【典型题】高一数学上期末模拟试卷(及答案)
2023-2024学年北京市丰台区高一(上)期末数学模拟试卷+答案解析

2023-2024学年北京市丰台区高一(上)期末数学模拟试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.计算:()A. B. C. D.3.若,则a,b,c的大小关系为()A. B. C. D.4.已知,则“”是“”的()A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件5.已知函数是定义在R上的奇函数,且当时,,则()A. B.2 C. D.46.设,则函数的零点所在区间是()A. B. C. D.7.已知,,,则的最小值为()A.4B.6C.8D.98.某海岛核污水中含有多种放射性物质,其中放射性物质含量非常高,它可以进入生物体内,还可以在体内停留,并引起基因突变,但却难以被清除.现已知的质量随时间年的指数衰减规律是:其中为的初始质量则当的质量衰减为最初的时,所经过的时间约为参考数据:,()A.300年B.255年C.175年D.125年9.已知角终边上一点的坐标为,则()A. B. C. D.10.已知是定义在R上的偶函数,若、且时,恒成立,且,则满足的实数m的取值范围为()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.命题“对任意,都有”的否定为______.12.函数的定义域为______.13.已知幂函数的图像经过点,则______.14.已知函数,且该函数图像的对称轴与对称中心的最小距离为,则可得______;若当时,的最大值为,则该函数的解析式为______.15.已知函数其中,,的部分图象如图所示,则下列结论正确序号有______.①为奇函数;②函数的图象关于点对称;③在上单调递增;④若函数在上没有零点,则三、解答题:本题共6小题,共72分。
解答应写出文字说明,证明过程或演算步骤。
16.本小题12分设集合,;当时,求,若,求a的取值范围.17.本小题12分已知不等式的解集为求实数a,b的值;若,,且,求的最小值.18.本小题12分如图,已知单位圆O与x轴正半轴交于点M,点A,B在单位圆上,其中点A在第一象限,且,记,若,求点A的坐标;若点A的坐标为,求的值.19.本小题12分已知函数是定义在R上的奇函数,且当时,求出当时,的解析式;如图,请补出函数的完整图象,根据图象直接写出函数的单调递减区间;结合函数图象,求当时,函数的值域.20.本小题12分已知函数求函数的单调递增区间和最小正周期.若当时,关于x的不等式_____,求实数m的取值范围.请选择①和②中的一个条件,补全问题,并求解.其中,①有解;②恒成立.注:若选择两个条件解答,则按照第一个解答计分.21.本小题12分已知函数的定义域为,且对任意的正实数x,y都有,且当时,,,求证:;求;解不等式答案和解析1.【答案】C【解析】【分析】本题考查并集运算,属于基础题.根据集合并集的运算即可判断.【解答】解:,,故选2.【答案】A【解析】解:故选:利用诱导公式及两角差的余弦公式计算即可.本题考查两角和与差的三角函数,属基础题.3.【答案】A【解析】解:,且,,,所以故选:由对数函数和指数函数的性质可得.本题考查指数、对数的大小比较,涉及对数函数和指数函数的性质,属于基础题.4.【答案】B【解析】解:当时,不一定成立,当时,一定成立,故“”是“”的必要不充分条件.故选:由已知结合不等式范围检验充分及必要性即可判断.本题主要考查了充分必要条件的判断,属于基础题.5.【答案】B【解析】解:根据题意,当时,,则,又由为奇函数,则故选:根据题意,由函数的解析式求出的值,结合奇偶性可得答案.本题考查函数奇偶性的性质以及应用,涉及函数值的计算,属于基础题.6.【答案】C【解析】【分析】本题主要考查函数零点的判定定理的应用,属于基础题.由函数的解析式判断函数的单调性,再求解,的值,根据函数零点的判定定理可得函数的零点所在的区间.【解答】解:由于函数,是连续函数,,求导,当时,,为单调递减,而,即在不存在零点.当时,,为单调递增,且,,,由零点判定定理可知:函数的零点所在的区间是,故选:7.【答案】C【解析】解:,,,可得,,当且仅当,即,时取等号,的最小值为故选:利用基本均值不等式及“1”的活用,可得代数式的最小值.本题考查基本不等式的性质的应用,属于基础题.8.【答案】A【解析】解:经过的时间为t年,根据题意,所以,所以故选:根据题意列出等式,结合对数的运算法则求解即可.本题考查对数运算的应用,属于基础题.9.【答案】A【解析】解:由三角函数的定义得,,又由诱导公式得,故选:根据三角函数的定义求出,再由诱导公式进行化简求值即可.本题主要考查三角函数的诱导公式,属于基础题.10.【答案】A【解析】解:设,则,所以,令,则,所以函数在上为增函数,对任意的,,所以函数为R上的偶函数,且,由可得,即,即,所以,,即,解得故选:利用构造函数法,结合函数的单调性、奇偶性来求得m的取值范围.本题主要考查了函数的单调性及奇偶性在不等式求解中的应用,属于中档题.11.【答案】,【解析】解:命题是全称命题,则命题的否定是特称命题,即,故答案为:,根据全称命题的否定是特称命题进行判断即可.本题主要考查含有量词的命题的否定,比较基础.12.【答案】【解析】解:要使有意义,则:,解得,的定义域为:故答案为:可看出,要使得有意义,需满足,然后解出x的范围即可.本题考查了函数定义域的定义及求法,对数函数的定义域,考查了计算能力,属于基础题.13.【答案】【解析】解:设幂函数,根据它的的图像经过点,可得,,则故答案为:由题意,利用幂函数的定义和性质,先求出函数的解析式,从而得出结论.本题主要考查幂函数的定义和性质,属于基础题.14.【答案】【解析】解:因为函数图像的对称轴与对称中心的最小距离为,所以,即,所以由得,所以时,取得最大值,所以,解得,所以故答案为:3,根据对称性可得周期,然后可的,再由正弦函数的最值列方程可得本题考查由的部分图象确定其解析式,求得,m的值是关键,考查运算求解能力,属于中档题.15.【答案】②④【解析】解:由图可知,,所以,因为,所以,,即,,又,所以,所以,对于①,,显然是偶函数,故①错误;对于②,,所以函数的图象关于点对称,故②正确;对于③,当时,,函数取得最大值,所以在上不是单调增函数,故③错误;对于④,因为,所以,,当时,,因为在上没有零点,所以,解得,故④正确.故答案为:②④.根据函数图象求得的解析式,①先化简可得的解析式,再根据余弦函数的奇偶性作出判断;②计算的值是否为0,即可作出判断;③考虑时的函数值特点,即可作出判断;④先得到的解析式,再结合正弦函数的性质求解即可.本题考查三角函数的图象与性质,理解中A,,的几何意义,三角函数的单调性、奇偶性和对称性等是解题的关键,考查逻辑推理能力和运算能力,属于中档题.16.【答案】解:当时,,;因为,当时,,解得,当时,,解得,综上,a的取值范围是【解析】利用交集和并集的概念进行求解;分和两种情况,得到不等式,求出答案.本题主要考查集合的运算,属于基础题.17.【答案】解:因为的解集为,所以和为方程的两个实根,二次项系数a不为0,根据韦达定理,则有,解得当,时,的解集为,符合题意.综上,,由可知,,因为,,所以,当且仅当,即时取等号,所以的最小值为【解析】由解集可得一元二次方程的两个实根,由韦达定理可求得实数a,b的值;根据均值不等式进行求解即可.本题主要考查了二次不等式的求解,还考查了基本不等式求解最值,属于中档题.18.【答案】解:若,则,,所以点,若点A的坐标为,因为,点A在第一象限,所以,即,则,因为,所以,所以,所以【解析】Ⅰ若,直接利用三角函数的定义求点A的坐标;Ⅱ若点A的坐标为,则,,即可求的值.本题考查任意角的三角函数的定义、诱导公式的应用,比较基础.19.【答案】解:依题意,设,则,于是,因为为R上的奇函数,因此,所以当时,的解析式由已知及得函数的图象如下:观察图象,得函数的单调递减区间为:当时,由,知,函数在上单调递减,在上单调递增,当时,有最小值,当时,有最大值,而当时,有,所以,当时,函数的值域为【解析】由奇函数的定义求出解析式作答.由奇函数的图象特征,补全函数的图象,并求出单调增区间作答.利用图象,借助单调性求出最值作答.本题考查函数奇偶性的性质与判断等基础知识,考查运算求解能力,是基础题.20.【答案】解:因为,所以函数的最小正周期因为函数的单调递增区间为,所以,解得,所以函数的单调递增区间为若选择①:由题意可知,不等式有解,即因为,所以,故当,即时,取得最大值,且最大值为,所以,即;若选择②:由题意可知,不等式恒成立,即因为,所以故当,即时,取得最小值,且最小值为,所以,即【解析】根据三角函数的性质即可求解;若选择①,则不等式有解,即,求在上的最大值,即可求解;若选择②,则不等式恒成立,即,求在上的最小值,即可求解.本题考查三角函数的单调性与周期性的应用,属于中档题.21.【答案】解:证明:令,,则,,故设,且,于是,为上的增函数.又,原不等式的解集为【解析】根据对任意的正实数x,y都有,令,,即可求出的值;令,,代入求得,而,即可求得的值;根据当时,,判断函数的单调性,把化为,根据单调性,去掉对应法则f,解不等式.此题是个中档题题,考查抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.解决抽象函数的问题一般应用赋值法.。
高一数学上学期期末模拟质量检测试卷含答案

高一数学上学期期末模拟质量检测试卷含答案一、选择题1.设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则UA( )A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-2.函数()102f x x =+的定义域为( ) A .(),3-∞-B .[)3,2--C .()()3,22,--⋃-+∞D .()3,2--3.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3πB .3π-C .23π D .23π-4.已知点()3,4A ,向的OA 绕原点O 逆时针旋转3π后等于OB ,则点B 的坐标为( ) A.⎝⎭ B.⎝⎭C.⎝⎭D.⎝⎭5.方程e 10x x ++=的根所在的区间是( ) A .()0,1B .()1,0-C .()2,1--D .()1,26.为净化水质,向游泳池加入某种化学药品,加药后池水中该药品的浓度C (单位:mg /L )随时间t (单位:小时)的变化关系为220()t aC t t b+=+(,a b 为常数,0t ≥),当0t =时池水中药品的浓度为0mg /L ,当1t =小时池水中药品的浓度为4mg /L ,则池水中药品达到最大浓度需要( ) A .2小时B .3小时C .4小时D .5小时7.定义在R 上的偶函数()f x 在[)0,+∞上是增函数,且()20f =,则不等式()0f x x>的解集为( ) A .()()2,00,2- B .()(),22,-∞-+∞ C .()(),20,2-∞-D .()()2,02,-+∞8.已知函数121(02)()(2)(2)x x f x f x x -⎧-≤≤⎪=⎨->⎪⎩,()log (1)a g x x =+(0a >,且1a ≠),若()()()F x f x g x =-在[0,)+∞上至少有5个不相同的零点,则实数a 的取值范围为( )A .()3,4B .()4,5C .()2,3D .()5,+∞二、填空题9.下列函数中,既为奇函数又在定义域内单调递增的是( ) A .1010x x y -=- B .()22log 1y x =+ C .3y x =D .|sin |y x =10.使得“a b >”成立的充分不必要条件可以是( )A .1a b >-B .11a b< C D .10.30.3a b -<11.已知a ,b ,c 满足a b c >>,且0ac <,则下列不等式中恒成立的有( ) A .0a >,0c <B .b c a a>C .22b a c c>D .ab bc >12.下列说法正确的是( )A .“0x R ∃∈,0202x x >”的否定是“x R ∀∈,22x x ≤”B .函数()f x =的最小值为6C .函数1()2g x ⎛= ⎪⎝⎭1,12⎡⎤-⎢⎥⎣⎦D .a b >的充要条件是a a b b三、多选题13.若命题“2000,(1)10x R x a x ∃∈+-+<”是真命题,则实数a 的取值范围是_____________.14.函数()2xf x =和()3g x x =的图像的示意图如图所示,设两函数的图像交于点()11,A x y ,()22,B x y ,且12x x <.若[]1,1x a a ∈+,[]2,1x b b ∈+,且a ,{}1,2,3,4,5,6,7,8,9,10,11,12b ∈,则a b +=__________.15.已知函数22()tf x x t x =-+有最小值且最小值与t 无关,则t 的取值范围是_________. 16.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________.四、解答题17.已知函数()1ln3x f x x-=-的定义域为集合A ,关于x 的不等式()()2110ax a x a R +++>∈的解集为B .(1)求集合A ;(2)若A B ⋂≠∅,求实数a 的取值范围. 18.已知函数()223sin cos 2cos f x x x x =⋅+. (1)求函数()f x 的最小正周期; (2)求该函数的单调递增区间;(3)求函数()f x 在区间π5π,612⎡⎤-⎢⎥⎣⎦上的最小值和最大值.19.已知函数1()(0xxb f x a a a -=+>且1)a ≠是奇函数. (1)求b 的值;(2)令函数()()1x g x f x a =--,若关于x 的方程2()3t g x t +=+在R 上有解,求实数t 的取值范围.20.对于等式b a c =(0a >,1a ≠),如果将a 视为自变量x ,b 视为常数,c 为关于a (即x )的函数,记为y ,那么b y x =是幂函数;如果将a 视为常数,b 视为自变量x ,c 为关于b (即x )的函数,记为y ,那么x y a =是指数函数;如果将a 视为常数,c 视为自变量x ,b 为关于c (即x )的函数,记为y ,那么log a y x =是对数函数.事实上,由这个等式还可以得到更多的函数模型.如果c 为常数e (e 为自然对数的底),将a 视为自变量x (0x >,1x ≠),则b 为x 的函数,记为y ,那么y x e =,记将y 表示成x 的函数为()f x .(1)求函数()f x 的解析式,并作出其图象;(2)若0m n >>且均不等于1,且满足()()f m f n =,求证:243m n +≥.21.已知函数()()sin 20,02f x A x A πϕϕ⎛⎫=+><< ⎪⎝⎭的最大值为2,其图象与y 轴交点为()0,1.(1)求()f x 的解析式;(2)求()f x 在[]0,π上的单调增区间;(3)对于任意的0,3x π⎡⎤∈⎢⎥⎣⎦,()()240f x mf x -+≥恒成立,求实数m 用的取值范围.22.已知函数()x x f x a a -=-(0a >且1a ≠).(1)若(1)0f <,对任意[0,)x ∈+∞,恒有()2221a f x kx k a ⋅--+,求k 的最大值;(2)若3(1)2f =,函数()g x 满足(2)()()0(0)f x f x g x x +-⋅=≠.就实数m 的取值,讨论关于x 的方程()(2)10m g x g x ⋅=+的实数根的个数.【参考答案】1.B 【分析】先求出集合A ,根据补集运算,即可求出UA .【详解】由21x < 得: 11x -<<,又x U ∈,所以{}0A = ,因此{}1,1,2UA =- .故选:B. 【点睛】本题主要考查了集合的补集运算,属于基础题. 2.D 【分析】根据函数有意义列出式子求解即可. 