唐山市玉田县2020届中考数学第一次模拟试题有答案(扫描版)

合集下载

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省初中毕业生升学文化课模拟考试(一)数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷1I为非选择题.本试卷满分120分,考试时间为120分钟.卷I(选择题,共42分)注意事项:1.答卷I前.考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑答在试卷上无效.一、选择题(本大题共16个小题,共42分,1~I 0小题各3分;11~16小题各2分.在每小题给出的四个选项中只有项是符合题目要求的)1.下列各数中,比-2大2的数是()A.0 B.-4 C.2 D.42.把一个三角板按下图所示位置放置,∠1=40°,∠2=()A.40°B.45°C.50°D.60°3.下图中几何体的主视图是()A.B.C.D.4.下列对代数式1ab-的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数5.如图,直线a∥b∥c,45AB BC=,若DF=9,则EF的长度为()A .9B .5C .4D .3 6.下列变形正确的是( ) A .-2(a+2)=a -2 B .()121212a a --=-+ C .-a+1=-(a -1) D .1-a=-(a+1) 7.关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( ) A .a >0 B .a >-1 C .a <1 D .a <1且a ≠08.在新型冠状病毒防控期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片上:,把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知P (一次抽到36)=25,这5张卡片上数据的方差为( ) A .35.9 B .0.22 C .0.044 D .09.如图,五边形ABCDE 中,AE ∥BC ,BE 交于点O ,四边形OCDE 是平行四边形,若△ABE 的面积是5,四边形OCDE 的面积是6,则△AOE 的面积是( )A .2B .2.5C .3D .410.如图,点A (0,4),B (3,4),以原点O 为位似中心,把线段AB 缩短为原来的一半,得到线段CD ,其中点C 与点A 对应,点D 与点B 对应,则点D 的横坐标...为( )A .2B .2或-2C .32 D .32或32- 11.如图,在△ABC 中,AB <BC ,在BC 上取一点P ,使得PC=BC -PA .根据圆规作图的痕迹,可以用直尺成功找到点P 的是( )A.B.C.D.12.如图,四边形ABCD中,AD∥BC,AD=12BC,CD=BC,点E,F分别是BD,CD的中点,连接AE,EF,AF,若BC=2,AF=85,则BD=()A.35B.95C.125D.313.关于x方程2311x mx-=-的解是正数,m的值可能是()A.23B.12C.0 D.-114.如图,在6×6的正方形网格中,经过格点A,B,C,⊙O点P是ACB上任意一点,连接AP,BP,则tan∠APB的值为()A .12B C D 15.点(a ,b )是反比例函数2y x=-的图象上一点,若a <2,则b 的值不可能...是( ) A .-2 B .13- C .2 D .316.如图,在等边△ABC 中,AB=D 在△ABC 内或其边上,AD=2,以AD 为边向右作等边△ADE ,连接CD ,CE ,设CE 的最小值为m ;当ED 的延长线经过点B 时,∠DEC=n °,则m ,n 的值分别为( )A B C .2,55 D .2,60卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.若单项式212xyx 与n x y -是同类项,则n 的值为 . 18.定义新运算:对于任意实数a ,b ,都有a ⊕b=a (b+1)-b ,等式右边是通常的加法、减法及乘法运算,比如:3⊕2=3(2+1)-2=9-2=7. (1)2⊕(-3)= ;(2)若(-2)⊕x 的值等于-5,则x= .19.如图,ABCD 中,AB=7,BC=5,CH ⊥AB 于点H ,CH=4,点P 从点D 出发,以每秒1个单位长度的速度沿DC —CH 向点H 运动,到点H 停止,设点P 的运动时间为t .(1)AH= ;(2)若△PBC 是等腰三角形,则t 的值为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别为a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b -2c)的值.21.(本小题满分9分)发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352.例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(-11)=.探究:一个两位数,十位上的数字是m,个位上的数字为n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出....计算结果中十位上的数字.22.(本小题满分9分)自2020年初的新型冠状病毒疫情爆发以来,疫悄时时刻刻都在牵动全国人民的心.小明在做好自我防控的同时,也从数据分析的角度去看待疫情动态,他从2月10日起,连续7天记录了全国每天新增确诊病例人数,并绘制了如图所示的折线统计图.(注:本题所考查的人数均保留整数)(1)①小明关注这7天每天新增确诊病例人数的最高值、最低值和中位数,井计算了平均数.其中中位数是人,平均数是人;②上述哪个统计量能反映这7天新增确诊病例人数的一般水平?(2)小明又接着记录了连续5天的全国新增确诊病例人数,如下表:①请在图中补画出这5天每天新增确诊病例人数的折线统计图;②求2月10日至2月21日每天新增确诊病例人数的中位数.