析式.(2)由(1)画出()f x 的图像,结合()f x 在区间[1,2]a --上单调递增列不等式,解不等式求得a 的取值范围. 【详解】(1)∵()f x 是定义在R 上的奇函数, ∴()()f x f x -=-且()00f =当0x >时由已知可设2()(1)1(0)f x a x a =-+≠,又(2)0f =解得1a =-所以0x >,2()2f x x x =-+当0x <时,0x ->,∴()()()2222f x f x x x x x ⎡⎤=--=----=+⎣⎦又()0f 满足()22f x x x =+∴()222,02,0x x x f x x x x ⎧-+>=⎨+≤⎩(2)由(1)可得图象如下图所示:由图可知()f x 的增区间为[1,1]-∵在()f x 区间[1,2]a --上单调递增,∴121a -<-≤ 解得:(]1,3a ∈∴a 的取值范围为:(]1,3 【点睛】本小题主要考查函数的奇偶性,考查二次函数解析式的求法,考查函数的单调性,考查数形结合的数学思想方法,属于基础题. 26.(1)12k =-(2)(]9,log 2-∞ 【解析】 【分析】(1)由偶函数定义()()f x f x -=,代入解析式求解即可;(2)题设条件可等价转化为()9log 91xa x ≤+-对(],0x ∈-∞恒成立,因此设()()9log 91x g x x =+-,求出其在(],0x ∈-∞上的最小值即可得出结论.【详解】(1)∵函数()()()9log 91xkx R x k f =++∈ 是偶函数.∴()()f x f x -=, ∴()()99log 91log 91xx kx kx -+-=++,∴()()999912log 91log 91log 91x xxx kx x --+-=+-+==+,∴12k =-. (2)由(1)知,()()91log 912xf x x =+-, 不等式1()02f x x a --≥即为()9log 91x a x ≤+-, 令()()9log 91xg x x =+-,(],0x ∈-∞,则()()()99991log 91log log 199x xx xx g x -+=+-==+, 又函数()g x 在(],0-∞上单调递减,所以()()9min 0log 2g x g ==,∴a 的取值范围是(]9,log 2-∞. 【点睛】本题考查函数奇偶性的定义运用以及不等式恒成立问题,属于中档题.解决不等式恒成立问题时,一般首选参变分离法,将恒成立问题转化为最值问题求解.。

2020-2021高一数学上期末一模试卷(及答案)

2020-2021高一数学上期末一模试卷(及答案)