【详解】解:由题可知()1330log 3020x x x ⎧+>⎪⎪+≥⎨⎪⎪+≠⎩,解得:322x x x >-⎧⎪≤-⎨⎪≠-⎩,故()32x ∈--,. 故选:D. 3.B 【分析】因为时针经过2小时相当于转了一圈的16,且按顺时针转所形成的角为负角,综合以上即可得到本题答案. 【详解】因为时针旋转一周为12小时,转过的角度为2π,按顺时针转所形成的角为负角,所以经过2小时,时针所转过的弧度数为11263ππ-⨯=-.故选:B本题主要考查正负角的定义以及弧度制,属于基础题. 4.D 【分析】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,先求出5OA =,34cos ,sin 55αα==,再结合两角和的正弦公式和余弦公式求出cos β和sin β,进而可以求出结果. 【详解】设OA 与x 轴正方向所成的角为α,设OB 与y 轴正方向所成的角为β,则3πβα=+,由题意知 5OA =,34cos ,sin 55αα==,所以cos cos cos cos sin sin 333πππβααα⎛⎫=+=-= ⎪⎝⎭sin sin sin cos cos sin 333πππβααα⎛⎫=+=+= ⎪⎝⎭所以点B 的横坐标为5cos 5β==;点B 的纵坐标为5sin 5β==;所以点B 的坐标为⎝⎭, 故选:D. 5.C 【分析】设e (1)x f x x =++,逐一分析各个选项,结合零点存在性定理,即可得答案. 【详解】设e (1)x f x x =++, 2211(2)10,(1)0,(0)2,(1)e 20,(2)e 30e ef f f f f -=-<-=>==+>=+> 因为(2)(1)0f f -⋅-<,根据零点存在性定理,可得()f x 的零点在区间()2,1--内. 故选:C6.A 【分析】由题意求出解析式,再由定义证明4,0y t t t=+>的单调性得出其最小值,进而得出池水中药品达到最大浓度需要的时间. 【详解】由题意可得02041a ba b ⎧=⎪⎪⎨+⎪=⎪+⎩,解得0,4a b ==当0t =时,(0)0C =,当0t >时,22020()44t C t t t t==++令4,0y t t t=+>任取()12,0,t t ∈+∞,且12t t <,则()()121212121212444t t t t y y t t t t t t --⎛⎫-=+-+= ⎪⎝⎭ 当2t ≥时,12120,4t t t t -<>,即12y y <;当02t <<时,12120,4t t t t -<<,即12y y > 则函数4,0y t t t=+>在()0,2上单调递减,在2,上单调递增,即min 4224t t ⎛⎫+=+= ⎪⎝⎭,即当2t =时,max ()(2)5C t C == 故选:A 【点睛】关键点睛:解决本题的关键是由定义证明函数4,0y t t t=+>的单调性进而得出其最小值.7.D 【分析】分0x >和0x <两种情况讨论,利用函数的奇偶性和单调性可解得结果. 【详解】 当0x >时,()0f x x>可化为()0f x >, 又()f x 为偶函数且(2)0f =,所以不等式()0f x >可化为(||)(2)f x f >, 因为()f x 在[)0,+∞上是增函数,所以||2x >,解得2x >; 当0x <时,()0f x x>可化为()0f x <, 又()f x 为偶函数且(2)0f =,所以不等式()0f x <可化为(||)(2)f x f <, 因为()f x 在[)0,+∞上是增函数,所以||2x <,解得20x -<<;综上所述:不等式()0f x x>的解集为()()2,02,-+∞.故选:D 【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键. 8.D 【分析】根据题意将问题转化为“()(),f x g x 的图象在[)0,+∞上至少有5个交点”,由此作出()(),f x g x 的图象,根据交点数分析出a 的取值范围.【详解】由题意可知:()(),f x g x 的图象在[)0,+∞上至少有5个交点; 因为2x >时,()()2f x f x =-,所以()()2f x f x +=, 所以()f x 为周期函数且一个周期为2, 当01a <<时,图象如下图所示:由图象可知:()(),f x g x 的图象没有交点,故不符合题意; 当1a >时,图象如下图所示:因为()(),f x g x 的图象至少有5个交点,所以由图象可得:()log 411a +<即可, 所以g 5log lo a a a <,所以5a >,即()5,a ∈+∞, 故选:D.【点睛】思路点睛:求解函数零点个数的问题,采用数形结合思想能高效解答问题,通过数与形的相互转化能使问题转化为更简单的问题,常见的图象应用的命题角度有: (1)确定方程根的个数; (2)求参数范围; (3)求不等式解集; (4)研究函数性质.二、填空题9.AC 【分析】分别利用奇偶性的定义判断每个选项中函数的奇偶性,对于符合奇函数的选项再接着判断其单调性即可. 【详解】四个函数的定义域为x ∈R ,定义域关于原点对称A :记()1010-=-x x f x ,所以()1010()x x f x f x --=-=-,所以函数()1010-=-x x f x 是奇函数,又因为10x y =是增函数,10x y -=是减函数,所以1010x x y -=-是增函数,符合题意;B :记()22()log 1=+g x x ,则()22()log 1()⎡⎤-=-+=⎣⎦g x x g x ,所以函数()22()log 1=+g x x 是偶函数,不符合题意;C :记3()h x x =,则33)()()(=-=--=-h x h x x x ,所以函数3()h x x =是奇函数,根据幂函数的性质,函数3()h x x =是增函数,符合题意;D :记()|sin |=t x x ,则()|sin()||sin |()-=-==t x x x t x ,所以函数()|sin |=t x x 为偶函数.故选:AC 10.CD 【分析】因为判断的是充分不必要条件,所以所选的条件可以推出a b >,且a b >无法推出所选的条件,由此逐项判断即可. 【详解】A .因为1a b >-不能推出a b >,但a b >可以推出1a b >-,所以1a b >-是a b >成立的必要不充分条件,故不满足;B .因为11a b <不能推出a b >(例如:1,1a b =-=),且a b >也不能推出11a b<(例如:1,1a b ==-),所以11a b<是a b >成立的既不充分也不必要条件,故不满足;C >0a b >≥能推出a b >,且a b >1,1a b ==-),a b >成立的充分不必要条件,故满足;D .因为函数0.3x y =在R 上单调递减,所以10.30.3a b -<可以推出1a b ->,即1a b >+, 所以10.30.3a b -<可以推出a b >,且a b >不一定能推出10.30.3a b -<(例如:1,1a b ==), 所以10.30.3a b -<是a b >成立的充分不必要条件,故满足, 故选:CD. 【点睛】结论点睛:充分、必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分也不必要条件,则p 对应集合与q 对应集合互不包含. 11.AB 【分析】根据不等式的基本性质,分别判断四个答案中的不等式是否恒成立,可得结论. 【详解】解:a b c >>,且0ac <,0a ∴>,0c <,故A 成立;所以10a> ∴由b c >,所以b ca a>恒成立,故B 成立; 对于C :若1a =,1b =-,则22b ac c =,故C 错误;对于D :若0b =,ab bc =,故D 错误; 故选:AB . 12.ACD 【分析】根据含全称量词、存在量词的命题的否定形式可判断A 选项是否正确; 根据基本不等式及等号成立的条件可判断B 选项是否正确; 利用复合函数单调性“同增异减”可判断C 选项的正误; 构造函数利用单调性判断D 选项是否正确. 【详解】对于A 选项,由特称命题的否定形式可知,A 选项正确;对于B 选项,若利用基本不等式有()6f x =≥,等号不能成立,故B 选项错误;对于C 选项,因为函数12ty ⎛⎫= ⎪⎝⎭为递减函数,若1()2g x ⎛= ⎪⎝⎭22y x x =--+递减,且220x x --+≥,解得112x -≤≤,故C 正确; 对于D 选项,设函数()22,0,0x x f x x x x x ⎧≥==⎨-<⎩,则函数[)0,+∞上递增,在(),0-∞上也递增,故()f x 为R 上的单调增函数,所以a b >时a ab b ;当a a b b 时,有a b >. 故a b >的充要条件是a ab b ,D 选项正确.故选:ACD.三、多选题13.{1a a <-或}3a > 【分析】根据存在命题的定义,结合一元二次不等式的解集性质进行求解即可. 【详解】因为命题“2000,(1)10x R x a x ∃∈+-+<”等价于200(1)10x a x +-+=有两个不等实数根,所以2(1)40a ∆=-->,即2230a a -->,解得1a <-或3a >.故答案为:{1a a <-或}3a >.14.10【分析】根据解析式与图像,判断12,C C 分别对应的解析式.根据零点存在定理,可判断两个交点所在的整数区间,即可求得,a b 的值,进而求得+a b . 【详解】根据函数()2x f x =过定点0,1,所以2C 对应函数()2xf x =;函数()3g x x =过()0,0,所以1C 对应函数()3g x x =因为()()()(),2211g f g f <> 所以由图像可知[]11,2x ∈,故1a = 因为()()()()9900,11g f g f >< 所以由图像可知[]29,10x ∈,故9b = 所以10a b += 故答案为:10 【点睛】本题考查了指数函数与幂函数的图像与性质应用,数形结合思想的应用,函数零点存在定理的应用,15.[1,)+∞【分析】本题可分为0t ≤、0t >两种情况进行讨论,然后0t >又可分为0u t <<、u t ≥进行讨论,最后对每种情况下是否有最小值以及最小值与t 是否有关进行研究,即可得出结果. 【详解】当0t ≤时,22()t f x x t x =-+, 令2u x =,则0>u ,ty u t u=+-在(0,)u ∈+∞时是增函数,无最小值. 当0t >时,令2u x =,0>u ,,0()(),t u t u t t uf xg u u t t u u t u t u ⎧-++<<⎪⎪==-+=⎨⎪+-≥⎪⎩,若0u t <<,()tg u u t u=-++是减函数,则()11g u t t >-++=, 若u t ≥,()t g u u t t t u =+-≥=,当且仅当u =时等号成立,t ,即1t ≥时,()g u 在[,)t +∞上递增,min ()()11g u g t t t ==-++=,t >,即01t <<时,min ()g u t =与t 有关,故答案为:[1,)+∞. 【点睛】关键点点睛:本题考查求函数的最值.对含绝对值的函数一般根据绝对值定义分类讨论去掉绝对值符号,然后可分段求最小值,最后比较可得.而利用函数的单调性是求最值的基本方法,有时也可用基本不等式求最值,但要注意基本不等式成立的条件,在条件不满足时,可用单调性得最值.16.130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭【分析】 根据题意可得22T π≥,从而可得2ω≤,讨论0>ω,0ω=或0ω<,再求出()sin()f x x ωϕ=+的单调递增区间,只需,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集即可求解.【详解】()()sin f x x ωϕ=+,0,4πϕ⎡⎤∈⎢⎥⎣⎦,由正弦函数的性质,()f x 的每个增区间的长度为2T,其中函数()f x 的最小正周期为2T ωπ=.函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调地藏,可得22T π≥,即2ω≤.①当0>ω时,此时02ω<≤,x ωϕ+单调递增,当2,2,22x k k k Z ππωϕππ⎡⎤+∈-+∈⎢⎥⎣⎦,()f x 单调递增,解得112,2,22x k k k Z πππϕπϕωω⎡⎤⎛⎫⎛⎫∈--+-∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,只需11,2,2,222k k k Z πππππϕπϕωω⎡⎤⎡⎤⎛⎫⎛⎫⊆--+-∈ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦,从而可得1222,122k k Z k πππϕωπππϕω⎧⎛⎫≥-- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩, 解得2141,2,2k k k Z ϕϕωππ⎡⎤∈--+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 则21410214k k πωππ--⨯≤≤+-⨯,即141,2,4k k k Z ω⎡⎤∈-+∈⎢⎥⎣⎦,由124141204k k k ⎧+>-⎪⎪⎨⎪+>⎪⎩,解得1588k -<<,k Z ∈,0k ∴=.所以,10,4ω⎛⎤∈ ⎥⎝⎦;②当0ω=时,函数()sin f x ϕ=为常函数,不合乎题意; ③当0ω<时,20ω-≤<,x ωϕ+单调递减, 由322,22k x k k Z πππωϕπ+≤+≤+∈, 解得13122,22k x k k Z πππϕπϕωω⎛⎫⎛⎫+-≤≤+-∈ ⎪ ⎪⎝⎭⎝⎭对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立, 可得13222,122k k Z k πππϕωπππϕω⎧⎛⎫≥+- ⎪⎪⎪⎝⎭∈⎨⎛⎫⎪≤+- ⎪⎪⎝⎭⎩,解得122,43,2k k k Z ϕϕωππ⎡⎤∈+-+-∈⎢⎥⎣⎦对0,4πϕ⎡⎤∀∈⎢⎥⎣⎦成立,于是12210434k k πωππ+-⨯≤≤+-⋅,即521,4,2k k k Z ω⎡⎤∈++∈⎢⎥⎣⎦,由5142225402k k k ⎧+≥+⎪⎪⎨⎪+<⎪⎩,解得518k -≤<-,由k Z ∈,1k =-,此时,32ω=-.综上所述,实数ω的取值范围是130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.故答案为:130,42⎛⎤⎧⎫⋃-⎨⎬ ⎥⎝⎦⎩⎭.【点睛】关键点点睛:本题考查了三角函数的性质,解题的关键是求出函数的单调递增区间,使,2ππ⎡⎤⎢⎥⎣⎦是单调递增区间的子集,考查了分类讨论的思想. 四、解答题17.(1){}13A x x =<<;(2){}1a a >-. 【分析】(1)利用对数的真数大于零可求得集合A ;(2)对实数a 的取值进行分类讨论,求出集合B ,根据A B ⋂≠∅可得出关于实数a 的不等式,综合可得出实数a 的取值范围. 【详解】(1)对于函数()1ln3x f x x -=-,103x x ->-,可得103x x -<-,解得13x <<, 因此,{}13A x x =<<;(2)由()2110ax a x +++>,可得()()110ax x ++>.①当0a =时,则有10x +>,解得1x >-,即{}1B x x =>-,此时A B ⋂≠∅成立; ②当0a <时,因为10a ->,解不等式()()110ax x ++>可得11x a-<<-,即11B x x a ⎧⎫=-<<-⎨⎬⎩⎭,因为A B ⋂≠∅,则11a ->,即10a a+<,解得10a -<<; ③当1a >时,110a -<-<,解不等式()()110ax x ++>可得1x <-或1x a>-, 即{1B x x =<-或1x a ⎫>-⎬⎭,此时A B ⋂≠∅成立;④当1a =时,则有()210x +>,解得1x ≠-,即{}1B x x =≠-,此时A B ⋂≠∅成立;⑤当01a <<时,11-<-a ,解不等式()()110ax x ++>可得1x a<-或1x >-, 即1B x x a ⎧=<-⎨⎩或}1x >-,此时A B ⋂≠∅成立.