(3)请你分别通过对上述两个中位数的比较和全部折线图来说明每天新增确诊病例人数的升降趋势.23.(本小题满分9分)如图,Rt△ABC中,∠C=90°,AC=BC=4,P是BC上一点(不与B,C重合),连接AP,将AP绕点A逆时针旋转90°得到AQ,连接BQ,分别交AC,AP于点D,E,作QF⊥AC于点F.(1)求证:QF=AC;(2)若P是BC的中点,求tan∠ADQ的值;(3)若△AEQ的内心在QF上,直接写出....BP的长.24.(本小题满分10分)学校计划拿出一笔钱给一些班级配置篮球和排球.若给每班1个篮球和2个排球,花完这笔钱刚好配置30个班;若给每班2个篮球和1个排球,花完这笔钱刚好配置20个班.设每个篮球a元,每个排球b元.(1)用含b的代数式表示a;(2)现在给每班x个篮球和y个排球,花完这笔钱刚好配置10个班.①求y与x的函数解析式;②怎样的配置方案,可以使每班配置的排球最少?25.(本小题满分10分)如图,正方形ABCD中,AB=3,P使BC边上一点(不包括B,C),连接AP,点E,B关于直线AP对称,连接DE并延长交AP的延长线于点F,以点B为圆心,BF长为半径作圆,与BE交于点G.(1)当∠PAB=26°时,∠AED=°;(2)求证:直线DF时⊙B的切线;(3)当时,求GF的长;(4)若DE=4,直接写出....EF的长.26.(本小题满分12分)如图,抛物线y=ax2+bx+3经过点A(-3,0),B(1,0),顶点为点M,与y轴交于点C,点P是抛物线上一点,PH⊥y轴于点H,射线PH交抛物线的对称轴于点D.(1)求抛物线的解析式及顶点M的坐标;(2)若点P在第四象限,OH=5,求PD的长;(3)m>0,点E(m,y1),F(-1-m,y2)均在抛物线上,比较y1,y2的大小,并说明理由;(4)若点P在第二象限,连接PA,PC,AC,直接写出....△PAC面积的最大值.。

2024届河北省唐山市玉田县重点名校中考数学全真模拟试卷含解析

2024届河北省唐山市玉田县重点名校中考数学全真模拟试卷含解析

2024学年河北省唐山市玉田县重点名校中考数学全真模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,OP平分∠AOB,PC⊥OA于C,点D是OB上的动点,若PC=6cm,则PD的长可以是()A.7cm B.4cm C.5cm D.3cm2.估计56﹣24的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间,则四边形ABFD的周长为()3.如图,将周长为8的△ABC沿BC方向平移1个单位长度得到DEFA.8 B.10 C.12 D.164.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.5.化简16)A.±4 B.4 C.2 D.±26.在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为()A.(﹣3,﹣4)或(3,4)B.(﹣4,﹣3)C.(﹣4,﹣3)或(4,3)D.(﹣3,﹣4)7.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.800sinα米D.800tanα米8.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是()A.中位数是2 B.众数是17 C.平均数是2 D.方差是29.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣510.下列计算正确的是()A.2a2﹣a2=1 B.(ab)2=ab2C.a2+a3=a5D.(a2)3=a6二、填空题(共7小题,每小题3分,满分21分)11.在Rt△ABC中,∠C=90∘,若AB=4,sin A =35,则斜边AB边上的高CD的长为________.12.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,△ABC的面积=_____cm1.13.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是______.14.如图,在边长为3的正方形ABCD中,点E是BC边上的点,EC=2,∠AEP=90°,且EP交正方形外角的平分线CP于点P,则PC的长为_____.15.当x为_____时,分式3621xx-+的值为1.16.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为_____.17.如图,在△OAB中,C是AB的中点,反比例函数y=kx(k>0)在第一象限的图象经过A,C两点,若△OAB面积为6,则k的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.19.(5分)如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,延长CD、BA交于点E,连接AC、BD交于点F,作AH⊥CE,垂足为点H,已知∠ADE=∠ACB.(1)求证:AH是⊙O的切线;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若23DFFO,求证:CD=DH.20.(8分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?21.(10分)如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E 的过程中,线段MN 长度的最大值.22.(10分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x 分米.(1)求x 的取值范围;(2)若∠CPN=60°,求x 的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y ,求y 关于x 的关系式(结果保留π).23.