2020-2021高一数学上期末一模试卷(及答案)一、选择题1.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =-2.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭3.函数()()212log 2f x x x =-的单调递增区间为( )A .(),1-∞B .()2,+∞C .(),0-∞D .()1,+∞4.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .45.已知函数()()y f x x R =∈满足(1)()0f x f x ++-=,若方程1()21f x x =-有2022个不同的实数根i x (1,2,3,2022i =),则1232022x x x x ++++=( )A .1010B .2020C .1011D .20226.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x + B .(1)f x -C .()1f x +D .()1f x -7.函数ln x y x=的图象大致是( )A .B .C .D .8.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( ) A .(1)(2)(0)f f f -<< B .(1)(0)(2)f f f -<< C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x10.已知3log 2a =,0.12b =,sin 789c =,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<11.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .412.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.14.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.15.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.16.对于复数a bc d ,,,,若集合{}S a b c d =,,,具有性质“对任意x y S ∈,,必有xy S ∈”,则当221{1a b c b===,,时,b c d ++等于___________17.已知函数1()41xf x a =+-是奇函数,则的值为________. 18.函数()()()310310x x x f x x -⎧+<⎪=⎨-+≥⎪⎩,若函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是______.19.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.20.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]6,10-上所有根的和为________. 三、解答题21.已知函数()21log 1x f x x +=-. (1)判断()f x 的奇偶性并证明; (2)若对于[]2,4x ∈,恒有()2log (1)(7)mf x x x >-⋅-成立,求实数m 的取值范围.22.已知()()()22log 2log 2f x x x =-++. (1)求函数()f x 的定义域; (2)求证:()f x 为偶函数;(3)指出方程()f x x =的实数根个数,并说明理由. 23.已知函数()2log 11m f x x ⎛⎫=+⎪-⎝⎭,其中m 为实数. (1)若1m =,求证:函数()f x 在()1,+∞上为减函数; (2)若()f x 为奇函数,求实数m 的值. 24.计算或化简:(1)112320412730.1log 321664π-⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭; (2)6log 3332log 27log 2log 36lg 2lg 5-⋅---. 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.2.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.3.C解析:C 【解析】 【分析】求出函数()()212log 2f x x x =-的定义域,然后利用复合函数法可求出函数()y f x =的单调递增区间. 【详解】解不等式220x x ->,解得0x <或2x >,函数()y f x =的定义域为()(),02,-∞+∞.内层函数22u x x =-在区间(),0-∞上为减函数,在区间()2,+∞上为增函数, 外层函数12log y u =在()0,∞+上为减函数,由复合函数同增异减法可知,函数()()212log 2f x x x =-的单调递增区间为(),0-∞. 故选:C. 【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.4.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.5.C解析:C 【解析】 【分析】 函数()f x 和121=-y x 都关于1,02⎛⎫⎪⎝⎭对称,所有1()21f x x =-的所有零点都关于1,02⎛⎫⎪⎝⎭对称,根据对称性计算1232022x x x x ++++的值.【详解】()()10f x f x ++-=,()f x ∴关于1,02⎛⎫⎪⎝⎭对称,而函数121=-y x 也关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的所有零点关于1,02⎛⎫⎪⎝⎭对称, ()121f x x ∴=-的2022个不同的实数根i x (1,2,3,2022i =),有1011组关于1,02⎛⎫ ⎪⎝⎭对称,122022...101111011x x x ∴+++=⨯=.故选:C 【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.6.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +,该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.7.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.8.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=,则()()()012f f f <-<故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.9.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知343333log 2log 342a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以3c ∈, 所以a c b <<,故选B.11.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2.故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题13.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.14.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.15.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1xxx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t-≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-. 综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.16.-1【解析】由题意可得:结合集合元素的互异性则:由可得:或当时故当时故综上可得:解析:-1 【解析】由题意可得:21,1b a == ,结合集合元素的互异性,则:1b =- , 由21c b ==- 可得:c i = 或c i =- , 当c i = 时,bc i S =-∈ ,故d i =- , 当c i =- 时,bc i S =∈ ,故d i = , 综上可得:1b c d ++=- .17.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1218.【解析】【分析】作出函数的图象如下图所示得出函数的值域由图象可得m 的取值范围【详解】作出函数的图象如下图所示函数的值域为由图象可得要使函数的图像与函数的图像有公共点则m 的取值范围是故答案为:【点睛】 解析:[)()0,11,2⋃【解析】 【分析】作出函数()f x 的图象如下图所示,得出函数()f x 的值域,由图象可得m 的取值范围.【详解】作出函数()f x 的图象如下图所示,函数()f x 的值域为[)()0,11,2⋃,由图象可得要使函数y m =的图像与函数()y f x =的图像有公共点,则m 的取值范围是[)()0,11,2⋃, 故答案为:[)()0,11,2⋃.【点睛】本题考查两函数图象交点问题,关键在于作出分段函数的图象,运用数形结合的思想求得范围,在作图象时,注意是开区间还是闭区间,属于基础题.19.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立, 则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周 解析:16【解析】 【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称; 又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点, 4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16. 【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1)奇函数,证明见解析;(2)015m << 【解析】 【分析】(1)先求出函数定义域,再利用函数奇偶性的定义判断即可; (2)由题意,101(1)(7)x m x x x +>>---对[]2,4x ∀∈恒成立,转化为0(1)(7)m m x x >⎧⎨<+-⎩恒成立,求出函数()()()17g x x x =+-的最小值进而得解. 【详解】 (1)因为101x x +>-,解得1x <-或1x >, 所以函数()f x 为奇函数,证明如下: 由(1)知函数()f x 的定义域关于原点对称,又因为1222111()log log log ()111x x x f x f x x x x --+-+⎛⎫-====- ⎪--+-⎝⎭, 所以函数()f x 为奇函数; (2)若对于[]2,4x ∈,2()log (1)(7)mf x x x >--恒成立,即221log log 1(1)(7)x mx x x +>---对[]2,4x ∈恒成立, 即101(1)(7)x m x x x +>>---对[]2,4x ∈恒成立, 因为[]2,4x ∈,所以107mx x+>>-恒成立, 即0(1)(7)m m x x >⎧⎨<+-⎩恒成立,设函数()()()17g x x x =+-,求得()g x 在[]2,4上的最小值是15, 所以015m <<. 【点睛】本题考查函数奇偶性的判断及不等式的恒成立问题,考查分离变量法的运用,考查分析问题及解决问题的能力,难度不大.22.(1)()2,2-;(2)证明见解析;(3)两个,理由见解析. 【解析】 【分析】(1)根据对数函数的真数大于0,列出不等式组求出x 的取值范围即可; (2)根据奇偶性的定义即可证明函数()f x 是定义域上的偶函数.(3)将方程()f x x =变形为()22log 4x x -=,即242xx-=,设()242xg x x =--(22x -≤≤),再根据零点存在性定理即可判断. 【详解】 解:(1)()()()22log 2log 2f x x x =-++2020x x ->⎧∴⎨+>⎩,解得22x -<<,即函数()f x 的定义域为()2,2-; (2)证明:∵对定义域()2,2-中的任意x , 都有()()()()22log 2log 2f x x x f x -=++-= ∴函数()f x 为偶函数;(3)方程()f x x =有两个实数根, 理由如下:易知方程()f x x =的根在()2,2-内, 方程()f x x =可同解变形为()22log 4x x -=,即242xx-=设()242x gx x =--(22x -≤≤).当[]2,0x ∈-时,()g x 为增函数,且()()20120g g -⋅=-<, 则在()2,0-内,函数()g x 有唯一零点,方程()f x x =有唯一实根,又因为偶函数,在()0,2内,函数()g x 也有唯一零点,方程()f x x =有唯一实根, 所以原方程有两个实数根. 【点睛】本题考查函数的定义域和奇偶性的应用问题,函数的零点,函数方程思想,属于基础题. 23.(1)证明见解析(2)0m =或2m = 【解析】 【分析】(1)对于1x ∀,()21,x ∈+∞,且12x x <,计算()()120f x f x ->得到证明.(2)根据奇函数得到()()0f x f x -+=,代入化简得到()22211x m x --=-,计算得到答案. 【详解】(1)当1m =时,()221log 1log 11x f x x x ⎛⎫⎛⎫=+=⎪ ⎪--⎝⎭⎝⎭, 对于1x ∀,()21,x ∈+∞,且12x x <,()()12122212log log 11x x f x f x x x -=---1212122121221log log 1x x x x x x x x x x ⎛⎫--=⋅= ⎪--⎝⎭因为12x x <,所以12x x ->-,所以121122x x x x x x ->-, 又因1x ,()21,x ∈+∞,且12x x <,所以()1222110x x x x x -=->, 即1211221x x x x x x ->-,所以1212122log 0x x x x x x ⎛⎫-> ⎪-⎝⎭,()()120f x f x ->.所以函数()f x 在()1,+∞上为减函数. (2)()221log 1log 11m x m f x x x +-⎛⎫⎛⎫=+=⎪ ⎪--⎝⎭⎝⎭, 若()f x 为奇函数,则()()f x f x -=-,即()()0f x f x -+=. 所以211log log 11x m x m x x -+-+-⎛⎫⎛⎫+⎪ ⎪---⎝⎭⎝⎭211log 11x m x m x x -+-+-⎛⎫⎛⎫=⋅ ⎪ ⎪---⎝⎭⎝⎭2(1)1log 11x m x m x x --+-⎛⎫⎛⎫= ⎪⎪+-⎝⎭⎝⎭2222(1)log 01x m x ⎛⎫--== ⎪-⎝⎭, 所以()22211x m x --=-,所以()211m -=,0m =或2m =. 【点睛】本题考查了单调性的证明,根据奇偶性求参数,意在考查学生对于函数性质的灵活运用. 24.(1)99;(2)3-. 【解析】 【分析】(1)直接根据指数与对数的性质运算即可; (2)直接利用对数运算性质即可得出. 【详解】(1)原式21123325249131log 216104-⎡⎤⎛⎫⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦7351001442=++-- 99=.(2)原式323log 313lg 10=---31422=-- 3=-.【点睛】本题主要考查了指数对数运算性质,考查了推理能力与计算能力,属于中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.(1)(,5)-∞;(2)()0,1. 【解析】 【分析】(1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围. 【详解】 (1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+ 得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点,t由图知:(0,1)【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.。

2020-2021高一数学上期末第一次模拟试题(含答案)

2020-2021高一数学上期末第一次模拟试题(含答案)

2020-2021高一数学上期末第一次模拟试题(含答案)一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =-3.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( )A .()0,1B .[)0,1C .(]0,1D .[]0,14.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<5.函数()2sin f x x x =的图象大致为( )A .B .C .D .6.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( ) A .278-B .18-C .18D .2787.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}8.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<9.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .511.曲线241(22)y x x =-+-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 12.下列函数中,既是偶函数又存在零点的是( ) A .B .C .D .二、填空题13.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 14.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩ 若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________15.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______. 16.设定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是________.17.对于函数()y f x =,若存在定义域D 内某个区间[a ,b ],使得()y f x =在[a ,b ]上的值域也为[a ,b ],则称函数()y f x =在定义域D 上封闭,如果函数4()1xf x x=-+在R上封闭,则b a -=____.18.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.19.已知正实数a 满足8(9)aaa a =,则log (3)a a 的值为_____________.20.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________. 三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.已知二次函数()f x 满足:()()22f x f x +=-,()f x 的最小值为1,且在y 轴上的截距为4.(1)求此二次函数()f x 的解析式;(2)若存在区间[](),0a b a >,使得函数()f x 的定义域和值域都是区间[],a b ,则称区间[],a b 为函数()f x 的“不变区间”.试求函数()f x 的不变区间;(3)若对于任意的[]10,3x ∈,总存在[]210,100x ∈,使得()1222lg 1lg mf x x x <+-,求m 的取值范围.23.已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围.24.已知函数2()log (421)x xf x a a =+⋅++,x ∈R .(Ⅰ)若1a =,求方程()3f x =的解集;(Ⅱ)若方程()f x x =有两个不同的实数根,求实数a 的取值范围. 25.已知函数()f x 是二次函数,(1)0f -=,(3)(1)4f f -==. (1)求()f x 的解析式;(2)函数()()ln(||1)h x f x x =-+在R 上连续不断,试探究,是否存在()n n ∈Z ,函数()h x在区间(,1)n n +内存在零点,若存在,求出一个符合题意的n ,若不存在,请说明由.26.已知()()122x x f x a a R +-=+∈n .(1)若()f x 是奇函数,求a 的值,并判断()f x 的单调性(不用证明); (2)若函数()5y f x =-在区间(0,1)上有两个不同的零点,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又Q 函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.C解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()fx f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=-故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.3.B解析:B 【解析】 【分析】先化简集合A,B,再求B A ð得解. 【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð. 故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.4.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】 考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.5.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.6.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可.【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题7.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.8.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.9.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,()y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。