综上所述,实数a 的取值范围是{}1a a >-.18.(1)πT =;(2)πππ,π36k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(3)最大值为3,最小值为0.【分析】(1)利用二倍角公式以及辅助角公式化简()f x ,再由正弦函数的周期公式即可求解; (2)解不等式πππ2π22π262k x k -+≤+≤+,()k ∈Z 即可求解;(3)根据π5π,612x ⎡⎤∈-⎢⎥⎣⎦求出π26x +的范围,根据正弦函数的性质即可求解.【详解】(1)()2cos 2cos 2cos21f x x x x x x =⋅+=++π2sin 216x ⎛⎫=++ ⎪⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==, (2)令πππ2π22π262k x k -+≤+≤+,解得:ππππ36k x k -+≤≤+,()k ∈Z所以该函数的单调递增区间为πππ,π36k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(3)因为π5π,612x ⎡⎤∈-⎢⎥⎣⎦,所以ππ2,π66x ⎡⎤+∈-⎢⎥⎣⎦,所以当ππ266x +=-即π6x =-时,πsin 26⎛⎫+ ⎪⎝⎭x 最小为12-,当ππ262x +=即π6x =时,πsin 26⎛⎫+ ⎪⎝⎭x 最大为1,所以1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,π12sin 226x ⎛⎫-≤+≤ ⎪⎝⎭, ()[]π2sin 210,36f x x ⎛⎫=++∈ ⎪⎝⎭,所以函数()f x 在区间π5π,612⎡⎤-⎢⎥⎣⎦上的最小值为0,最大值为3.19.(1) 0b = (2) 532t -<<- 【分析】(1)由()f x 的定义域为R ,且奇函数,则(0)0f =,从而可求出答案. (2)由题意1()1x g x a -=-,先求出函数()g x 的值域,方程2()3t g x t +=+在R 上有解,则max 2()3t g x t +>+,从而得出答案. 【详解】 (1)函数1()(0)x x b f x a a a-=+>的定义域为R ,又()f x 是奇函数 所以(0)110f b b =+-==当0b =时,1()xx f x a a =-,11()()xx x xf x a a f x a a --⎛⎫-==-=- ⎪⎝⎭-- 满足()f x 是奇函数,所以0b =(2) 11()()111x xxx xg x f x a a a a a --=--=--=- 由0x a >,则10x a >,所以10x a -<,所以111xa -<-- 即()g x 的值域为()1-∞-,方程2()3t g x t +=+在R 上有解,则213t t +<-+,解得532t -<<- 所以满足条件的实数t 的取值范围:532t -<<- 20.(1)1()ln f x x=,作图见解析;(2)证明见解析. 【分析】(1)对y x e =两边取对数,并化简即得到1ln y x =,即得到函数1()ln f x x=及图象; (2)结合图象化简关系得到ln ln n m -=,即1mn =,22144m n n n+=+,再构造函数21()4(01)g x x x x=+<<,结合单调性求其最小值为3,即得证,或者拼凑22211144422m n n n n n n+=+=++,利用三项的基本不等式证明结果即可. 【详解】(1)解:由(0,1)y x e x x =>≠两侧取以e 为底的对数,得ln ln y x e =,即1ln y x=, 所以1()ln f x x=,其图象如图所示.(2)证明:因为|()||()|f m f n =,且0m n >>, 所以(0,1),(1,)n m ∈∈+∞,且ln ln n m -=, 即ln ln 0,ln()0m n mn +==,故1mn =,则22144m n n n+=+. 法一:记21()4(01)g x x x x=+<<.任取12,x x ,且1201x x ,因为()()()2222121212121211114444g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()1212211212211212144x x x x x x x x x x x x x x x x -+-=+-+=-⋅, 因为1201x x ,所以21120,0x x x x ->>. 当12102x x ≤<<时,()121241x x x x +<,所以()()120g x g x ->,即()()12g x g x >; 当12112x x ≤<<时,()121241x x x x +>,所以()()120g x g x -<,即()()12g x g x <. 所以21()4(01)g x x x x =+<<在10,2⎛⎤ ⎥⎝⎦上为减函数,在1,12⎡⎫⎪⎢⎣⎭上为增函数,所以当12x =时,min ()3g x =,所以243m n +≥. 法二:22223111114443432222m n n n n n n n n n+=+=++⋅⋅=≥(当且仅当2142n n =即12n =时取“=”),所以243m n +≥.21.(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)06,π⎡⎤⎢⎥⎣⎦和2π,π3;(3)4m ≤. 【分析】(1)先由最值,求出2A =,再由函数过点()0,1,求出6π=ϕ,即可得出函数解析式; (2)根据正弦函数的单调性,即可求出函数在区间[]0,π上的增区间;(3)先由0,3x π⎡⎤∈⎢⎥⎣⎦,得到()[]1,2f x ∈,令()t f x =,将问题化为240t mt -+≥在[]1,2t ∈时恒成立,进而可求出结果. 【详解】(1)因为最大值为2,所以2A =.因为()f x 过点()0,1,所以2sin 1=ϕ,又因为02πϕ<<,所以6π=ϕ. 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为222,262k x k k Z πππππ-≤+≤+∈,所以,36k x k k Z ππππ-≤≤+∈.当0k =时,36x ππ-≤≤;当1k =时,2736x ππ≤≤. 又因为[]0,x π∈,所以()f x 在[]0,π上的单调增区间是06,π⎡⎤⎢⎥⎣⎦和2π,π3. (3)因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,所以()[]1,2f x ∈.令()t f x =,则240t mt -+≥在[]1,2t ∈时恒成立, 即4m t t≤+在[]1,2t ∈时恒成立, 令()4g t t t=+,[]1,2t ∈,任取1212t t ≤<≤,则120t t -<,124t t <,所以()()()121212121244410g t g t t t t t t t t t ⎛⎫-=+--=--> ⎪⎝⎭,即()()12g t g t >, 所以()4g t t t=+在[]1,2t ∈上单调递减,则()()min 42242g t g ==+=,所以只需4m ≤,即实数m 用的取值范围是4m ≤. 【点睛】 思路点睛:求解含三角函数的二次型不等式恒成立的问题时,一般需要先根据三角函数的性质,确定所含三角函数的值域,再由换元法,将问题转化为一元二次不等式的形式,进行求解. 22.(1)12-;(2)答案见解析.【分析】(1)由(1)0f <得01a <<,利用()f x 的单调性得到212x k x -≤+当[)0,x ∈+∞时恒成立,再求212x x -+在[)0,x ∈+∞上的最小值即可; (2)由已知得到()22x x f x -=-,求出()g x ,问题等价于讨论关于()22222210x x x x m --⋅+=++实数根的个数,令()222x x s s -=+>问题转化为讨论y m =与8y s s =+()2s >交点的个数,结合8y s s=+的单调性可得答案. 【详解】(1)因为(1)0f <,所以110(1)f a a -=-<,解得01a <<, 所以()f x 在[)0,x ∈+∞上单调递减,由()2221a f x kx k a ⋅--+,得()2211(1)2a f x kx k a f a a-=-=--≤, 所以221x kx k --≥,所以212x k x -≤+当[)0,x ∈+∞时恒成立,()()2224231324222x x x x x x x +-++-==++-+++, 令2t x =+()2t ≥,3()4m t t t=+-,设122t t >≥,则()121212*********()()t t m t m t t t t t t t t t ⎛⎫--=+--=- ⎪⎝⎭, 因为122t t >≥,所以12120,4t t t t ->>,所以12()()0m t m t ->, ()m t 在 2t ≥时是单调递增函数,所以11()(2)2422m t m ≥=+-=-,所以12k ≤-,k 的最大值为12-;(2)若3(1)2f =,则113)2(1f a a -=-=,解得2a =,或12a =-舍去, ()22xxf x -=-,由(2)()()0(0)f x f xg x x +-⋅=≠得()2222()22022x xx x x xg x x ----==+≠-,问题等价于讨论关于()22222210x x x xm --⋅+=++实数根的个数, 令()222x xs s -=+>,则由28m s s ⋅=+,即8m s s=+()2s >, 即讨论y m =与8y s s=+()2s >交点的个数,设12s s >>8()n s s s=+,则()121212*********()()s s n s n s s s s s s s s s ⎛⎫--=+--=- ⎪⎝⎭,因为12s s >>12120,8s s s s ->>,所以12()()0n s n s ->,()n s 在s >()n s n >=设122s s <<< 则()121212*********()()s s n s n s s s s s s s s s ⎛⎫--=+--=- ⎪⎝⎭,因为122s s <<≤12120,8s s s s -<<,所以12()()0n s n s ->,()n s 在2s <≤()(2)n n s n ≤<,即()6n s <, 所以,当m <()(2)10m g x g x ⋅=+没有实数根;当m =6m ≥时,方程()(2)10m g x g x ⋅=+有2个实数根;当6m <时,方程()(2)10m g x g x ⋅=+有4个实数根. 【点睛】本题考查了利用函数的单调性解不等式、讨论实数根的个数,关键点是构造函数利用函数的单调性解决问题,考查了学生分析问题、解决问题的能力.。
【压轴题】高一数学上期末模拟试题(带答案)

【压轴题】高一数学上期末模拟试题(带答案)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]3.已知定义在R 上的奇函数()f x 满足:(1)(3)0f x f x ++-=,且(1)0f ≠,若函数6()(1)cos 43g x x f x =-+⋅-有且只有唯一的零点,则(2019)f =( )A .1B .-1C .-3D .34.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10935.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}6.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫-⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭7.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .(34D .)34,28.已知01a <<,则方程log xa a x =根的个数为( )A .1个B .2个C .3个D .1个或2个或3根9.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y10.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
【典型题】高一数学上期末试卷(含答案)(1)

【典型题】高一数学上期末试卷(含答案)(1)一、选择题1.设23a log =,b =23c e=,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<2.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .73.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( ) A .278-B .18-C .18D .2784.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦6.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y7.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>8.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭9.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-1210.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 11.下列函数中,既是偶函数又存在零点的是( ) A .B .C .D .12.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.若155325a b c ===,则111a b c+-=__________. 14.若函数()(0,1)xf x a a a =>≠且在[1,2]上的最大值比最小值大2a,则a 的值为____________.15.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.16.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.17.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.18.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____19.已知正实数a 满足8(9)a aa a =,则log (3)a a 的值为_____________.20.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]6,10-上所有根的和为________. 三、解答题21.已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围.22.已知函数22()21x x a f x ⋅+=-是奇函数.(1)求a 的值;(2)求解不等式()4f x ≥;(3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.23.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.24.