(12分)如图所示是一幢住房的主视图,已知:120BAC ∠=︒,房子前后坡度相等,4AB =米,6AC =米,设后房檐B 到地面的高度为a 米,前房檐C 到地面的高度b 米,求-a b 的值.24.(14分)已知:如图,□ABCD 中,BD 是对角线,AE ⊥BD 于E ,CF ⊥BD 于F. 求证:BE=DF.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【题目详解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选A.【题目点拨】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.2、C【解题分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【题目详解】=624562636=54∵49<54<64,∴54,∴624的值应在7和8之间,故选C.【题目点拨】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.3、B【解题分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选C.“点睛”本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.4、A【解题分析】根据三视图的定义即可判断.【题目详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【题目点拨】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.5、B【解题分析】根据算术平方根的意义求解即可.【题目详解】4,故选:B.【题目点拨】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.6、A【解题分析】分顺时针旋转,逆时针旋转两种情形求解即可.【题目详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【题目点拨】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.7、D【解题分析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=ACAB,即可解决问题.【题目详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=AC AB,∴AB=800 tan tanACαα=,故选D.【题目点拨】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.8、A【解题分析】试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.9、A【解题分析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.10、D【解题分析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案. 【题目详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【题目点拨】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.二、填空题(共7小题,每小题3分,满分21分)11、48 25【解题分析】如图,∵在Rt△ABC中,∠C=90∘,AB=4,sinA=35 BCAB=,∴BC=125,∴165 =,∵CD是AB边上的高,∴CD=AC·sinA=16348= 5525⨯.故答案为:48 25.12、18【解题分析】三角形的重心是三条中线的交点,根据中线的性质,S △ACD =S △BCD ;再利用勾股定理逆定理证明BG ⊥CE ,从而得出△BCD 的高,可求△BCD 的面积.【题目详解】∵点G 是△ABC 的重心, ∴12362DE GD GC CD GD =====,, ∵GB =3,EG =GC =4,BE =GA =5,∴222BG GE BE +=,即BG ⊥CE ,∵CD 为△ABC 的中线,∴ACD BCD SS =, ∴212218.2ABC ACD BCD BCD S S S S BG CD cm =+==⨯⨯⨯= 故答案为:18.【题目点拨】考查三角形重心的性质,中线的性质,旋转的性质,勾股定理逆定理等,综合性比较强,对学生要求较高.13、10﹣1【解题分析】如图所示点B′在以E 为圆心EA 为半径的圆上运动,当D 、B′、E 共线时时,此时B′D 的值最小,根据勾股定理求出DE ,根据折叠的性质可知B′E=BE=1,即可求出B′D .【题目详解】如图所示点B′在以E 为圆心EA 为半径的圆上运动,当D 、B′、E 共线时时,此时B′D 的值最小,根据折叠的性质,△EBF ≌△EB′F ,∴EB′⊥B′F ,∴EB′=EB ,∵E 是AB 边的中点,AB=4,∴AE=EB′=1,∵AD=6,∴DE=22+=,62210∴B′D=110﹣1.【题目点拨】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B′在何位置时,B′D的值最小是解题的关键.14、2【解题分析】在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.【题目详解】在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE2211+2,∴PC2.2.【题目点拨】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15、2【解题分析】分式的值是1的条件是,分子为1,分母不为1.【题目详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【题目点拨】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.16、8【解题分析】根据反比例函数的性质结合点的坐标利用勾股定理解答.