2020-2021高一数学上期末一模试卷(及答案)(1)

2020-2021高一数学上期末一模试卷(及答案)(1)

2020-2021高一数学上期末一模试卷(及答案)(1)一、选择题1.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( )A .[]2,0- B .(],8∞-- C .[)2,∞+ D .(],0∞- 2.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞3.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A .B .C .D .4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭5.设4log 3a =,8log 6b =,0.12c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .c b a >>6.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦7.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}9.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆ð,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >10.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞,11.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<12.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________.14.若关于x 的方程42x x a -=有两个根,则a 的取值范围是_________15.设定义在[]22-,上的偶函数()f x 在区间[]0,2上单调递减,若()()1f m f m -<,则实数m 的取值范围是________.16.设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 17.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =I ______. 18.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______.19.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______. 20.设是两个非空集合,定义运算.已知,,则________.三、解答题21.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B I U ;(2)若()R C C A ⊆,求实数a 的取值范围.22.已知函数()2log 11m f x x ⎛⎫=+⎪-⎝⎭,其中m 为实数. (1)若1m =,求证:函数()f x 在()1,+∞上为减函数; (2)若()f x 为奇函数,求实数m 的值.23.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围; (3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围.24.已知全集U =R ,集合{|25},{|121}M x x N x a x a =-=++剟剟. (Ⅰ)若1a =,求()R M N I ð;(Ⅱ)M N M ⋃=,求实数a 的取值范围. 25.已知函数()f x x =(1)判断函数()f x 在区间[0,)+∞上的单调性,并用定义证明;(2)函数2()()log 2g x f x x =+-在区间(1,2)内是否有零点?若有零点,用“二分法”求零点的近似值(精确到0.3);若没有零点,说明理由.1.25 1.118≈, 1.5 1.225≈ 1.75 1.323≈,2log 1.250.322≈,2log 1.50.585≈,2log 1.750.807≈)26.已知函数2()1f x x x m =-+.(1)若()f x 在x 轴正半轴上有两个不同的零点,求实数m 的取值范围; (2)当[1,2]x ∈时,()1f x >-恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据偶函数的性质,可知函数在(],0-∞上是减函数,根据不等式在[)1,x ∈+∞上恒成立,可得:21x a x +≤-在[)1,+∞上恒成立,可得a 的范围. 【详解】()f x Q 为偶函数且在[)0,+∞上是增函数()f x ∴在(],0-∞上是减函数对任意[)1,x ∈+∞都有()()21f x a f x +≤-恒成立等价于21x a x +≤-2121x x a x ∴-+≤+≤- 311x a x ⇒-+≤≤-()()max min 311x a x ∴-+≤≤-当1x =时,取得两个最值3111a ∴-+≤≤- 20a ⇒-≤≤ 本题正确选项:A 【点睛】本题考查函数奇偶性和单调性解抽象函数不等式的问题,关键在于能够通过单调性确定自变量之间的关系,得到关于自变量的不等式.2.C解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又Q 函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.3.C解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。

2020-2021高一数学上期末一模试题(及答案)(2)

2020-2021高一数学上期末一模试题(及答案)(2)

11.函数 y= 1 在[2,3]上的最小值为( ) x 1
A.2
B. 1 2
C. 1 3
D.- 1 2
12.下列函数中,既是偶函数又存在零点的是( )
A.
B.
C.
D.
二、填空题
13.定义在 R 上的奇函数 f(x)在(0,+∞)上单调递增,且 f(4)=0,则不等式 f (x)≥0 的解集是___.
则函数 y=f(x)与 y= loga x 2 在区间(−2,6]上有三个不同的交点,如下图所示:
又 f(−2)=f(2)=3,
则对于函数 y= loga x 2 ,由题意可得,当 x=2 时的函数值小于 3,当 x=6 时的函数值大
于 3,

log
4 a
<3,且
log
8 a
>3,由此解得:
B. c b a
C. c a b
D. a b c
6.设函数
f
x
log2 x, x
log
1 2
x
,
x
0, 0.若
f
a
f
a
,则实数的 a
取值范围是(
)
A. 1,0 0,1
B.,1 1,
C. 1,0 1,
D.,1 0,1
7.函数 f(x)=ax2+bx+c(a≠0)的图象关于直线 x=- 对称.据此可推测,对任意的非零
(2)令 g(x) f (x) ,若函数 F(x) g 2x r 2x 在 x 1,1 上有零点,求实数 r 的取 x
值范围.
22.已知函数 f (x) 3x 1 . 3x 1
(1)证明: f (x) 为奇函数;