已知函数2()(,)1ax bf x a b x +=∈+R 为在R 上的奇函数,且(1)1f =. (1)用定义证明()f x 在(1,)+∞的单调性;(2)解不等式()()2341xxf f +≤+.25.已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若B A ⊆,求实数a 的取值范围; (2)若A B =∅I ,求实数a 的取值范围.26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小.【详解】 因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.2.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.3.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.6.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.7.A解析:A 【解析】因为00.31,1e <,所以0.3log 0c e =<,由于0.30.3031,130log 31a b ππ>⇒=><<⇒<=<,所以a b c >>,应选答案A .8.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 10.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.11.A解析:A 【解析】 由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.12.C解析:C 【解析】 【分析】 【详解】210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭成立,则等价为a ⩾21x x--对于一切x ∈(0,1 2)成立,即a ⩾−x −1x 对于一切x ∈(0,12)成立, 设y =−x −1x ,则函数在区间(0,12〕上是增函数∴−x −1x <−12−2=52-, ∴a ⩾52-. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.二、填空题13.1【解析】故答案为解析:1 【解析】155325a b c ===因为,1553log 25,log 25,log 25a b c ∴===,252525111log 15log 5log 3a b c∴+-=+-25log 251==,故答案为1. 14.或【解析】【分析】【详解】若∴函数在区间上单调递减所以由题意得又故若∴函数在区间上单调递增所以由题意得又故答案:或解析:12或32 【解析】 【分析】 【详解】若01a <<,∴函数()xf x a =在区间[1,2]上单调递减,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又01a <<,故12a =.若1a >,∴函数()xf x a =在区间[1,2]上单调递增,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又1a >,故32a =. 答案:12或3215.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221x f x ++]=13, ∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.16.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题 解析:()6lg(6)f x x x =---+【解析】 【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可. 【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-. 设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+. 故答案为:()6lg(6)f x x x =---+【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.17.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性解析:-1 【解析】试题解析:因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以.考点:函数的奇偶性.18.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0 【解析】 【分析】根据分段函数的解析式,代入求值即可求解. 【详解】 因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=.【点睛】本题主要考查了分段函数求值,属于中档题.19.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题 解析:916【解析】 【分析】将已知等式8(9)aaa a =,两边同取以e 为底的对数,求出ln a ,利用换底公式,即可求解. 【详解】8(9)a a a a =,8ln ,l )l n 8(ln 9(9ln n )a a a a a a a a +==,160,7ln 16ln 3,ln ln 37a a a >∴=-=-Q ,ln 3ln 39log (3)116ln 16ln 37a a a a ∴==+=-.故答案为:916. 【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周 解析:16【解析】 【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-Q ,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称; 又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点,4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16. 【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112*********(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++, Q 12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>, 12()()f x f x >,即()f x 在R 上是减函数;(3)Q ()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为()2(1)(1)f t kt f t f t -≤--=-恒成立,Q ()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立, 可得2(1)40k +-≥,解得13k k ≥≤-或, 故k 的取值范围为:13k k ≥≤-或. 【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题.22.(1)2a =;(2)}{20log 3x x <≤;(3)1,4t ⎛⎫∈-∞-⎪⎝⎭【解析】 【分析】(1)由奇函数的性质得出a 的值;(2)结合()f x 的解析式可将()4f x ≥化为32021xx -≥-,解不等式即可得出答案;(3)利用函数()f x 在(1,3]x ∈上的单调性以及奇偶性将()2(1)0f tx f x +->化为21tx x <-,分离参数t 结合二次函数的性质得出实数t 的取值范围.【详解】(1)根据题意,函数222222()()211212x x x x x xa a a f x f x --⋅++⋅⋅+-===-=--- ∴2a =.(2)222()421x xf x ⋅+=≥-,即21221x x +≥-,即2132202121x x x x +--=≥-- 即()()32210210x xx ⎧--≥⎪⎨-≠⎪⎩,解得:132x <≤,得20log 3x <≤.(3)22222244()2212121x x x x xf x ⋅+⋅-+===+--- 故()f x 在(1,3]x ∈上为减函数2()(1)0f tx f x +->,即2()(1)(1)f tx f x f x >--=-即21tx x <-,221111124t x x x ⎛⎫<-=-- ⎪⎝⎭又(1,3]x ∈,11,13x ⎡⎫∈⎪⎢⎣⎭,故14t <- 综上1,4t ⎛⎫∈-∞- ⎪⎝⎭. 【点睛】本题主要考查了由函数的奇偶性求解析式以及利用单调性解不等式,属于中档题.23.(1)()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩;(2)30,2⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在R 上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即0x >时要是增函数,且端点处函数值不小于0. 【详解】解:(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-,所以()()2320x ax a f x x =-+-+<,所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩. (2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩,解得302a ≤≤, 故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系. 24.(1)证明见解析;(2){|1}x x ≤. 【解析】 【分析】(1)根据函数为定义在R 上的奇函数得(0)0f =,结合(1)1f =求得()f x 的解析式,再利用单调性的定义进行证明;(2)因为231x +>,411x +>,由(1)可得2341x x +≥+,解指数不等式即可得答案. 【详解】 (1)因为函数2()(,)1ax bf x a b x +=∈+R 为在R 上的奇函数,所以(0)0f = 则有0001111ba b +⎧=⎪⎪+⎨+⎪=⎪+⎩解得20a b =⎧⎨=⎩,即22()1xf x x =+ 12,(1,)x x ∀∈+∞,且12x x <()()()()()()2212211212222212122121221111x x x x x x f x f x x x x x +-+-=-=++++ ()()()()122122122111x x x x xx --=++因为12,(1,)x x ∀∈+∞,且12x x <,所以()()2212110x x ++>,1210x x ->,210x x ->所以()()120f x f x ->即()()12f x f x > , 所以()f x 在(1,)+∞上单调递减 .(2)因为231x +>,411x +>,由(1)可得2341x x +≥+ 不等式可化为22220x x x ⋅--≤,即(()()21220xx+-≤ 解得22x ≤,即1x ≤ 所以不等式的解集为{|1}x x ≤ 【点睛】本题考查奇函数的应用、单调性的定义证明、利用单调性解不等式,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意不等式的解集要写成集合的形式. 25.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U .【解析】 【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩„…解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围. 【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩„…解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足A B =∅I . ②当A ≠∅时,有121a a -<+,解得 2.a >- 又A B =∅Q I ,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥.综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U .【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力. 26.(1)(,5)-∞;(2)()0,1. 【解析】 【分析】 (1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围. 【详解】 (1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+ 得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点, 由图知:(0,1)t ∈【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.。
新高一数学上期末模拟试卷含答案