【题目详解】解:菱形OABC 的顶点A 的坐标为(-3,-4),5,=则点B 的横坐标为-5-3=-8,点B 的坐标为(-8,-4),点C 的坐标为(-5,0)则点E 的坐标为(-4,-2),将点E 的坐标带入y=k x(x <0)中,得k=8. 给答案为:8.【题目点拨】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.17、4【解题分析】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,根据C 是AB 的中点得到CN 为AMB 的中位线,然后设MN NB a ==,CN b =,2AM b =,根据OM AM ON CN ⋅=⋅,得到OM a =,最后根据面积32236a b ab =⋅÷==求得2ab =,从而求得224k a b ab =⋅==.【题目详解】分别过点A 、点C 作OB 的垂线,垂足分别为点M 、点N ,如图点C 为AB 的中点,∴CN 为AMB 的中位线,∴MN NB a ==,CN b =,2AM b =,OM AM ON CN ⋅=⋅,∴()2OM b OM a b ⋅=+⋅,∴OM a =,∴32236AOB S a b ab =⋅÷==,∴2ab =,∴224k a b ab =⋅==.故答案为:4.【题目点拨】本题考查了反比例函数的比例系数的几何意义及三角形的中位线定理,关键是正确作出辅助线,掌握在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2k ,且保持不变.三、解答题(共7小题,满分69分)18、(1)10;(2)0.9;(3)44%【解题分析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可.【题目详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);故答案为10;(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,∴星期日学生日访问总量为:3×30%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:330% 2.525%2.525%⨯-⨯⨯=44%; 故答案为44%.考点:折线统计图;条形统计图19、(1)证明见解析;(2)34;(3)证明见解析. 【解题分析】 (1)连接OA ,证明△DAB ≌△DAE ,得到AB =AE ,得到OA 是△BDE 的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF ∽△AOF ,根据相似三角形的性质得到CD =14CE ,根据等腰三角形的性质证明. 【题目详解】(1)证明:连接OA ,由圆周角定理得,∠ACB =∠ADB ,∵∠ADE =∠ACB ,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中, BAD EAD DA DABDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD ,∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线;(2)解:由(1)知,∠E =∠DBE ,∠DBE =∠ACD ,∴∠E =∠ACD ,∴AE =AC =AB =1.在Rt △ABD 中,AB =1,BD =8,∠ADE =∠ACB ,∴sin∠ADB=68=34,即sin∠ACB=34;(3)证明:由(2)知,OA是△BDE的中位线,∴OA∥DE,OA=12 DE.∴△CDF∽△AOF,∴CD DFAO OF=23,∴CD=23OA=13DE,即CD=14CE,∵AC=AE,AH⊥CE,∴CH=HE=12 CE,∴CD=12 CH,∴CD=DH.【题目点拨】本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.20、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元【解题分析】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,根据题意得方程组得:,…2分解方程组得:,∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,∴,…6分解得:50≤x≤53,…7分∵x 为正整数,∴共有4种进货方案…8分; (3)因为B 种纪念品利润较高,故B 种数量越多总利润越高,因此选择购A 种50件,B 种50件.…10分总利润=50×20+50×30=2500(元) ∴当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元.…12分21、(1)抛物线l 2的函数表达式;y=x 2﹣4x ﹣1;(2)P 点坐标为(1,1);(3)在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.1.【解题分析】(1)由抛物线l 1的对称轴求出b 的值,即可得出抛物线l 1的解析式,从而得出点A 、点B 的坐标,由点B 、点E 、点D 的坐标求出抛物线l 2的解析式即可;(2)作CH ⊥PG 交直线PG 于点H ,设点P 的坐标为(1,y ),求出点C 的坐标,进而得出CH =1,PH =|3﹣y |,PG =|y |,AG =2,由PA =PC 可得PA 2=PC 2,由勾股定理分别将PA 2、PC 2用CH 、PH 、PG 、AG 表示,列方程求出y 的值即可;(3)设出点M 的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x ≤4时,点M 位于点N 的下方,表示出MN 的长度为关于x 的二次函数,在x 的范围内求二次函数的最值;②当4<x ≤1时,点M 位于点N 的上方,同理求出此时MN 的最大值,取二者较大值,即可得出MN 的最大值.