2020-2021学年上学期高一数学期末模拟卷02(人教A版新教材)(浙江专用)【解析版】

数学模拟试卷02第I卷选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2020·浙江台州市·高一期中)设集合U=R,{|1A x x=<-或2}x>,则UA()A.(,1)(2,)-∞-+∞B.[1,2]-C.(,1][2,)-∞-+∞D.(1,2)-【答案】B【解析】因为U=R,{|1A x x=<-或2}x>,所以U A{|12}x x-≤≤.故选:B2.(2020·贵州省铜仁第一中学高一期中)设函数212(2)()5(2)x xf xx x x⎧-=⎨-->⎩,则()3f f⎡⎤⎣⎦等于()A.1-B.1 C.5-D.5【答案】A【解析】2(3)3359351f=--=--=,1(1)121f=-=-,即()3(1)1f f f==-⎡⎤⎣⎦.故选:A.3.(2020·重庆市云阳江口中学校高三月考)下列命题中正确的是()A.()0,x∃∈+∞,23x x>B.()0,1x∃∈,23log logx x<C.()0,x∀∈+∞,131log2xx⎛⎫>⎪⎝⎭D .10,3x ⎛⎫∀∈ ⎪⎝⎭,131log 2xx ⎛⎫> ⎪⎝⎭【答案】B 【解析】0x >时,22133xx x ⎛⎫=< ⎪⎝⎭,∴23x x <,A 错;(0,1)x ∈时,lg 0x <,lg3lg 20>>,因此11lg 2lg 3>,∴lg lg lg 2lg 3x x <,即23log log x x <,B 正确; 13x =时,13112⎛⎫< ⎪⎝⎭,131log 13=,即131log 2xx ⎛⎫< ⎪⎝⎭,C 错; 10,3x ⎛⎫∈ ⎪⎝⎭时,112x⎛⎫< ⎪⎝⎭,11331log log 13x >=,∴131log 2x x ⎛⎫< ⎪⎝⎭,D 错误.故选:B .4.(2020·安徽高三月考(理))函数153()sin 2152x x f x x π-⎛⎫=⋅+ ⎪+⎝⎭的图象大致为( ) A . B .C .D .【答案】D 【解析】由题意得,15()cos 215xxf x x -=-⋅+,15()cos(2)15x xf x x ---∴-=-⋅-=+51cos 2()51x x x f x --⋅=-+,则函数()f x 为奇函数,排除AC ;又33152cos 03315f ππππ-⎛⎫=-⋅< ⎪⎝⎭+,排除B . 故选:D.5.(2019·浙江高一期中)函数12()log (2)f x x =-的单调递增区间是( )A .(,2)-∞B .(,0)-∞C .(2,)+∞D .(0,)+∞【答案】A 【解析】由20x ->,得到2x <,令2t x =-,则2t x =-在(,2)-∞上递减,而12log y t =在(0,)+∞上递减,由复合函数单调性同增异减法则,得到12()log (2)f x x =-在(,2)-∞上递增,故选:A6.已知2παπ<<,1sin cos 5αα+=,则tan α等于( ) A. 34-B. 34-或43- C.34或43D.35【答案】A 【解析】∵2παπ<<,1sin cos 5αα+=, ∴平方可得112sin cos 25αα+=,即12sin cos 025αα=-<, ∴sin 0α<,cos 0α>,∵22sin cos 1αα+=可得:221cos cos 15αα⎛⎫-+= ⎪⎝⎭,解得:4cos 5α=,或35-(舍去),∴143sin 555α=-=-,可得:3tan 4α=-. 故选:A .7.(2020·沙坪坝区·重庆一中高三月考)设sin 5a π=,b =2314c ⎛⎫= ⎪⎝⎭,则( )A .a c b <<B .b a c <<C .c a b <<D .c b a <<【答案】C【解析】由对数函数y x =在()0,∞+单调递增的性质得:1b =>=,由指数函数12xy ⎛⎫= ⎪⎝⎭在R 单调递减的性质得:2413311142212c ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=<=, 由三角函数sin y x =在0,2π⎛⎫⎪⎝⎭上单调递增的性质得1sinsin562a ππ=>=. 所以c a b <<. 故选:C.8.(2019·黄梅国际育才高级中学高一月考)已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.9.(2020·陕西省定边中学高三月考(文))已知225sin sin 240αα+-=,α在第二象限内,那么cos 2α的值等于( ) A .35±B .35C .35D .以上都不对【答案】A 【解析】α在第二象限内,sin 0α∴>,cos 0α<,由225sin sin 240αα+-=得:()()25sin 24sin 10αα-+=,解得:24sin 25α=,7cos 25α∴==-,即272cos 1225α-=-,29cos 225α∴=, α在第二象限内,2α∴为第一或第三象限角,3cos 25α∴=±.故选:A .10.(2020·河北高二学业考试)关于函数()()()1sin 1sin 2cos f x x x x =-++,[]π,πx ∈-,有以下四个结论:①()f x 是偶函数②()f x 在[]π,0-是增函数,在[]0,π是减函数 ③()f x 有且仅有1个零点 ④()f x 的最小值是1-,最大值是3 其中正确结论的个数是( ). A .1 B .2 C .3 D .4【答案】C 【解析】函数()()()()221sin 1sin 2cos cos 2cos cos 11f x x x x x x x =-++=+=+-,()()()()22cos 2cos cos 2cos x x f x f x x x -=-+-=+=,故()f x 是偶函数,①正确;令cos t x =在[]π,0-是增函数,在[]0,π是减函数,()()22211y f t t t t ==+=+-在[]1,1t ∈-上递增,根据复合函数单调性可知()f x 在[]π,0-是增函数,在[]0,π是减函数,②正确;()()211y f t t ==+-,[]1,1t ∈-,则1t =-时,最小值为-1,1t =时,最大值为3,④正确;令()()2110f t t =+-=得0t =或2t =-(舍去),即cos 0t x ==,则2()2x k k Z ππ=+∈,()f x 有无数个零点,故③错误.所以有3个正确结论. 故选:C.第II 卷 非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(2018·江苏苏州市·高一期末)函数lg(2)y x =-的定义域是______.【答案】(,2)-∞ 【解析】由题设有20x ->,解得2x <,故函数的定义域为(),2-∞,填(),2-∞.12.(2020·江苏南通市·高三期中)已知函数()()3,0,0x x f x f x x ⎧≤⎪=⎨->⎪⎩,则()3log 2f =________.【答案】12【解析】由对数函数性质知333log 1log 2log 3<<,即30log 21<<,则3log 20-< 故()()()331log 2log 21331log 2log 23322f f ---=-====. 故答案为:12. 13.(2020·浙江杭州市·高一期末)函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.【答案】37[2,2],44k k k Z ++∈ 【解析】由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈, 故答案为:37[2,2],44k k k Z ++∈14.(2020·北京师大附中高一期末)设α是第一象限角,3sin 5α=,则tan α=______.cos2=α______. 【答案】34725【解析】∵α是第一象限角,3sin 5α=, ∴24cos 1sin 5αα=-=, ∴sin 35tan cos 4534ααα===. ∴2237cos 212sin 12525αα⎛⎫=-=-⨯= ⎪⎝⎭.故答案为:34,725. 15.(2020·忻州市第二中学校高三月考(文))某地一天中6时至14时的温度变化曲线近似满足函数sin()T A t b ωϕ=++2πϕπ⎛⎫<< ⎪⎝⎭,6时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,那么这一天6时至14时温差的最大值是_______°C ;图中曲线对应的函数解析式是________.【答案】20 310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[6,14]x ∈. 【解析】由图可知,这段时间的最大温差是30°C -10°C=20°C ; 图中从6~14时的图象是函数sin()y A x b ωϕ=++的半个周期的图象,得1(3010)102A =-=,1(3010)202b =+=,因为121462πω⋅=-,所以8πω=,从而得10sin 208y x πϕ⎛⎫=++ ⎪⎝⎭,将6x =,10y =代入, 得10sin 620108ϕπ⎛⎫⨯++=⎪⎝⎭,即3sin 14πϕ⎛⎫+=- ⎪⎝⎭,由于2ϕπ<<π,可得34πϕ=.故所求解析式为310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[6,14]x ∈. 