新高一数学上期末模拟试卷含答案一、选择题1.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称2.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 3.已知函数1()log ()(011a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .12B .2C .2 D .24.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2] D .[0,2]5.函数ln x y x=的图象大致是( )A .B .C .D .6.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}7.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有()()22f x f x -=+且当[]2,0x ∈-时, ()112xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( ) A .()1,2B .()2,+∞C .()31,4D .()34,29.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( ) A .10B .9C .8D .510.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c << B .a c b <<C .c a b <<D .b c a <<11.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .12.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 二、填空题13.已知()y f x =是定义在R 上的奇函数,且当0x …时,11()42x xf x =-+,则此函数的值域为__________.14.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.15.设,,x y z R +∈,满足236x y z ==,则112x z y+-的最小值为__________. 16.0.11.1a =,122log 2b =,ln 2c =,则a ,b ,c 从小到大的关系是________. 17.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 18.2()2f x x x =+(0x ≥)的反函数1()f x -=________19.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.20.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.三、解答题21.计算或化简:(1)1123021273log 161664π⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭; (2)6log 2332log 27log 2log 36lg 2lg 5+⋅-++.22.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-. (1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.23.已知函数()x xk f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫=⎪⎝⎭,求1(2)f 的值; (2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.24.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2019年不仅净利润创下记录,海外增长同祥强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投人固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且210200,040()100008019450,40x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩…,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(Ⅰ)求出2020年的利润()Q x (万元)关于年产量x (千部)的函数关系式(利润=销售额-成本);(Ⅱ)2020年产量x 为多少(千部)时,企业所获利润最大?最大利润是多少? (说明:当0a >时,函数ay x x=+在单调递减,在)+∞单调递增) 25.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?26.已知函数31()31x x f x m -=⋅+是定义域为R 的奇函数.(1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】由题意知,(2)ln(2)ln ()f x x x f x -=-+=,所以()f x 的图象关于直线1x =对称,故C 正确,D 错误;又()ln[(2)]f x x x =-(02x <<),由复合函数的单调性可知()f x 在(0,1)上单调递增,在(1,2)上单调递减,所以A ,B 错误,故选C .【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+. 2.C解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=,且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.3.A解析:A 【解析】 【分析】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数,但在[0,1]上为减函数,得0<a<1,把x=1代入即可求出a 的值.【详解】由函数()1log ()=0,1a f x x =+(0,1)a a >≠的定义域和值域都是[0,1],可得f(x)为增函数, 但在[0,1]上为减函数,∴0<a<1,当x=1时,1(1)log ()=-log 2=111a a f =+, 解得1=2a , 故选A .本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性. 点评:做此题时要仔细观察、分析,分析出(0)=0f ,这样避免了讨论.不然的话,需要讨论函数的单调性.4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.C解析:C 【解析】 分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-Q ()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x ===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.6.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.7.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.8.D解析:D 【解析】∵对于任意的x ∈R ,都有f (x −2)=f (2+x ),∴函数f (x )是一个周期函数,且T =4.又∵当x ∈[−2,0]时,f (x )=1 2x⎛⎫ ⎪⎝⎭−1,且函数f (x )是定义在R 上的偶函数,若在区间(−2,6]内关于x 的方程()()log 20a f x x -+=恰有3个不同的实数解,则函数y =f (x )与y =()log 2a x +在区间(−2,6]上有三个不同的交点,如下图所示:又f (−2)=f (2)=3,则对于函数y =()log 2a x +,由题意可得,当x =2时的函数值小于3,当x =6时的函数值大于3,即4a log <3,且8a log >3,34a <2, 故答案为34,2).点睛:方程根的问题转化为函数的交点,利用周期性,奇偶性画出所研究区间的图像限制关键点处的大小很容易得解9.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。
【压轴题】高一数学上期末模拟试题及答案

【压轴题】高一数学上期末模拟试题及答案一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>3.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦4.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .15.若函数()2log ,? 0,?0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( )A .1eB .eC .21eD .2e6.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( )A .1B .2C .3D .47.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U8.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
【必考题】高一数学上期末模拟试卷附答案(1)

【必考题】高一数学上期末模拟试卷附答案(1)一、选择题1.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<2.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b << D .a b c <<3.若x 0=cosx 0,则( )A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 4.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x + B .(1)f x -C .()1f x +D .()1f x -5.函数ln x y x=的图象大致是( )A .B .C .D .6.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073D .10937.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.已知01a <<,则方程log xa a x =根的个数为( ) A .1个B .2个C .3个D .1个或2个或3根9.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .10.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.曲线241(22)y x x =--≤≤与直线24y kx k =-+有两个不同的交点时实数k 的范围是( ) A .53(,]124B .5(,)12+∞ C .13(,)34D .53(,)(,)124-∞⋃+∞ 12.已知函数()()f x g x x =+,对任意的x ∈R 总有()()f x f x -=-,且(1)1g -=,则(1)g =( )A .1-B .3-C .3D .1二、填空题13.定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f (4)=0,则不等式f (x )≥0的解集是___.14.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.15.若函数()1f x mx x =--有两个不同的零点,则实数m 的取值范围是______. 16.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.17.若当0ln2x ≤≤时,不等式()()2220x xxx a e e ee ---+++≥恒成立,则实数a 的取值范围是_____.18.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____. 19.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;20.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________. 三、解答题21.已知定义在()0,∞+上的函数()f x 满足()()()f xy f x f y =+,()20201f =,且当1x >时,()0f x >. (1)求()1f ;(2)求证:()f x 在定义域内单调递增; (3)求解不等式()2120192fx x -<. 22.已知函数31()31x x f x m -=⋅+是定义域为R 的奇函数.(1)求证:函数()f x 在R 上是增函数; (2)不等式()21cos sin 32f x a x --<对任意的x ∈R 恒成立,求实数a 的取值范围. 23.已知函数2()log (421)x xf x a a =+⋅++,x ∈R .(Ⅰ)若1a =,求方程()3f x =的解集;(Ⅱ)若方程()f x x =有两个不同的实数根,求实数a 的取值范围.24.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y (y 值越大产品的性能越好)与这种新合金材料的含量x (单位:克)的关系为:当0≤x <7时,y 是x 的二次函数;当x ≥7时,1()3x m y -=.测得部分数据如表:(1)求y 关于x 的函数关系式y =f (x );(2)求该新合金材料的含量x 为何值时产品的性能达到最佳.25.若()221x x af x +=-是奇函数.(1)求a 的值;(2)若对任意()0,x ∈+∞都有()22f x m m ≥-,求实数m 的取值范围.26.已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若B A ⊆,求实数a 的取值范围; (2)若A B =∅I ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.2.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-. 令2()2log 10x x h x =-=,则22log 1x x =,21log 22x x x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.3.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,30.5230.8660.3430662f ππ⎛⎫=-≈-=-<⎪⎝⎭,20.7850.7070.0780442f ππ⎛⎫=-≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫⎪⎝⎭.【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.4.D解析:D 【解析】 【分析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x , 再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +, 该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目.5.C解析:C分析:讨论函数ln x y x=性质,即可得到正确答案.详解:函数ln x y x=的定义域为{|0}x x ≠ ,ln ln x x f x f x xxx--==-=-Q ()(), ∴排除B , 当0x >时,2ln ln 1-ln ,,x x xy y xx x===' 函数在()0,e 上单调递增,在(),e +∞上单调递减, 故排除A,D , 故选C .点睛:本题考查了数形结合的思想应用及排除法的应用.6.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.7.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数()()11f f -=Q ,则()()()012f f f <-< 故选C 【点睛】本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.8.B解析:B 【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.9.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.11.A解析:A 【解析】试题分析:1(22)y x =-≤≤对应的图形为以()0,1为圆心2为半径的圆的上半部分,直线24y kx k =-+过定点()2,4,直线与半圆相切时斜率512k =,过点()2,1-时斜率34k =,结合图形可知实数k 的范围是53(,]124考点:1.直线与圆的位置关系;2.数形结合法12.B解析:B 【解析】由题意,f (﹣x )+f (x )=0可知f (x )是奇函数, ∵()()f x g x x =+,g (﹣1)=1, 即f (﹣1)=1+1=2 那么f (1)=﹣2. 故得f (1)=g (1)+1=﹣2, ∴g (1)=﹣3, 故选:B二、填空题 13.