【题目详解】(1)∵抛物线l 1:y =﹣x 2+bx +3对称轴为x =1,∴x =﹣21b ()⨯-=1,b =2, ∴抛物线l 1的函数表达式为:y =﹣x 2+2x +3,当y =0时,﹣x 2+2x +3=0,解得:x 1=3,x 2=﹣1,∴A (﹣1,0),B (3,0),设抛物线l 2的函数表达式;y =a (x ﹣1)(x +1),把D (0,﹣1)代入得:﹣1a =﹣1,a =1,∴抛物线l 2的函数表达式;y =x 2﹣4x ﹣1;(2)作CH ⊥PG 交直线PG 于点H ,设P 点坐标为(1,y ),由(1)可得C 点坐标为(0,3),∴CH =1,PH =|3﹣y |,PG =|y |,AG =2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2= =y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P点坐标为(1,1);(3)由题意可设M(x,x2﹣4x﹣1),∵MN∥y轴,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣32)2+252,显然﹣1<32≤4,∴当x=32时,MN有最大值12.1;②当4<x≤1时,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣32)2﹣252,显然当x>32时,MN随x的增大而增大,∴当x=1时,MN有最大值,MN=2(1﹣32)2﹣252=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.【题目点拨】本题是二次函数与几何综合题,主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.22、(1)0≤x≤10;(1)x=6;(3)y=﹣94πx1+54πx.【解题分析】(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;(1)根据等边三角形的判定和性质即可求解;(3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.【题目详解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范围是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等边三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即当∠CPN=60°时,x=6;(3)连接MN、EF,分别交AC于B、H,∵PM=PN=CM=CN,∴四边形PNCM是菱形,∴MN与PC互相垂直平分,AC是∠ECF的平分线,PB=PC12x22-==6-1x2,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣12x)1=6x﹣14x1.∵CE=CF,AC是∠ECF的平分线,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴MBEH=CMCE,∴2226()18 MBEH=,∴EH1=9•MB1=9•(6x﹣14x1),∴y=π•EH1=9π(6x﹣14x1),即y=﹣94πx 1+54πx . 【题目点拨】此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.23、1a b -=【解题分析】过A 作一条水平线,分别过B ,C 两点作这条水平线的垂线,垂足分别为D ,E ,由后坡度AB 与前坡度AC 相等知∠BAD=∠CAE=30°,从而得出BD=2、CE=3,据此可得.【题目详解】解:过A 作一条水平线,分别过B ,C 两点作这条水平线的垂线,垂足分别为D ,E ,∵房子后坡度AB 与前坡度AC 相等,∴∠BAD=∠CAE ,∵∠BAC=120°,∴∠BAD=∠CAE=30°,在直角△ABD 中,AB=4米,∴BD=2米,在直角△ACE 中,AC=6米,∴CE=3米,∴a-b=1米.【题目点拨】本题考查了解直角三角形的应用-坡度坡角问题,解题的关键是根据题意构建直角三角形,并熟练掌握坡度坡角的概念.24、(1)证明:∵ABCD 是平行四边形∴AB=CDAB ∥CD∴∠ABE=∠CDF又∵AE⊥BD,CF⊥BD∴∠AEB=∠CFD=∴△ABE≌△CDF∴BE=DF【解题分析】证明:在□ABCD中∵AB∥CD∴∠ABE=∠CDF…………………………………………………………4分∵AE⊥BD CF⊥BD∴∠AEB=∠CFD=900……………………………………………………5分∵AB=CD∴△ABE≌△CDF…………………………………………………………6分∴BE=DF。

唐山市2020版中考数学试卷(I)卷

唐山市2020版中考数学试卷(I)卷

唐山市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016七上·江津期中) ﹣5的相反数是()A .B .C . ﹣5D . 52. (2分)(2019·永康模拟) 据开化旅游部门统计,2018年开化各景点共接待游客约为12926000人次,数据12926000用科学记数法表示为()A . 0.12926×108B . 1.2926×106C . 12.926×105D . 1.2926×1073. (2分)(2018·福州模拟) 如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A .B .C .D .4. (2分) (2019八上·盘龙镇月考) 若xa=4,xb=5,则 x3a﹣2b的值为()A .B .C . 25. (2分)若分式的值为0,则x的值为()。