故答案为:20;310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[6,14]x ∈. 16.(2020·江苏南通市·高一期中)十六、十七世纪之交,随着天文、航海、工程、贸易及军事的发展,改进数字计算方法成了当务之急,约翰•纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数,后来天才数学家欧拉发现了对数与指数的关系,即log b a a N b N =⇔=,现已知2log 6,336ba ==,则12a b+=____,2=ab _____.【答案】1【解析】由题意知2log 6,336ba ==,可得33log 362log 6b ==,所以66231121log 2,log 3log 6log 6a b ====, 所以66612log 2log 3log (23)1a b+=+=⨯=,又由2223log 61log 3log 2log 62a b ===,所以log 22ab ==故答案为:117.(2020·江苏高一月考)设函数2(),0()1,0x a x f x x x x ⎧-≤⎪=⎨+>⎪⎩,当a =1时,f (x )的最小值是________;若2()f x a ≥恒成立,则a 的取值范围是_________. 【答案】1 [0] 【解析】当a =1时,当0x ≤时,2()(1)1f x x =-≥,当0x >时,1()f x x x =+2≥=,当且仅当1x =时,等号成立.所以()f x 的最小值为1.当0x ≤时,2()f x a ≥,即22()x a a -≥,即(2)0x x a -≥恒成立,所以2x a -0≤恒成立,即2a x ≥恒成立,所以20a ≥,即0a ≥.当0x >时,2()f x a ≥,即21x a x +≥恒成立,因为1x x +2≥=,当且仅当1x =时,等号成立,所以22a ≤,所以a ≤≤.综上所述:a 的取值范围是.故答案为:1;三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(2020·河北沧州市·高二期中)已知:p 1,:q 2221x x a -<-(0a >) (1)当2a =时,若p 和q 均为真命题,求x 的取值范围: (2)若p 和q 的充分不必要条件,求a 的取值范围. 【答案】(1)[2,3);(2)[2,)+∞. 【解析】对于命题:p 1<,所以20log (1)1x ≤-<,解得23x ≤<, 对于命题:q 因为2221x x a -<-,所以22210x x a -+-<解得11a x a -<<+, (1)当2a =时,:13q x -<< 因为p 和q 均为真命题,所以2313x x ≤<⎧⎨-<<⎩,解得23x ≤<,故x 的取值范围为[2,3); (2)因为p 是q 的充分不必要条件,所以[2,3) (1,1)a a -+,即1213a a -<⎧⎨+≥⎩,解得2a ≥,故a 的取值范围为[2,)+∞.结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 19. (2020·安徽高三月考(理))已知函数()4sin 33f x x π⎛⎫=-⎪⎝⎭,先将()f x 的图象向左平移12π个单位长度后,再将所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()g x 的图象. (1)当2,3x ππ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域; (2)求函数()g x 在[0,2]π上的单调递增区间.【答案】(1)4⎡⎤-⎣⎦;(2)单调递增区间为70,18π⎡⎤⎢⎥⎣⎦和1931,1818ππ⎡⎤⎢⎥⎣⎦. 【解析】(1)当2,3x ππ⎡⎤∈⎢⎥⎣⎦时,583,333x πππ⎡⎤-∈⎢⎥⎣⎦,sin 332x π⎡⎤⎛⎫∴-∈-⎢⎥ ⎪⎝⎭⎣⎦,()[4]f x ∴∈-. (2)由题意得,将()f x 的图像向左平移12π个单位长度后,得到4sin 31212f x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭的图像,再将所得图像上各点的横坐标伸长到原来的2倍,得到3()4sin 212g x x π⎛⎫=-⎪⎝⎭. 令32222122k x k πππππ-+-+,k ∈Z ,解得5474183183k k xππππ-++,k ∈Z ,∴函数()g x 的单调递增区间为5474,()183183k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z . 又[0,2]x π,故所求单调递增区间为70,18π⎡⎤⎢⎥⎣⎦和1931,1818ππ⎡⎤⎢⎥⎣⎦.20. (2020·甘肃省静宁县第一中学高三月考(文))已知函数()2sin cos 2f x x x x =-+(1)求函数()f x 的单调增区间;(2)若()035f x =,0ππ,63x ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈;(2)410. 【解析】(1)由题意,函数()2sin cos f x x x x =πsin 23x ⎛⎫=+ ⎪⎝⎭, 令π222,232k x k k ππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-+≤≤+∈, 所以函数()f x 的单调增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦()k Z ∈. (2)由()035f x =,可得0π3sin 235x , 因为0,63x ππ⎡⎤∈⎢⎥⎣⎦,可得022,33x πππ⎡⎤+∈⎢⎥⎣⎦,所以04cos 235x π⎛⎫+=- ⎪⎝⎭,00cos 2cos 233x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦004cos 2cos sin 2sin 333310x x ππππ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭. 21.(2020·安徽高三月考(理))已知()f x 是定义在[3,3]-上的奇函数,且当[0,3]x ∈时,()43x x f x a =+⋅(a 为常数).(1)当[3,0)x ∈-时,求()f x 的解析式;(2)若关于x 的方程1()23x x f x m --=⋅+在[2,1]--上有解,求实数m 的取值范围. 【答案】(1)11()34x x f x =-,[3,0)x ∈-;(2)17,52⎡⎤--⎢⎥⎣⎦. 【解析】(1)()f x 是定义在[3,3]-上的奇函数,且当[0,3]x ∈时,()43x x f x a =+⋅,00(0)4310f a a ∴=+⋅=+=,解得1a =-,当[0,3]x ∈时,()43x x f x =-.则当[3,0)x ∈-时,(0,3]x -∈,11()43()43x x x x f x f x --∴-=-=-=-, 11()34x xf x ∴=-,[3,0)x ∈-. (2)由(1)知,当[2,1]x ∈--时,11()34x x f x =-, 1()23x x f x m --∴=⋅+可化为1112334x x x x m ---=⋅+, 整理得12223x x m ⎛⎫⎛⎫=--⋅ ⎪ ⎪⎝⎭⎝⎭. 令12()223x x g x ⎛⎫⎛⎫=--⋅ ⎪ ⎪⎝⎭⎝⎭,根据指数函数的单调性可得,()g x 在[2,1]--是增函数.17()52g x ∴-≤≤-,又关于x 的方程1()23x x f x m --=⋅+在[2,1]--上有解, 故实数m 的取值范围是17,52⎡⎤--⎢⎥⎣⎦. 22.(2020·河北高二学业考试)已知函数()22f x x x =+,()24g x ax a =+.(Ⅰ)解不等式()()f x g x ≥;(Ⅱ)用{}max ,p a 表示p ,q 中的较大值,当0a >时,求函数()()(){}max ,H x f x g x =的最小值.【答案】(Ⅰ)答案见解析;(Ⅱ)最小值为0.【解析】(Ⅰ)由()()f x g x ≥,得()22240x a x a +--≥, 即()()220x x a +-≥.当1a <-时,解不等式可得:2x a ≤或2x ≥-;当1a =-时,不等式可化为()220x +≥,显然恒成立,所以解集为R ;当1a >-时,解不等式可得:2x -≤或2x a ≥;综上,当1a <-时,不等式的解集为(][),22,a -∞⋃-+∞;当1a =-时,不等式的解集为R ;当1a >-时,不等式的解集为(][),22,a -∞-⋃+∞.(Ⅱ)由(Ⅰ)可知,()(][)()22,,22,24,2,2x x x a H x ax a x a ⎧+∈-∞-⋃+∞⎪=⎨+∈-⎪⎩. 当2x -≤或2x a ≥时,()22H x x x =+是开口向上的二次函数,且对称轴为1x =-, 所以()22H x x x =+在(],2-∞-上单调递减,在[)2,a +∞上单调递增, 又()20H -=,()()2244410H a a a a a =+=+>, 所以()min 0H x =;当22x a -<<时,()()24220H x ax a a x =+=+>.综上,()H x 的最小值为0.。