-40∪4+∞)【解析】【分析】由奇函数的性质可得f (0)=0由函数单调性可得在(04)上f (x )<0在(4+∞)上f (x )>0结合函数的奇偶性可得在(-40)上的函数值的情况从而可得答案【详解】根解析: [-4,0]∪[4,+∞) 【解析】 【分析】由奇函数的性质可得f (0)=0,由函数单调性可得在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,结合函数的奇偶性可得在(-4,0)上的函数值的情况,从而可得答案. 【详解】根据题意,函数f (x )是定义在R 上的奇函数,则f (0)=0,又由f (x )在区间(0,+∞)上单调递增,且f (4)=0,则在(0,4)上,f (x )<0,在(4,+∞)上,f (x )>0,又由函数f (x )为奇函数,则在(-4,0)上,f (x )>0,在(-∞,-4)上,f (x )<0, 若f (x )≥0,则有-4≤x≤0或x≥4, 则不等式f (x )≥0的解集是[-4,0]∪[4,+∞); 故答案为:[-4,0]∪[4,+∞). 【点睛】本题考查函数的单调性和奇偶性的综合应用,属于基础题.14.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象解析:3【解析】 【分析】 由()()20fx af x -=可得出()0f x =和()()()0,3f x a a =∈,作出函数()y f x =的图象,由图象可得出方程()0f x =的根,将方程()()()0,3f x a a =∈的根视为直线y a =与函数()y f x =图象交点的横坐标,利用对称性可得出方程()()()0,3f x a a =∈的所有根之和,进而可求出原方程所有实根之和. 【详解】()()()2003f x af x a -=<<Q ,()0f x ∴=或()()03f x a a =<<.方程()()03f x a a =<<的根可视为直线y a =与函数()y f x =图象交点的横坐标, 作出函数()y f x =和直线y a =的图象如下图:由图象可知,关于x 的方程()0f x =的实数根为2-、3.由于函数()22y x =+的图象关于直线2x =-对称,函数3y x =-的图象关于直线3x =对称,关于x 的方程()()03f x a a =<<存在四个实数根1x 、2x 、3x 、4x 如图所示, 且1222+=-x x ,3432x x +=,1234462x x x x ∴+++=-+=, 因此,所求方程的实数根的和为2323-++=. 故答案为:3. 【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.15.【解析】【分析】令可得从而将问题转化为和的图象有两个不同交点作出图形可求出答案【详解】由题意令则则和的图象有两个不同交点作出的图象如下图是过点的直线当直线斜率时和的图象有两个交点故答案为:【点睛】本 解析:()0,1【解析】 【分析】令()0f x =,可得1mx x =-,从而将问题转化为y mx =和1y x =-的图象有两个不同交点,作出图形,可求出答案. 【详解】由题意,令()10f x mx x =--=,则1mx x =-, 则y mx =和1y x =-的图象有两个不同交点, 作出1y x =-的图象,如下图,y mx =是过点()0,0O 的直线,当直线斜率()0,1m ∈时,y mx =和1y x =-的图象有两个交点. 故答案为:()0,1.【点睛】本题考查函数零点问题,考查函数图象的应用,考查学生的计算求解能力,属于中档题.16.【解析】【分析】不妨设根据二次函数对称性求得的值根据绝对值的定义求得的关系式将转化为来表示根据的取值范围求得的取值范围【详解】不妨设画出函数的图像如下图所示二次函数的对称轴为所以不妨设则由得得结合图解析:341112,1e e e ⎡⎫+--⎪⎢⎣⎭【解析】 【分析】不妨设,0,,0a b c d ≤>,根据二次函数对称性求得+a b 的值.根据绝对值的定义求得,c d 的关系式,将d 转化为c 来表示,根据c 的取值范围,求得+++a b c d 的取值范围. 【详解】不妨设,0,,0a b c d ≤>,画出函数()f x 的图像如下图所示.二次函数221y x x =--+的对称轴为1x =-,所以2a b +=-.不妨设c d <,则由2ln 2ln c d +=+得2ln 2ln c d --=+,得44,e cd e d c--==,结合图像可知12ln 2c ≤+<,解得(43,c e e --⎤∈⎦,所以(()4432,e a b c d c c e e c ---⎤+++=-++∈⎦,由于42e y x x-=-++在(43,e e --⎤⎦上为减函数,故4341112,21e e e c c e -⎡⎫+--++∈⎢⎣-⎪⎭.【点睛】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.17.【解析】【分析】用换元法把不等式转化为二次不等式然后用分离参数法转化为求函数最值【详解】设是增函数当时不等式化为即不等式在上恒成立时显然成立对上恒成立由对勾函数性质知在是减函数时∴即综上故答案为:【 解析:25[,)6-+∞ 【解析】 【分析】用换元法把不等式转化为二次不等式.然后用分离参数法转化为求函数最值. 【详解】设x x t e e -=-,1xxx x t e e e e -=-=-是增函数,当0ln2x ≤≤时,302t ≤≤, 不等式()()2220x xxx a e eee ---+++≥化为2220at t +++≥,即240t at ++≥,不等式240t at ++≥在3[0,]2t ∈上恒成立,0t =时,显然成立,3(0,]2t ∈,4a t t-≤+对3[0,]2t ∈上恒成立,由对勾函数性质知4y t t=+在3(0,]2是减函数,32t =时,min 256y =,∴256a -≤,即256a ≥-. 综上,256a ≥-. 故答案为:25[,)6-+∞. 【点睛】本题考查不等式恒成立问题,解题方法是转化与化归,首先用换元法化指数型不等式为一元二次不等式,再用分离参数法转化为求函数最值.18.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得解析:10,2⎡⎫⎪⎢⎣⎭【解析】 【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围. 【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤< 故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题.19.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属解析:)22,2e e ⎡--⎣【解析】 【分析】画出()f x 的图像,根据图像求出+a b 以及c 的取值范围,由此求得()a b c +的取值范围. 【详解】函数()f x 的图像如下图所示,由图可知1,22a ba b +=-+=-.令2ln 11,x x e -==,令ln 10,x x e -==,所以2e c e <≤,所以)2()22,2a b c c e e ⎡+=-∈--⎣. 故答案为:)22,2e e ⎡--⎣【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题.20.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2 【解析】 【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值. 【详解】由题意得:()00323f =+=,()23331103f a a =-+=-,所以由()()01032ff a a =-=, 解得2a =.故答案为:2. 【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.三、解答题21.(1)0;(2)证明见解析;(3)()()1,02019,2020x ∈-U 【解析】【分析】(1)取1x y ==,代入即可求得()1f ;(2)任取210x x >>,可确定()()22110x f x f x f x ⎛⎫-=> ⎪⎝⎭,根据单调性定义得到结论; (3)利用12f=将所求不等式变为f f<,结合定义域和函数单调性可构造不等式组求得结果. 【详解】(1)取1x y ==,则()()()111f f f =+,解得:()10f = (2)任取210x x >> 则()()()221111x f x f x f x f x x ⎛⎫-=⋅-=⎪⎝⎭()()221111x x f f x f x f x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭210x x >>Q 211x x ∴> 210x f x ⎛⎫∴> ⎪⎝⎭,即()()210f x f x -> ()f x ∴在定义域内单调递增(3)()20201f ff=+=Q12f∴=12ff ∴<=由(2)知()f x 为增函数220190x x ⎧->⎪∴< 解得:()()1,02019,2020x ∈-U 【点睛】本题考查抽象函数单调性的证明、利用单调性求解函数不等式的问题;关键是能够通过单调性的定义证明得到函数单调性,进而根据函数单调性将函数值的比较转化为自变量的比较;易错点是忽略函数定义域的要求,造成求解错误. 22.(1)证明见解析(2)44a -≤≤ 【解析】 【分析】(1)先由函数()f x 为奇函数,可得1m =,再利用定义法证明函数的单调性即可; (2)结合函数的性质可将问题转化为2sin sin 30x a x ++≥在R 上恒成立,再利用二次不等式恒成立问题求解即可. 【详解】解:(1)∵函数31()31x x f x m -=⋅+是定义域为R 的奇函数,()()f x f x ∴-=-31313131x x x x m m ----∴=-⋅+⋅+3131331x x x xm m --∴=+⋅+,()(1)310x a ∴--=,等式()(1)310xm --=对于任意的x ∈R 均恒成立,得1m =,则31()31x x f x -=+,即2()131x f x =-+, 设12,x x 为任意两个实数,且12x x <,()()()()()121212122332231313131x x x x x x f x f x -⎛⎫-=---= ⎪++++⎝⎭, 因为12x x <,则1233x x ≤,所以()()120f x f x -<,即()()12f x f x <, 因此函数()f x 在R 上是增函数; (2)由不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立, 则()2cos sin 3(1)f x a x f --≤.由(1)知,函数()f x 在R 上是增函数,则2cos sin 31x a x --≤,即2sin sin 30x a x ++≥在R 上恒成立.令sin x t =,[1,1]t ∈-,则222()33024a a g t t at t ⎛⎫=++=++-≥ ⎪⎝⎭在[1,1]-上恒成立.①当12a->时,即2a <-,可知min ()(1)40g t g a ==+≥,即4a ≥-, 所以42a -≤<-;②当112a -≤-≤时,即22a -≤≤,可知2min ()3024a a g t g ⎛⎫=-=-≥ ⎪⎝⎭.即a -≤≤22a -≤≤; ③当12a-<-时,即2a >,可知min ()(1)40g t g a =-=-≥,即4a ≤, 所以24a <≤,综上,当44a -≤≤时,不等式()21cos sin 32f x a x --≤对任意的x ∈R 恒成立. 【点睛】本题考查了利用函数奇偶性求函数解析式及定义法证明函数的单调性,重点考查了含参二次不等式恒成立问题,属中档题. 23.(Ⅰ){}1(Ⅱ)13a -<<-【解析】 【分析】(Ⅰ)将1a =代入直接求解即可;(Ⅱ)设2x t =,得到()()2110t a t a +-++=在()0,+∞有两个不同的解,利用二次函数的性质列不等式组求解即可. 【详解】(Ⅰ)当1a =时,()()2log 4223xxf x =++=,所以34222x x ++=, 所以4260x x +-=,因此()()23220xx+-=,得22x = 解得1x =, 所以解集为{}1.(Ⅱ)因为方程()2log 421x xa a x +⋅++=有两个不同的实数根, 即4212x x x a a +⋅++=,设2x t =,()()2110t a t a +-++=在()0,+∞有两个不同的解,令()()()211f t t a t a =+-++,由已知可得()()()2001021410f a a a ⎧>⎪-⎪->⎨⎪⎪=--+>⎩n解得13a -<<- 【点睛】本题主要考查了对数函数与指数函数的复合函数的处理方式,考查了函数与方程的思想,属于中档题.24.(1)2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,;(2)当4x =时产品的性能达到最佳【解析】 【分析】(1)二次函数可设解析式为2y ax bx c =++,代入已知数据可求得函数解析式;(2)分段函数分段求出最大值后比较可得. 【详解】(1)当0≤x <7时,y 是x 的二次函数,可设y =ax 2+bx +c (a ≠0), 由x =0,y =﹣4可得c =﹣4,由x =2,y =8,得4a +2b =12①, 由x =6,y =8,可得36a +6b =12②,联立①②解得a =﹣1,b =8, 即有y =﹣x 2+8x ﹣4;当x ≥7时,1()3x my -=,由x =10,19y =,可得m =8,即有81()3x y -=;综上可得2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,.(2)当0≤x <7时,y =﹣x 2+8x ﹣4=﹣(x ﹣4)2+12, 即有x =4时,取得最大值12; 当x ≥7时,81()3x y -=递减,可得y ≤3,当x =7时,取得最大值3.综上可得当x =4时产品的性能达到最佳. 【点睛】本题考查函数模型的应用,考查分段函数模型的实际应用.解题时要注意根据分段函数定义分段求解. 25.(1)1a = (2)112m -≤≤ 【解析】 【分析】(1)根据函数的奇偶性,可得结果.(2)根据(1)的条件使用分离常数方法,化简函数()f x ,可知()f x 的值域,结合不等式计算,可得结果. 【详解】 (1)()2121a f +=-,()121112af +-=-因为()221x x af x +=-是奇函数.所以()()11f f =--,得1a =; 经检验1a =满足题意(2)根据(1)可知()2121x x f x +=-化简可得()2121x f x =+- 所以可知()2121xf x =+- 当()0,x ∈+∞时,所以()1f x > 对任意()0,x ∈+∞都有()22f x m m ≥-所以212m m ≥-, 即112m -≤≤ 【点睛】本题考查根据函数的奇偶性求参数,还考查了恒成立问题,对存在性,恒成立问题一般转化为最值问题,细心计算,属中档题. 26.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U .【解析】 【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩„…解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围. 【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩„…解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足A B =∅I . ②当A ≠∅时,有121a a -<+,解得 2.a >- 又A B =∅Q I ,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥.综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U . 【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.。