A . 1B . -1C . ±1D . 26. (2分)下列运算正确的是()A . a﹣2a=aB . (﹣a2)3=﹣a6C . a6÷a2=a3D . (x+y)2=x2+y27. (2分)要得到二次函数y=-x2+2x-2的图象,需将y=-x2的图象()A . 向左平移2个单位,再向下平移2个单位B . 向右平移2个单位,再向上平移2个单位C . 向左平移1个单位,再向上平移1个单位D . 向右平移1个单位,再向下平移1个单位8. (2分) (2018九上·永定期中) 若关于x的一元二次方程(k﹣1)x2+6 x +3=0有实数根,则实数k的取值范围为()A . k<4B . k<4,且k≠1C . k≤4D . k≤4,且k≠19. (2分) (2018八上·长春月考) 如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC 的度数为A . 90°B . 60°C . 45°10. (2分) (2018七上·武昌期末) 在数轴上表示有理数a ,﹣a ,﹣b-1的点如图所示,则()A . ﹣b<﹣aB . <C . >D . b-1<a11. (2分) (2017八下·三门期末) 如图所示,向一个半径为R、容积为V的球形容器内注水,则能够反映容器内水的体积y与容器内水深间的函数关系的图象可能是()A .B .C .D .12. (2分)如图,已知Rt△ABC中,AC=b,BC=a,D1是斜边AB的中点,过D1作D1E1⊥AC于E1 ,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2 ,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3 ,…,如此继续,可以依次得到点D4 , D5 ,…,Dn ,分别记△BD1E1 ,△BD2E2 ,△BD3E3 ,…,△BDnEn的面积为S1 ,S2 , S3 ,…Sn .则Sn为()A .B .C .D .二、填空题 (共5题;共6分)13. (1分)(2012·宿迁) 分解因式:ax2﹣ay2=________.14. (1分)(2017·阜康模拟) 若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为________.15. (1分)(2017·淄博) 运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是________.16. (1分)如图,在△ABC中,∠ACB=90°,AB=10,AC=8,P是AB边上的动点(不与点B重合),点B关于直线CP的对称点是B′,连接B′A,则B′A长度的最小值是________ .17. (2分) (2017七下·延庆期末) 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…,按照这样的规律排列下去,则第9个图形由________个圆组成,第n个图形由________个圆组成.三、解答题 (共7题;共63分)18. (5分)解不等式:≥x-2并把解集在数轴上表示出来。

2020年河北省中考数学模拟试卷(一)(含答案解析)

2020年河北省中考数学模拟试卷(一)(含答案解析)

2020年河北省中考数学模拟试卷(一)一、选择题(本大题共16小题,共42.0分)1.2018年泰兴国际半程马拉松全程约为21097.5米,将21097.5用科学记数法表示为()A. 21.0975×103B. 2.10975×104C. 21.0975×104D. 2.10975×1052.若∠1+∠2=90°,∠1+∠3=90°,则()A. ∠2+∠3=180°B. ∠2+∠3=90°C. ∠2=∠3D. ∠2−∠3=90°3.关于√11的叙述,错误的是()A. √11是有理数B. 面积为11的正方形的边长是√11C. √11是方程m2−11=0的一个解D. 在数轴上可以找到表示√11的点4.已知练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x元,那么下列所列方程正确的是()A. 5(x−2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x−2)=145.不等式组{x+2>0x−3>0的解集是()A. x>3B. x>2C. x>−2D. x<36.用配方法解一元二次方程2x2−4x−2=1的过程中,变形正确的是()A. 2(x−1)2=1B. 2(x−2)2=5C. (x−1)2=52D. (x−2)2=527.如图,在RtΔABC中,∠ACB=90∘,CD是∠ACB的平分线,交AB于点D,过点D分别作AC、BC的平行线DE、DF,则下列结论错误的是()A. ∠ACD=∠BCDB. FC=DFC. 四边形DECF是正方形D. AD=BD8.若反比例函数y=1−2mx的图象经过点A(x1,y1)和点B(x2,y2),且当0<x1<x2时,y1>y2>0,则m的取值范围是()A. m<0B. m>0C. m<12D. m>129.如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A. 1个B. 2个C. 3个D. 4个10.有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()A. 13B. 23C. 16D. 1211.关于x的分式方程mx−1+31−x=1的解为正数,则m的取值范围是()A. m>2B. m>2且m≠3C. m<2D. m>3且m≠212.如图,正方形ABCD.AB=4,点E为BC边上点,连接AE延长至点F连接BF,若tan∠FAB=tan∠EBF=13,则AF的长度是()A. 5√5−2√102B. 8√10−3√55C. 5√106D. 3√10213.在平行四边形ABCD中,对角线AC与BD交于点O,∠DAC=40°,∠CBD=25°,则∠COD等于()A. 60°B. 65°C. 70°D. 75°14.若ab<0,则y=ax+b的图象可能是()A. B. C. D.15.