2020-2021高一数学上期末一模试卷及答案

2020-2021高一数学上期末一模试卷及答案一、选择题1.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为()n n A .B .C .D .2.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .13.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<4.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭5.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<6.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-157.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>8.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B 22 C .14,2 D .14,4 9.已知函数()0.5log f x x =,则函数()22f x x-的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.14.已知a ,b R ∈,集合()(){}2232|220D x x a a x a a =----+≤,且函数()12bf x x a a -=-+-是偶函数,b D ∈,则220153a b -+的取值范围是_________. 15.已知函数2,1,(){1,1,x ax x f x ax x -+≤=->若1212,,x x R x x ∃∈≠,使得12()()f x f x =成立,则实数a 的取值范围是 .16.函数22log (56)y x x =--单调递减区间是 .17.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.18.已知函数2,01,()1(1),13,2x x f x f x x ⎧<≤⎪=⎨-<≤⎪⎩则关于x 的方程4()0xf x k -=的所有根的和的最大值是_______.19.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知函数2()ln(3)f x x ax =-+.(1)若()f x 在(,1]-∞上单调递减,求实数a 的取值范围;(2)当3a =时,解不等式()x f e x ≥.22.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由.23.为保障城市蔬菜供应,某蔬菜种植基地每年投入20万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入2万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的经验,发现种西红柿的年收入()f x 、种黄瓜的年收入()g x 与大棚投入x 分别满足()8f x =+1()124g x x =+.设甲大棚的投入为a ,每年两个大棚的总收入为()F a .(投入与收入的单位均为万元)(Ⅰ)求(8)F 的值.(Ⅱ)试问:如何安排甲、乙两个大棚的投入,才能使年总收人()F a 最大?并求最大年总收入.24.已知函数31()31x xf x m -=⋅+是定义域为R 的奇函数. (1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 25.已知幂函数()()223m m f x xm --=∈Z 为偶函数,且在区间()0,∞+上单调递减.(1)求函数()f x 的解析式;(2)讨论()()bF x xf x =的奇偶性.(),a b R ∈(直接给出结论,不需证明)26.已知函数()()20f x ax bx c a =++≠,满足()02f =,()()121f x f x x +-=-. (1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)当[]1,2x ∈-时,求函数的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】函数f (x )=(1212xx-+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx-+)cosx <0,函数的图象在x 轴下方. 排除D . 故答案为C 。

2020-2021高一数学上期末试题附答案(5)