高一数学上学期期末模拟试卷(含解析)

高一数学上学期期末模拟试卷(含解析)一、选择题(每小题5分,共60分,每小题只有一个正确选项,请将正确答案填在答题卷指定位置上,错选、多选或不选均不得分)1.设向量=(cos23°,cos67°),=(cos53°,cos37°),=()A.B.C.﹣D.﹣2.函数f(x)=的定义域是()A.(﹣∞,+∞)B.[0,+∞)C.(﹣∞,0)D.(﹣∞,0]3.已知,则α+β是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.函数y=﹣ln(x+1)的图象大致是()A.B.C.D.5.若,且与也互相垂直,则实数k的值为()A.6 B.﹣6 C.﹣3 D.36.已知,则下列结论中正确的是()A.函数y=f(x)•g(x)的周期为2B.函数y=f(x)•g(x)的最大值为1C.将f(x)的图象向左平移个单位后得到g(x)的图象D.将f(x)的图象向右平移个单位后得到g(x)的图象7.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线所得线段长为,则的值是()A.0 B.﹣1 C.1 D.8.0.32,log20.3,20.3这三个数之间的大小顺序是()A.0.32<20.3<log20.3 B.0.32<log20.3<20.3C.log20.3<0.32<20.3 D.log20.3<20.3<0.329.已知,,,,则锐角x等于()A.15°B.30°C.45°D.60°10.函数的单调递增区间为()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)11.若函数y=2sin(x+θ)的图象向右平移个单位,再向上平移2个单位后,它的一条对称轴是,则θ的一个可能的值是()A.B.C.D.12.如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为()A.B.C.D.二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题5分,共20分).13.函数的最小正周期是.14.函数y=2x2﹣mx+3,当x∈[﹣2,+∞)时是增函数,则m的取值范围是.15.已知,,以、为边作平行四边形OACB,则与的夹角的余弦为.16.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+)(A >0,ω≠0)的图象如图所示,则当时,电流强度是.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共70分17.设集合A={x|a﹣2<x<a+2},B={x|﹣2<x<3}.(1)若A⊆B,求实数a的取值范围(2)若A∩B=∅,求实数a的取值范围.18.化简: = .19.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.20.已知定义在R上的函数f(x)=asinωx+bcosωx(ω>0,a>0,b>0)的周期为π,,且f(x)的最大值为2.(1)写出f(x)的表达式;(2)写出函数f(x)的单调递增区间、对称中心、对称轴方程;(3)说明f(x)的图象如何由函数y=2sinx的图象经过怎样的变换得到.21.已知:、、是同一平面上的三个向量,其中=(1,2).(1)若||=2,且∥,求的坐标.(2)若||=,且+2与2﹣垂直,求与的夹角θ22.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,对任意的a,b∈R都有f(a+b)=f(a)•f(b)且对任意的x∈R,恒有f(x)>0;(1)求f(0);(2)证明:函数y=f(x)在R上是增函数;(3)若f(x)•f(2x﹣x2)>1,求x的取值范围.2015-2016学年黔东南州凯里一中高一(上)期末数学模拟试卷(5)参考答案与试题解析一、选择题(每小题5分,共60分,每小题只有一个正确选项,请将正确答案填在答题卷指定位置上,错选、多选或不选均不得分)1.设向量=(cos23°,cos67°),=(cos53°,cos37°),=()A.B.C.﹣D.﹣【考点】两角和与差的余弦函数.【专题】计算题.【分析】根据平面向量的数量积运算法则,由两向量的坐标列出三角函数关系式,把67°和37°分别变为90°﹣23°和90°﹣53°,然后利用诱导公式变形,再根据两角和与差的余弦函数公式及特殊角的三角函数值即可得出所求式子的结果.【解答】解:∵向量=(cos23°,cos67°),=(cos53°,cos37°),∴=cos23°cos53°+cos67°cos37°=cos23°cos53°+cos(90°﹣23°)cos(90°﹣53°)=cos23°cos53°+sin23°sin53°=cos(53°﹣23°)=cos30°=.故选A【点评】此题考查了平面向量的数量积的运算,诱导公式及两角和与差的余弦函数公式,熟练掌握法则及公式是解本题的关键,同时注意角度的灵活变换.2.函数f(x)=的定义域是()A.(﹣∞,+∞)B.[0,+∞)C.(﹣∞,0)D.(﹣∞,0]【考点】函数的定义域及其求法.【专题】计算题.【分析】由根式内部的代数式大于等于0,解指数不等式即可得到原函数的定义域.【解答】解:由1﹣2x≥0,得:2x≤1,所以x≤0.所以原函数的定义域为(﹣∞,0].故选D.【点评】本题考查了函数的定义域及其求法,考查了指数不等式的解法,是基础题.3.已知,则α+β是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】两角和与差的余弦函数.【专题】计算题;转化思想;综合法;三角函数的求值.【分析】由已知利用同角三角函数关系式先求出cosα,sinβ,再利用两角和的正弦和余弦函数求出cos(α+β)和sin(α+β),由此能判断α+β所在象限.【解答】解:∵,∴cosα=﹣=﹣,sinβ=﹣=﹣,∴cos(α+β)=cosαcosβ﹣sinαsinβ=﹣﹣(﹣)(﹣)=<0,sin(α+β)=sinαcosβ+cosαsinβ=﹣=>0,∵<α+β<,∴α+β是第二象限角.故选:B.【点评】本题考查两角和所在象限的判断,是基础题,解题时要认真审题,注意同角三角函数关系式和两角和的正弦和余弦函数公式的合理运用.4.函数y=﹣ln(x+1)的图象大致是()A.B.C.D.【考点】对数函数的图像与性质.【专题】计算题;作图题;函数的性质及应用.【分析】由函数y=﹣ln(x+1)的性质,利用排除法确定函数的图象.【解答】解:函数y=﹣ln(x+1)的定义域为(﹣1,+∞),故排除C、D;函数y=ln(x+1)为增函数,故函数y=﹣ln(x+1)为(﹣1,+∞)上的减函数,故排除A;故选B.【点评】本题考查了函数的图象与性质的应用,属于基础题.5.若,且与也互相垂直,则实数k的值为()A.6 B.﹣6 C.﹣3 D.3【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意可得,且()•()=0,解方程求得实数k的值.【解答】解:由题意可得,且()•()=2k+(3k﹣6)﹣12=0.即2k+0﹣12=0,解得k=6,故选A.【点评】本题主要考查两个向量的数量积的定义,两个向量垂直的性质,属于基础题.6.已知,则下列结论中正确的是()A.函数y=f(x)•g(x)的周期为2B.函数y=f(x)•g(x)的最大值为1C.将f(x)的图象向左平移个单位后得到g(x)的图象D.将f(x)的图象向右平移个单位后得到g(x)的图象【考点】函数y=Asin(ωx+φ)的图象变换.【专题】常规题型.【分析】先将函数f(x),g(x)根据诱导公式进行化简,再求出f (x)g(x)的解析式,进而得到f(x)g(x)的最小正周期和最大值可排除A,B;再依据三角函数平移变换法则对C,D进行验证即可.【解答】解:∵,∴f(x)=cosx,g(x)=sinx∴f(x)g(x)=sinxcosx=sin2x,T=,排除A,,排除B;将f(x)的图象向左平移个单位后得到y=cos(x+)=﹣sinx≠g(x),排除C;将f(x)的图象向右平移个单位后得到y=cos(x﹣)=sinx=g(x),故选D.【点评】本题主要考查三角函数的诱导公式和平移变换.三角函数的平移变换第一步先将函数化为同名函数,然后根据左加右减上加下减的原则平移.7.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线所得线段长为,则的值是()A.0 B.﹣1 C.1 D.【考点】正切函数的图象.【专题】方程思想;定义法;三角函数的图像与性质.【分析】根据正切函数的图象和性质,确定函数的周期求出ω,即可得到结论.【解答】解:∵f(x)=tanωx(ω>0)的图象的相邻两支截直线所得线段长为,∴函数的周期T=,即=,即ω=8,则f(x)=tan8x,则f()=tan(8×)=tanπ=0,故选:A.【点评】本题主要考查正切函数的图象和性质,根据条件求出函数的周期以及ω是解决本题的关键.8.0.32,log20.3,20.3这三个数之间的大小顺序是()A.0.32<20.3<log20.3 B.0.32<log20.3<20.3C.log20.3<0.32<20.3 D.log20.3<20.3<0.32【考点】不等式比较大小.【专题】压轴题.【分析】确定0.32,log20.3,20.3这些数值与0、1的大小即可.【解答】解:∵0<0.32<1,log20.3<0,20.3>1∴log20.3<0.32<20.3故选C.【点评】本题主要考查指数、对数综合比较大小的问题,这里注意与特殊值1、0这些特殊值的比较.9.已知,,,,则锐角x等于()A.15°B.30°C.45°D.60°【考点】平面向量坐标表示的应用;平行向量与共线向量.【专题】平面向量及应用.【分析】先求出得的坐标,再由求得 tanx=1,由此求得锐角x的值.【解答】解:由题意可得 =(﹣1,2+sinx﹣cosx),再由可得﹣2﹣(﹣1)(2+sinx﹣cosx)=0,化简可得 sinx=cosx,∴tanx=1,∴锐角x等于45°,故选C.【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,同角三角函数的基本关系的应用,属于中档题.10.函数的单调递增区间为()A.(﹣∞,1)B.(2,+∞)C.(﹣∞,)D.(,+∞)【考点】对数函数的单调区间.【专题】计算题;转化思想.【分析】本题是一个复合函数,外层是一个递减的对数函数故求出函数的定义域以及内层函数的单调区间,依据复合函数的单调性判断规则做出判断求出内层函数的增区间即为复合函数的递增区间,从而找出正确选项即可.【解答】解:由题意,此复合函数,外层是一个递减的对数函数令t=x2﹣3x+2>0解得x>2或x<1由二次函数的性质知,t在(﹣∞,1)是减函数,在(2,+∞)上是增函数,由复合函数的单调性判断知函数的单调递增区间(﹣∞,1)故选A【点评】本题考查用复合函数的单调性求单调区间,此题外层是一对数函数,故要先解出函数的定义域,在定义域上研究函数的单调区间,这是本题易失分点,切记!11.若函数y=2sin(x+θ)的图象向右平移个单位,再向上平移2个单位后,它的一条对称轴是,则θ的一个可能的值是()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的图像与性质.【分析】求出函数平移后的解析式,然后利用它的对称轴方程,即可求出θ的一个可能的值.【解答】A解:函数y=2sin(x+θ)的图象向右平移个单位,再向上平移2个单位后,得到函数y=2sin(x+θ﹣)+2的图象,因为它的一条对称轴是,所以+θ﹣=kπ+,k∈Z,当k=0时,θ=,满足题意.故选:A.【点评】本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.12.如图,设点A是单位圆上的一定点,动点P从A出发在圆上按逆时针方向转一周,点P所旋转过的弧的长为l,弦AP的长为d,则函数d=f(l)的图象大致为()A.B.C.D.【考点】正弦函数的图象.【专题】压轴题;数形结合.【分析】根据题意和图形取AP的中点为D,设∠DOA=θ,在直角三角形求出d的表达式,根据弧长公式求出l的表达式,再用l表示d,根据解析式选出答案.【解答】解:如图:取AP的中点为D,设∠DOA=θ,则d=2|OA|sinθ=2sinθ,l=2θ|OA|=2θ,∴d=2sin,根据正弦函数的图象知,C中的图象符合解析式.故选:C.【点评】本题考查了正弦函数的图象,需要根据题意和弧长公式,表示出弦长d和弧长l的解析式,考查了分析问题和解决问题以及读图能力.二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题5分,共20分).13.函数的最小正周期是3 .【考点】三角函数的周期性及其求法.【专题】计算题.【分析】根据余弦函数的最小正周期的求法,将w=代入即可得到答案.【解答】解:∵∴T=故答案为3.【点评】本题主要考查三角函数的最小正周期的求法.高考对三角函数的考查以基础题为主,平时要注意基础知识的积累和练习.14.函数y=2x2﹣mx+3,当x∈[﹣2,+∞)时是增函数,则m的取值范围是m≤﹣8 .【考点】二次函数的性质.【分析】用二次函数图象性质,根据函数y=2x2﹣mx+3在[﹣2,+∞)上是增函数,可建立不等关系,从而得解.【解答】解:函数y=2x2﹣mx+3对称轴为x=∵函数y=2x2﹣mx+3在[﹣2,+∞)上是增函数∴∴m≤﹣8故答案为m≤﹣8【点评】本题的考点是二次函数的性质,主要考查函数的单调性,关键是掌握二次函数单调性的研究方法.15.已知,,以、为边作平行四边形OACB,则与的夹角的余弦为.【考点】平面向量数量积的运算.【专题】计算题;方程思想;向量法;平面向量及应用.【分析】由已知向量的坐标求出与的坐标,代入数量积求夹角公式得答案.【解答】解:∵,,∴,,则=3,.则=.故答案为:.【点评】本题考查平面向量的数量积运算,考查了数量积的坐标表示,是基础的计算题.16.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+)(A>0,ω≠0)的图象如图所示,则当时,电流强度是 5 .【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由函数的最值求出A,由周期求出ω,即可求得函数的解析式,再把t=代入,即得所求.【解答】解:由函数的图象可得=,解得ω=100π,且A=10,故函数I=10sin(100πt+),当时,电流强度是I=10sin(2π+)=10sin=5,故答案为 5.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共70分17.设集合A={x|a﹣2<x<a+2},B={x|﹣2<x<3}.(1)若A⊆B,求实数a的取值范围(2)若A∩B=∅,求实数a的取值范围.【考点】交集及其运算;集合的包含关系判断及应用.【专题】计算题;集合.【分析】(1)由A与B,以及A为B的子集,确定出a的范围即可;(2)由A与B,以及A与B的交集为空集,确定出a的范围即可.【解答】解:(1)∵A={x|a﹣2<x<a+2},B={x|﹣2<x<3},且A⊆B,∴,解得:0≤a≤1,则实数a的取值范围为[0,1];(2)∵A={x|a﹣2<x<a+2},B={x|﹣2<x<3},且A∩B=∅,∴a+2≤﹣2或a﹣2≥3,解得:a≤﹣4或a≥5,则实数a的取值范围为(﹣∞,﹣4]∪[5,+∞).