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中−1<x1<0,1<x2<2,下列结论:①4a+2b+c<0,②2a+b<0,③b2+8a>4ac,其中结论正确的有()A. 0个B. 1个C. 2个D. 3个16.如图,抛物线y=ax2−6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P在⊙C上,连接OP,若OP的最小值为3,则C点坐标是()A. (5√22,−5√22) B. (4,−5) C. (3,−5) D. (3,−4)二、填空题(本大题共3小题,共11.0分)17.方程3x2−9x=0的解为______.18.体育委员小金带了500元去买体育用品,已知一个足球x元,一个篮球y元.则代数式500−3x−2y表示的实际意义是______________________19.定义新运算“⊕”如下:当a≥b时,a⊕b=b2,当a<b时,a⊕b=a−1,则当x=−2时,(1⊕x)⊕(−3⊕x)的值是______.三、计算题(本大题共1小题,共8.0分)20.当x=2时,代数式2x2+(3−c)x+c的值是12,求当x=−3时这个代数式的值.四、解答题(本大题共6小题,共59.0分)21.如果一个自然数能表示成两个自然数的平方差,那么称这个数为“智慧数”.例如:0=02−02,所以0 就是一个“智慧数”;又如:1=12−02,3=22−12,4=22−02,5=32−22,7= 42−32;所以1,3,4,5,7 都是“智慧数”(1)请判断15和16是不是“智慧数”,并说明理由;(2)请说明自然数中所有奇数都是“智慧数”;(3)自然数中4的倍数是“智慧数”吗⋅为什么⋅22.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元;(1)求键盘和鼠标的单价各是多少元?(2)经过与经销商洽谈,键盘打八折,鼠标打八五折.若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘多少个?23.如图:△ABC绕点A逆时针方向旋转得到△ADE,其中∠B=50°,∠C=60°.(1)若AD平分∠BAC时,求∠BAD的度数.(2)若AC⊥DE时,AC与DE交于点F,求旋转角的度数.(x>0)的图象G与直线l:y=−x+7交于A(1,a),B两24.在平面直角坐标系xOy中,函数y=kx点.(1)求k的值;(2)记图象G在点A,B之间的部分与线段AB围成的区域(不含边界)为W.点P在区域W内,若点P的横纵坐标都为整数,直接写出点P的坐标.25.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.26.已知:直线y=12x+1与y轴交于A,与x轴交于D,抛物线y=12x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标.【答案与解析】1.答案:B解析:【试题解析】本题主要考查科学记数法.根据科学记数法的记数方法进行解答.解:21097.5=2.10975×104.故选B.2.答案:C解析:本题考查了余角的性质,掌握同角的余角相等是解题的关键.由已知条件可知,∠1和∠2互余,∠1和∠3互余,根据同角的余角相等,可得∠2=∠3.解:∵∠1+∠2=90°,∠1+∠3=90°,∴∠2=∠3.故选C.3.答案:A解析:本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.根据无理数的定义,及平方根的定义即可判定选择项.解:A.√11是无理数,原来的说法错误,符合题意;B.面积为11的正方形边长是√11,原来的说法正确,不符合题意;C.m2−11=0,m2=11,m=±√11,∴√11是方程m2−11=0的一个解,原来的说法正确,不符合题意;D.在数轴上可以找到表示√11的点,原来的说法正确,不符合题意.故选A .4.答案:A解析:列方程解应用题的关键是找出题目中的相等关系.等量关系为:5本练习本总价+3支水性笔总价=14.解:水性笔的单价为x 元,那么练习本的单价为(x −2)元.∴5(x −2)+3x =14,故选:A .5.答案:A解析:本题考查的是解一元一次不等式组,分别求出各不等式的解集,再求出其公共解集即可.解: {x +2>0①x −3>0②, 解不等式①得x >−2,解不等式②得x >3,则该不等式组的解集为x >3.故选A .6.答案:C解析:本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.将常数项移到方程的右边后,把二次项系数化为1后两边配上一次项系数一半的平方即可得.解:∵2x 2−4x =3,∴x 2−2x =32,则x 2−2x +1=1+32,即(x −1)2=52,故选:C .解析:本题考查了正方形的判定,角平分线的定义,平行线的性质,正确的识别图形是解题的关键.根据已知条件推出四边形DECF是平行四边形,又可知四边形DECF是矩形,根据角平分线的定义得到∠FCD=∠ECD,故A正确;推出四边形DECF是正方形,故C正确;根据正方形的性质得到CF=DF,故B正确.解:∵DE//AC,DF//BC,∴四边形DECF是平行四边形,∵∠ACB=90°,∴四边形DECF是矩形,∵CD是∠ACB的平分线,∴∠FCD=∠ECD,故A正确;∵∠FCD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,∴四边形DECF是正方形,故C正确;∴CF=DF,故B正确,故选D.8.答案:C解析:解:∵当0<x1<x2时,y1>y2>0,∴反比例函数图象在第一、三象限,∴1−2m>0,∴m<1.2故选C.根据反比例函数的性质由0<x1<x2时,y1>y2>0得到1−2m>0,然后解不等式即可.(k为常数,k≠0)的图象是双曲线,本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.解析:本题利用了垂径定理求解,注意圆上的点到AB距离为2cm的点不唯一,有三个.根据垂径定理计算.解:根据题意,得在弦AB上方有2个点、下方有1个点到弦AB所在直线的距离为2.故选C.10.答案:A解析:解:观察图形知:6张扑克中有2张方块,所以从中任抽一张,则抽到方块的概率=26=13.