2020-2021高一数学上期末试题附答案(5)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞ B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<4.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.函数y =的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)7.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+8.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .49.曲线241(22)y x x =-+-≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 10.下列函数中,既是偶函数又存在零点的是( ) A .B .C .D .11.对数函数且与二次函数在同一坐标系内的图象可能是( )A .B .C .D .12.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞二、填空题13.如图,矩形ABCD 的三个顶点,,A B C 分别在函数2logy x=,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.14.已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.15.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.16.已知函数1()41x f x a =+-是奇函数,则的值为________. 17.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 18.已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________.19.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.20.若集合{}{}2|560|20A x x x B x ax a Z =-+≤=-=∈,,,且B A ⊆,则实数a =_____.三、解答题21.对于函数()()()2110f x ax b x b a =+++-≠,总存在实数0x ,使()00f x mx =成立,则称0x 为()f x 关于参数m 的不动点.(1)当1a =,3b =-时,求()f x 关于参数1的不动点;(2)若对任意实数b ,函数()f x 恒有关于参数1两个不动点,求a 的取值范围; (3)当1a =,5b =时,函数()f x 在(]0,4x ∈上存在两个关于参数m 的不动点,试求参数m 的取值范围.22.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由.23.已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =. (1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由; (2)对于[]2,6x ∈,()()()log 17a mf x x x >--恒成立,求实数m 的取值范围.24.已知幂函数35()()m f x xm N -+=∈为偶函数,且在区间(0,)+∞上单调递增.(Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围.25.已知()log a f x x =,()()()2log 2201,1,a g x x a a a =+>+≠∈R ,()1h x x x=+. (1)当[)1,x ∈+∞时,证明:()1h x x x=+为单调递增函数; (2)当[]1,2x ∈,且()()()F x g x f x =-有最小值2时,求a 的值.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁R B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】 解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈所以12344412x x x x xx +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x⎛⎫+∈ ⎪⎝⎭ 1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题3.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.4.A解析:A 【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】 由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.5.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.6.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】由题意得:2010x x -≥⎧⎨+>⎩ 解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.7.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-,此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.8.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.9.A解析:A 【解析】试题分析:241(22)y x x =-+-≤≤对应的图形为以()0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法10.A解析:A 【解析】 由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.11.A解析:A 【解析】 【分析】根据对数函数的单调性,分类讨论,结合二次函数的图象与性质,利用排除法,即可求解,得到答案. 【详解】 由题意,若,则在上单调递减,又由函数开口向下,其图象的对称轴在轴左侧,排除C ,D.若,则在上是增函数,函数图象开口向上,且对称轴在轴右侧,因此B 项不正确,只有选项A 满足. 【点睛】本题主要考查了对数函数与二次参数的图象与性质,其中解答中熟记二次函数和对数的函数的图象与性质,合理进行排除判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.二、填空题13.【解析】【分析】先利用已知求出的值再求点D 的坐标【详解】由图像可知点在函数的图像上所以即因为点在函数的图像上所以因为点在函数的图像上所以又因为所以点的坐标为故答案为【点睛】本题主要考查指数对数和幂函解析:11,24⎛⎫⎪⎝⎭【解析】 【分析】先利用已知求出,A B C x x y ,的值,再求点D 的坐标. 【详解】由图像可知,点(),2A A x在函数y x=的图像上,所以2Ax =,即2122A x ⎛⎫== ⎪ ⎪⎝⎭.因为点(),2B B x 在函数12y x =的图像上,所以122Bx =,4B x =.因为点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ⎛== ⎝⎭. 又因为12D A x x ==,14D C y y ==, 所以点D 的坐标为11,24⎛⎫⎪⎝⎭. 故答案为11,24⎛⎫⎪⎝⎭【点睛】本题主要考查指数、对数和幂函数的图像和性质,意在考查学生对这些知识的理解掌握水平.14.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:3,4⎛⎤-∞- ⎥⎝⎦【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦. 故答案为;3,4⎛⎤-∞- ⎥⎝⎦.【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.15.【解析】【分析】先根据图象可以得出f(x)的图象可以在OC 或CD 中选取一个再在AB 或OB 中选取一个即可得出函数f(x)的解析式【详解】由图可知线段OC 与线段OB 是关于原点对称的线段CD 与线段BA 也是解析:()1x f x ⎧=⎨⎩1001x x -<<<< 【解析】 【分析】先根据图象可以得出f (x )的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,即可得出函数f (x ) 的解析式. 【详解】由图可知,线段OC 与线段OB 是关于原点对称的,线段CD 与线段BA 也是关于原点对称的,根据题意,f (x) 与g (x) 的图象关于原点对称,所以f (x)的图象可以在OC 或CD 中选取一个,再在AB 或OB 中选取一个,比如其组合形式为: OC 和AB , CD 和OB , 不妨取f (x )的图象为OC 和AB ,OC 的方程为: (10)y x x =-<<,AB 的方程为: 1(01)y x =<<, 所以,10()1,01x x f x x -<<⎧=⎨<<⎩,故答案为:,10()1,01x x f x x -<<⎧=⎨<<⎩【点睛】本题主要考查了函数解析式的求法,涉及分段函数的表示和函数图象对称性的应用,属于中档题.16.【解析】函数是奇函数可得即即解得故答案为 解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x x a a -+=----,即41214141x x x a =-=--,解得12a =,故答案为12 17.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考解析:4 【解析】 【分析】设()2sin 1xg x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++xy x x 的最大值与最小值的和即可. 【详解】∵函数2sin 21=+++xy x x , ∴设()2sin 1x g x x x =++,则()()2sin 1xg x x g x x --=-=-+, ∴()g x 是奇函数, 设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -, 又()max max 22g x y M =+=+,()min min 22g x y M =+=-, ∴max min 224y y M M +=++-=, 故答案为:4. 【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1xg x x x =++的奇偶性以及最值是解题的关键,属于中档题.18.【解析】【分析】根据函数解析式分类讨论即可确定解析式画出函数图像由直线所过定点结合图像即可求得的取值范围【详解】函数定义域为当时当时当时画出函数图像如下图所示:直线过定点由图像可知当时与和两部分图像 解析:(4,1)(1,0)--⋃-【解析】 【分析】根据函数解析式,分类讨论即可确定解析式.画出函数图像,由直线所过定点,结合图像即可求得k 的取值范围. 【详解】 函数()211x x xf -=-定义域为{}1x x ≠当1x ≤-时,()2111x x xf x -==---当11x -<<时,()2111x x x f x -==+-当1x <时,()2111x x xf x -==---画出函数图像如下图所示:直线2y kx =+过定点()0,2由图像可知,当10k -<<时,与1x ≤-和11x -<<两部分图像各有一个交点; 当41-<<-k 时,与11x -<<和1x <两部分图像各有一个交点. 综上可知,当()()4,11,0k ∈--⋃-时与函数有两个交点 故答案为:()()4,11,0--⋃- 【点睛】本题考查了分段函数解析式及图像画法,直线过定点及交点个数的求法,属于中档题.19.【解析】由题意有:则:解析:14【解析】 由题意有:13,29aa =∴=-, 则:()22124a--=-=. 20.或【解析】【分析】先解二次不等式可得再由讨论参数两种情况再结合求解即可【详解】解:解不等式得即①当时满足②当时又则解得又则综上可得或故答案为:或【点睛】本题考查了二次不等式的解法空集的定义及集合的包解析:0或1 【解析】 【分析】先解二次不等式可得{}|23A x x =≤≤,再由B A ⊆,讨论参数0a =,0a ≠两种情况,再结合a Z ∈求解即可. 【详解】解:解不等式2560x x -+≤,得23x ≤≤,即{}|23A x x =≤≤, ①当0a =时,B φ=,满足B A ⊆,②当0a ≠时,2B a ⎧⎫=⎨⎬⎩⎭,又B A ⊆,则223a ≤≤,解得213a ≤≤,又a Z ∈,则1a =,综上可得0a =或1a =, 故答案为:0或1. 【点睛】本题考查了二次不等式的解法、空集的定义及集合的包含关系,重点考查了分类讨论的数学思想方法,属基础题.三、解答题21.(1)4或1-;(2)()0,1;(3)(]10,11. 【解析】 【分析】(1)当1a =,3b =-时,结合已知可得2()24f x x x x =--=,解方程可求; (2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠,结合二次方程的根的存在条件可求;(3)当1a =,5b =时,转化为问题2()64f x x x mx =++=在(0,4]上有两个不同实数解,进行分离m ,结合对勾函数的性质可求. 【详解】解:(1)当1a =,3b =-时,2()24f x x x =--,由题意可得,224x x x --=即2340x x --=, 解可得4x =或1x =-,故()f x 关于参数1的不动点为4或1-;(2)由题意可得,2(1)1ax b x b x +++-=恒有2个不同的实数根(0)a ≠, 则210ax bx b ++-=恒有2个不同的实数根(0)a ≠, 所以△24(1)0b a b =-->恒成立, 即2440b ab a -+>恒成立, ∴216160a a ∆=-<,则01a <<, ∴a 的取值范围是()0,1;(3)1a =,5b =时,2()64f x x x mx =++=在(0,4]上有两个不同实数解, 即46m x x-=+在(0,4]上有两个不同实数解,令4()h x x x=+,04x <≤, 结合对勾函数的性质可知,465m <-≤, 解可得,1011m <≤.故m 的范围为(]10,11. 【点睛】本题以新定义为载体,主要考查了函数性质的灵活应用,属于中档题. 22.(1)12k =(2)0a ≤(3)存在,316m =- 【解析】 【分析】(1)利用公式()()0f x f x --=,求实数k 的值; (2)由题意得()2log 21xa <+恒成立,求a 的取值范围;(3)()214xxh x m =++⋅,[1,2]x ∈,通过换元得21y mt t =++,[2,4]t ∈,讨论m 求函数的最小值,求实数m 的值. 【详解】(1)f x ()是偶函数()()0f x f x ∴--=,()()22log 21log 210x x kx kx -∴++-++=,22112log (21)0210212x x kx x k x x R k k -+∴==∴-=∈∴-=∴=+Q .(2)由题意得()2log 21xa <+恒成立,()2211log 2100x x a +>∴+>∴≤Q .(3)()214x xh x m =++⋅,[1,2]x ∈,令2x t =,则21y mt t =++,[2,4]t ∈,1°当0m =时,1y t =+的最小值为3,不合题意,舍去; 2°当0m >时,21y mt t =++开口向上,对称轴为102t m=-<, 21y mt t ∴=++在[2,4]上单调递增min 432y m ∴=+=,104m ∴=-<,故舍去;3°当0m <时,21y mt t =++开口向下,对称轴为102t m=->, 当132m -≤即16m ≤-时,y 在4t =时取得最小值, min 3165216y m m ∴=+=∴=-,符合题意; 当132m->即106m -<<时,y 在2t =时取得最小值,min 14324y m m ∴=+=∴=-,不合题意,故舍去;综上可知,316m =-. 【点睛】本题考查复合型指,对数函数的性质,求参数的取值范围,意在考查分类讨论的思想,转化与化归的思想,以及计算能力,本题的难点是第三问,讨论m ,首先讨论函数类型,和二次函数开口方向讨论,即分0m =,0m >,和0m <三种情况,再讨论对称轴和定义域的关系,求最小值.23.(1)2a =,单调递减,理由见解析;(2) 07m << 【解析】 【分析】(1)代入(3)1f =解得a ,可由复合函数单调性得出函数的单调性,也可用定义证明; (2)由对数函数的单调性化简不等式,再由分母为正可直接去分母变为整式不等式,从而转化为求函数的最值. 【详解】(1)由()3log 4log 2log 21a a a f =-==,所以2a =. 函数()f x 的定义域为()1,+∞,()()()222212log 1log 1log log 111x f x x x x x +⎛⎫=+--==+ ⎪--⎝⎭. 因为211y x =+-在()1,+∞上是单调递减, (注:未用定义法证明不扣分)所以函数()f x 在定义域()1,+∞上为单调递减函数. (2)由(1)可知()()()221log log 117x mf x x x x +=>---,[]2,6x ∈,所以()()10117x mx x x +>>---. 所以()()()2201767316m x x x x x <<+-=-++=--+在[]2,6x ∈恒成立.当[]2,6x ∈时,函数()2316y x =--+的最小值min 7y =.所以07m <<. 【点睛】本题考查对数函数的性质,考查不等式恒成立,解题关键是问题的转化.由对数不等式转化为整式不等式,再转化为求函数最值.24.(Ⅰ)2()f x x =(Ⅱ)3,4⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(I )根据幂函数的奇偶性和在区间(0,)+∞上的单调性,求得m 的值,进而求得()f x 的解析式.(II )先求得()g x 的解析式,由不等式()0<g x 分离常数λ得到122xx λ<-,结合函数122xy x =-在区间[]1,2上的单调性,求得λ的取值范围. 【详解】 (Ⅰ)∵幂函数35()()m f x xm -+=∈N 为偶函数,且在区间(0,)+∞上单调递增,350m ∴-+>,且35m -+为偶数. 又N m ∈,解得1m =,2()f x x ∴=.(Ⅱ)由(Ⅰ)可知2()()2121g x f x x x x λλ=+-=+-. 当[1,2]x ∈时,由()0<g x 得122xx λ<-. 易知函数122xy x =-在[1,2]上单调递减, min 1123222224x x λ⎛⎫∴<-=-=- ⎪⨯⎝⎭.∴实数λ的取值范围是3,4⎛⎫-∞- ⎪⎝⎭. 【点睛】本小题主要考查幂函数的单调性和奇偶性,考查不等式在给定区间上恒成立问题的求解策略,属于中档题.25.(1)证明见解析(2)4a = 【解析】 【分析】(1)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可;(2)首先表示出()()()F x g x f x =-,再根据复合函数的单调性分类讨论可得。