【点评】此题考查了交集及其运算,集合的包含关系判断及应用,熟练掌握交集的定义是解本题的关键.18.化简: = .【考点】两角和与差的余弦函数;三角函数的化简求值.【专题】计算题;规律型;转化思想;三角函数的求值.【分析】直接利用两角和的余弦函数化简求解即可.【解答】解:==.故答案为:.【点评】本题考查两角和与差的三角函数,余弦函数的应用,考查计算能力.19.已知向量=(3,﹣4),=(6,﹣3),=(5﹣m,﹣(3+m)).(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若△ABC为直角三角形,且∠A为直角,求实数m的值.【考点】平面向量共线(平行)的坐标表示;数量积判断两个平面向量的垂直关系.【专题】计算题;向量法.【分析】(1)根据三点构成三角形的条件,即只要三点不共线,根据共线的条件确定出m的值,从而解出A、B、C能构成三角形时,实数m 满足的条件;(2)将几何中的角为直角转化为向量的语言,通过向量的数量积为零列出关于实数m的方程,求解出实数m.【解答】解:(1)若点A、B、C能构成三角形,则这三点不共线,∵,故知3(1﹣m)≠2﹣m∴实数时,满足条件.(2)若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0解得.【点评】本题考查向量的坐标形式的运算,考查向量共线与向量垂直的等价条件.关键要将几何问题通过向量工具解决出来,体现了转化与化归的思想.20.已知定义在R上的函数f(x)=asinωx+bcosωx(ω>0,a>0,b>0)的周期为π,,且f(x)的最大值为2.(1)写出f(x)的表达式;(2)写出函数f(x)的单调递增区间、对称中心、对称轴方程;(3)说明f(x)的图象如何由函数y=2sinx的图象经过怎样的变换得到.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin (ωx+φ)的图象变换.【专题】计算题.【分析】(1)先把函数化为y=Asin(ωx+∅)的形式,则周期T=,最大值为,再与所给函数的周期,最大值比较,就可得到两个含a,b,ω的等式,根据再得到一个含a,b,ω的等式,就可求出a,b,ω的值,得到f(x)的表达式.(2)由(1)中得到的函数f(x)的解析式,先化简为y=Asin(ωx+∅),把ωx+∅看成一个整体,就可借助基本正弦函数的单调性,对称轴,对称中心,求出f(x)的单调递增区间、对称中心、对称轴方程.(2)利用函数的平移,伸缩变换,把函数y=2sinx的图象向左平移个单位,得到函数的图象,再将图象的横坐标缩小到原来的,即得的图象.【解答】解:(1)f(x)=asinωx+bcosωx=sin(ωx+∅),其中φ为辅助角,且tanφ=,∴T==π,∴ω=2∵,∴asin+bcos=,即a=∵f(x)的最大值为2,∴=2,解得,b=1∴(2)由(1)得, =2sin(2x+)令,k∈Z,解得,∴函数的单调递增区间;令2x+=kπ,k∈Z,解得,x=∴函数的对称中心为;令2x+=kπ+,k∈Z,解得,对称轴方程为(3)的图象可先由函数y=2sinx的图象向左平移个单位,得到函数的图象,再将图象的横坐标缩小到原来的,即得的图象.【点评】本题主要考查y=Asin(ωx+∅)形式的函数的单调性,周期,对称性的判断,以及图象如何由基本正弦函数图象经过平移,伸缩变换得到.属于常规题.21.已知:、、是同一平面上的三个向量,其中=(1,2).(1)若||=2,且∥,求的坐标.(2)若||=,且+2与2﹣垂直,求与的夹角θ【考点】数量积判断两个平面向量的垂直关系;平面向量共线(平行)的坐标表示;数量积表示两个向量的夹角.【专题】计算题;待定系数法.【分析】(1)设出的坐标,利用它与平行以及它的模等于2,待定系数法求出的坐标.(2)由+2与2﹣垂直,数量积等于0,求出夹角θ的余弦值,再利用夹角θ的范围,求出此角的大小.【解答】解:(1)设(1分)∵∥且||=2∴,(3分)∴x=±2(5分)∴=(2,4)或=(﹣2,﹣4)(6分)(2)∵(+2)⊥(2﹣)∴(+2)•(2﹣)=0(8分)∴22+3•﹣22=0∴2||2+3||•||cosθ﹣2||2=0∴2×5+3××cosθ﹣2×=0∴cosθ=﹣1(10分)∴θ=π+2kπ∵θ∈[0,π]∴θ=π(12分)【点评】本题考查平面上2个向量平行、垂直的条件,以及利用2个向量的数量积求2个向量的夹角.22.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,对任意的a,b∈R都有f(a+b)=f(a)•f(b)且对任意的x∈R,恒有f(x)>0;(1)求f(0);(2)证明:函数y=f(x)在R上是增函数;(3)若f(x)•f(2x﹣x2)>1,求x的取值范围.【考点】抽象函数及其应用.【专题】计算题;函数思想;方程思想;转化思想;函数的性质及应用.【分析】(1)利用a=b=0,直接求解函数值即可.(2)结合已知条件,利用函数的单调性的定义直接证明即可.(3)利用已知条件转化为二次不等式求解即可.【解答】解:(1)令a=b=0,f(0)=[f(0)]2,又∵f(0)≠0,∴f(0)=1(2分)(2)证明:设任意x1<x2,则x2﹣x1>0,∴f(x2﹣x1)>1,f(x2)=f[(x2﹣x1)+x1]=f(x2﹣x1)•f(x1),∵f(x1)>0,∴,∴f(x2)>f(x1),∴函数y=f(x)在R上是增函数;(7分)(3)f(x)f(2x﹣x2)=f(3x﹣x2)>f(0),∵f(x)是R上增函数,∴3x﹣x2>0,∴0<x<3(12分)【点评】本题考查抽象函数的应用,赋值法以及转化思想的应用,考查计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型题】高一数学上期末模拟试卷(及答案)一、选择题1.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能2.设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c <<B .c b a <<C .c a b <<D .b a c <<3.已知函数3()3(,)f x ax bx a b =++∈R .若(2)5f =,则(2)f -=( )A .4B .3C .2D .14.已知0.11.1x =, 1.10.9y =,234log 3z =,则x ,y ,z 的大小关系是( ) A .x y z >> B .y x z >>C .y z x >>D .x z y >>5.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦6.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<7.若函数()2log ,?0,?0xx x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1e B .eC .21eD .2e8.某工厂产生的废气必须经过过滤后排放,规定排放时污染物的残留含量不得超过原污染物总量的0.5%.已知在过滤过程中的污染物的残留数量P (单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为0ktP P e -=⋅(k 为常数,0P 为原污染物总量).若前4个小时废气中的污染物被过滤掉了80%,那么要能够按规定排放废气,还需要过滤n 小时,则正整数n 的最小值为( )(参考数据:取5log 20.43=) A .8B .9C .10D .149.将甲桶中的a 升水缓慢注入空桶乙中,min t 后甲桶剩余的水量符合指数衰减曲线nt y ae =,假设过5min 后甲桶和乙桶的水量相等,若再过min m 甲桶中的水只有4a升,则m 的值为( )A .10B .9C .8D .510.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
若实数a 满足()()122a f f ->-,则a 的取值范围是 ( )A .1,2⎛⎫-∞ ⎪⎝⎭B .13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭C .3,2⎛⎫+∞⎪⎝⎭D .13,22⎛⎫⎪⎝⎭11.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭12.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()UP Q ⋃=A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}二、填空题13.已知幂函数(2)my m x =-在(0,)+∞上是减函数,则m =__________. 14.已知log log log 22a a ax yx y +-=,则x y的值为_________________. 15.已知()y f x =是定义在R 上的奇函数,且当0x 时,11()42x xf x =-+,则此函数的值域为__________.16.如图,矩形ABCD 的三个顶点,,A B C 分别在函数2logy x=,12y x =,22xy ⎛⎫= ⎪ ⎪⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为______.17.函数()()4log 521x f x x =-+-________. 18.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =______. 19.若函数()22xxe a x ef x -=++-有且只有一个零点,则实数a =______.20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知函数()2log f x x =(1)解关于x 的不等式()()11f x f x +->;(2)设函数()()21xg x f kx =++,若()g x 的图象关于y 轴对称,求实数k 的值.22.已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域;23.已知函数()x xk f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫= ⎪⎝⎭,求1(2)f 的值; (2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.24.为保障城市蔬菜供应,某蔬菜种植基地每年投入20万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入2万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的经验,发现种西红柿的年收入()f x 、种黄瓜的年收入()g x 与大棚投入x 分别满足()8f x =+1()124g x x =+.设甲大棚的投入为a ,每年两个大棚的总收入为()F a .(投入与收入的单位均为万元)(Ⅰ)求(8)F 的值.(Ⅱ)试问:如何安排甲、乙两个大棚的投入,才能使年总收人()F a 最大?并求最大年总收入.25.已知全集U =R ,集合{|25},{|121}M x x N x a x a =-=++. (Ⅰ)若1a =,求()R MN ;(Ⅱ)M N M ⋃=,求实数a 的取值范围.26.已知()()122x x f x a a R +-=+∈.(1)若()f x 是奇函数,求a 的值,并判断()f x 的单调性(不用证明); (2)若函数()5y f x =-在区间(0,1)上有两个不同的零点,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】因为f (x ) 在R 上的单调增,所以由x 2+x 1>0,得x 2>-x 1,所以21121()()()()()0f x f x f x f x f x >-=-⇒+>同理得2313()()0,()()0,f x f x f x f x +>+> 即f (x 1)+f (x 2)+f (x 3)>0,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行2.A解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2xy =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.3.D解析:D 【解析】 【分析】令()3g x ax bx =+,则()g x 是R 上的奇函数,利用函数的奇偶性可以推得(2)f -的值.【详解】令3()g x ax bx =+ ,则()g x 是R 上的奇函数, 又(2)3f =,所以(2)35g +=, 所以(2)2g =,()22g -=-,所以(2)(2)3231f g -=-+=-+=,故选D. 【点睛】本题主要考查函数的奇偶性的应用,属于中档题.4.A解析:A 【解析】 【分析】利用指数函数、对数函数的单调性直接比较. 【详解】解:0.1x 1.1 1.11=>=, 1.100y 0.90.91<=<=,22334z log log 103=<<,x ∴,y ,z 的大小关系为x y z >>. 故选A . 【点睛】本题考查三个数的大小的比较,利用指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.5.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.6.D解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-.令2()2log 10x x h x =-=,则22log 1x x =,21log 22xx x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.A解析:A 【解析】 【分析】直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自变量的范围,选择合适的式子求解即可. 【详解】因为函数2log ,0(),0x x x f x e x >⎧=⎨≤⎩,因为102>,所以211()log 122f ==-,又因为10-<,所以11(1)f ee--==, 即11(())2f f e=,故选A. 【点睛】该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.8.C解析:C 【解析】 【分析】根据已知条件得出415ke-=,可得出ln 54k =,然后解不等式1200kt e -≤,解出t 的取值范围,即可得出正整数n 的最小值. 【详解】由题意,前4个小时消除了80%的污染物,因为0ktP P e -=⋅,所以()400180%kP Pe --=,所以40.2k e -=,即4ln0.2ln5k -==-,所以ln 54k =, 则由000.5%ktP P e -=,得ln 5ln 0.0054t =-, 所以()23554ln 2004log 2004log 52ln 5t ===⨯5812log 213.16=+=, 故正整数n 的最小值为14410-=.故选:C. 【点睛】本题考查指数函数模型的应用,涉及指数不等式的求解,考查运算求解能力,属于中等题.9.D解析:D 【解析】由题设可得方程组()552{4n m n ae aa ae +==,由55122n nae a e =⇒=,代入(5)1142m n mn ae a e +=⇒=,联立两个等式可得512{12mn n e e ==,由此解得5m =,应选答案D 。