2020-2021高一数学上期末一模试题带答案(1)

2020-2021高一数学上期末一模试题带答案(1)一、选择题1.已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>2.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( )A .[]2,0-B .(],8∞--C .[)2,∞+D .(],0∞- 3.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞ B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞4.若函数2()2f x mx mx =-+的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞5.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>6.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦7.已知131log 4a =,154b=,136c =,则( ) A .a b c >>B .a c b >>C .c a b >>D .b c a >>8.函数()2sin f x x x =的图象大致为( )A .B .C .D .9.函数ln x y x=的图象大致是( )A .B .C .D .10.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆ð,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a >11.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021宁波市高一数学上期末模拟试题(带答案) 一、选择题 1.已知定义在R上的增函数f(x),满足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值 ( ) A.一定大于0 B.一定小于

0

C.等于0 D.正负都有可能

2.已知函数1()ln(1)fxxx;则()yfx的图像大致为( )

A. B.

C.

D.

3.若函数2()2xfxmxmx的定义域为R ,则实数m 取值范围是( ) A.[0,8) B.

(8,)

C.(0,8) D.

(,0)(8,)

4.定义在R上的偶函数()fx满足:对任意的1x,212[0,)()xxx,有2121

()()0fxfxxx

,则( ).

A.(3)(2)(1)fff B.

(1)(2)(3)fff C.(2)(1)(3)fff D.

(3)(1)(2)fff

5.设f(x)=2,01,0xaxxaxx若f(0)是f(x)的最小值,则a的取值范围为( ) A.[-1,2] B.[-1,

0]

C.[1,2] D.[0,

2]

6.把函数2log1fxx的图象向右平移一个单位,所得图象与函数gx的图象关于直线yx对称;已知偶函数hx满足11hxhx,当0,1x时,1hxgx;若函数ykfxhx有五个零点,则正数k的取值范围是

( )

A.3log2,1 B.3log2,1 C.61log2,2 D.

6

1log2,

2







7.已知全集为R,函数ln62yxx的定义域为集合,|44ABxaxa,且RAB,则a的取值范围是( )

A.210a B.

210a

C.2a或10a D.2a或

10a

8.已知函数()yfx是偶函数,(2)yfx在[0,2]是单调减函数,则( ) A.(1)(2)(0)fff B.

(1)(0)(2)fff

C.(0)(1)(2)fff D.

(2)(1)(0)fff

9.函数121yxx的定义域是( ) A.(-1,2] B.[-1,2] C.(-1 ,2) D.[-1,2) 10.已知fx是定义在R上的偶函数,且在区间,0上单调递增。若实数a满足

122aff

,则a的取值范围是 ( )

A.1,2 B.13,,22 C.

3,2



D.

13,

22





11.函数212ln12fxxx的图象大致是( )

A. B. C. D.

12.下列函数中,在区间(1,1)上为减函数的是

A.11yx B.cosyx C.ln(1)yx D.

2xy

二、填空题 13.已知()fx是定义域为R的单调函数,且对任意实数x都有21()213xffx,则52(log)f =__________.

14.已知函数12()logfxxa,2()2gxxx,对任意的11[,2]4x,总存在2[1,2]x,使得12()()fxgx,则实数a的取值范围是______________.

15.求值: 233125128100loglg ________

16.已知函数21311log12xxkxfxxx,2ln21xgxaxxaR,若对任意的均有1x,2,2xxxRx,均有12fxgx,则实数k的取值范围是__________.

17.设,,xyzR,满足236xyz,则112xzy的最小值为__________. 18.对于复数abcd,,,,若集合Sabcd,,,具有性质“对任意xyS,,必有

xyS”,则当221{1abcb,,时,bcd等于___________

19.已知函数2,01,()1(1),13,2xxfxfxx则关于x的方程4()0xfxk的所有根的和的最大值是_______. 20.高斯是德国的著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基

米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设xR,用x表示不超过x的最大整数,则yx称为高斯函数,例如:[3,4]4,[2,7]2.已知函数21()15xxefxe

,则函数[()]yfx的值域是_________. 三、解答题 21.已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2), (1)求g(x)的解析式及定义域; (2)求函数g(x)的最大值和最小值. 22.已知22log2log2fxxx.

(1)求函数fx的定义域; (2)求证:fx为偶函数; (3)指出方程fxx的实数根个数,并说明理由. 23.已知幂函数35()()mfxxmN为偶函数,且在区间(0,)上单调递增. (Ⅰ)求函数()fx的解析式; (Ⅱ)设函数()()21gxfxx,若()0gx对任意[1,2]x恒成立,求实数的取值范围.

24.已知1()fxaxbx是定义在{|0}xxR上的奇函数,且(1)5f. (1)求()fx的解析式; (2)判断()fx在1,2上的单调性,并用定义加以证明. 25.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材

料,由大数据测得该产品的性能指标值y(y值越大产品的性能越好)与这种新合金材料的含量x(单位:克)的关系为:当0≤x<7时,y是x的二次函数;当x≥7时,1()3xmy.测得部分数据如表:

(1)求y关于x的函数关系式y=f(x); (2)求该新合金材料的含量x为何值时产品的性能达到最佳.

26.若221xxafx是奇函数. (1)求a的值; (2)若对任意0,x都有22fxmm,求实数m的取值范围.

【参考答案】***试卷处理标记,请不要删除 一、选择题 1.A 解析:A 【解析】 因为f(x) 在R上的单调增,所以由x2+x1>0,得x2>-x1,所以

21121()()()()()0fxfxfxfxfx

同理得2313

()()0,()()0,fxfxfxfx

即f(x1)+f(x2)+f(x3)>0,选A. 点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行 2.B 解析:B 【解析】

试题分析:设()ln(1)gxxx,则()1xgxx,∴()gx在1,0上为增函数,在0,上为减函数,∴()00gxg,1()0()fxgx,得0x或10x均有

()0fx排除选项A,C,又1()ln(1)fxxx中,10ln(1)0xxx,得1x且

0x,故排除D.综上,符合的只有选项B.故选B.

考点:1、函数图象;2、对数函数的性质. 3.A 解析:A 【解析】 【分析】 根据题意可得出,不等式mx2-mx+2>0的解集为R,从而可看出m=0时,满足题意,

m≠0时,可得出2080mmm>,解出m的范围即可.

【详解】 ∵函数f(x)的定义域为R; ∴不等式mx2-mx+2>0的解集为R; ①m=0时,2>0恒成立,满足题意;

②m≠0时,则2

080mmm>;

解得0<m<8; 综上得,实数m的取值范围是[0,8)

相关文档
最新文档