故选:A.直接利用概率公式求解.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.答案:B解析:解:分式方程去分母得:m−3=x−1,解得:x=m−2,根据题意得:m−2>0,且m−2≠1,解得:m>2且m≠3.故选:B.分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据分式方程的解为正数列出关于m 的方程,求出方程的解即可得到m的范围.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.12.答案:D解析:解:∵四边形ABCD是正方形,∴∠ABC=90°,∵tan∠FAB=BEAB =tan∠EBF=13,AB=4,∴BE=43,∠FAB=∠EBF,∴AE=√AB2+BE2=4√103,又∵∠F=∠F,∴△BEF∽△FBA,∴BFAF =EFBF=BEAB=13,设EF=x,则BF=3x,AF=9x,∵AF=AE+EF,∴9x=4√103+x,解得:x=√106,∴AF=AE+EF=4√103+√106=3√102;故选:D.由三角函数得出BE=43,由勾股定理求出AE=2+BE2=4√103,证出△BEF∽△FBA,得出BFAF=EF BF =BEAB=13,设EF=x,则BF=3x,AF=9x,由AF=AE+EF得出方程,解方程得出EF的长,即可得出AF的长.本题考查了正方形的性质、勾股定理、三角函数、相似三角形的判定与性质等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.13.答案:B解析:根据∠COD=∠DAO+∠ADO,只要求出∠ADO即可.本题考查平行四边形的性质、三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.解:∵四边形ABCD是平行四边形,∴AD//BC,∴∠ADB=∠CBD=25°,∴∠COD=∠DAO+∠ADO=40°+25°=65°.故选B.14.答案:A解析:利用ab<0,得到a<0,b>0或b<0,a>0,然后根据一次函数图象与系数的关系进行判断.本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小.解:∵ab<0,∴a<0,b>0或b<0,a>0,当a<0,b>0,图象经过一、二、四象限;当b<0,a>0,图象经过一、三、四象限,故选A.15.答案:D解析:考查二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数等.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,<1,对称轴为x=−b2a∵a<0,∴2a+b<0,故②正确;∵当x=2时,y=4a+2b+c<0,故①正确;∵4ac−b2>2,a<0,4a∴4ac−b2<8a,∴b2+8a>4ac,故③正确;故选:D.16.答案:D解析:解:∵y=ax2−6ax+5a(a>0)与x轴交于A、B两点,∴A(1,0)、B(5,0),∵y=ax2−6ax+5a=a(x−3)2−4a,∴顶点C(3,−4a),当点O、P、C三点共线时,OP取最小值为3,∴OC=OP+2=5,∴√9+16a2=5(a>0),∴a=1,∴C(3,−4),故选:D.首先根据二次函数的解析式求出点A、B、C三点的坐标,再由当点O、P、C三点共线时,OP取最小值为3,列出关于a的方程,即可求解.本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.17.答案:x1=0,x2=3解析:解:3x(x−3)=0,3x=0或x−3=0,所以x1=0,x2=3.故答案为x1=0,x2=3.利用因式分解法解方程.本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.答案:体育委员买了3个足球、2个篮球后剩余的经费解析:本题主要考查了列代数式,在解题时要根据题意表示出各项的意义是本题的关键.本题需先根据买一个足球x元,一个篮球y元的条件,表示出2x和3y的意义,最后得出正确答案即可.解:∵买一个足球x元,一个篮球y元,∴3x表示体育委员买了3个足球,2y表示买了2个篮球,∴代数式500−3x−2y表示体育委员买了3个足球、2个篮球后剩余的经费.故答案为体育委员买了3个足球、2个篮球后剩余的经费.19.答案:16解析:解:把x=−2代入得:原式=[1⊕(−2)]⊕[−3⊕(−2)]=4⊕(−4)=16,故答案为:16把x=−2代入,并利用新运算计算即可求出值.此题考查了整式的加减−化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.20.答案:解:把x=2代入2x2+(3−c)x+c=12,得:8+2(3−c)+c=12,解得:c=2,则这个代数式为2x2+x+2,则当x=−3时,原式=2×(−3)2−3+2=18−3+2=17.解析:此题考查了代数式求值,解一元一次方程,熟练掌握运算法则是解本题的关键.把x=2代入代数式使其值为12,求出c的值,进而确定出所求代数式,再将x=−3代入,即可得解.21.答案:解:(1)15和16 是“智慧数”,理由如下:∵15=82−72,16=52−32,∴15 和16 是“智慧数”.(2)设自然数中所有奇数为2k+1(k是自然数),∵(k+1)2−k2=k2+2k+1−k2=2k+1 ,∴2k+1是“智慧数”,因此,自然数中所有奇数都是“智慧数”.(3)自然数中4 的倍数是“智慧数”,理由:设自然数中4 的倍数为4k(k是自然数),∵ (k +1)2−(k −1)2=k 2+2k +1−k 2+2k −1=4k ,∴ 4k 是“智慧数”,因此,自然数中 的倍数都是“智慧数”.解析:本题考查平方差公式的应用,考查了推理能力与计算能力,属于较难题.(1)利用 15=82−72,16=52−32,即可得出结论;(2)设自然数中所有奇数为2k +1(k 是自然数),则(k +1)2−k 2=k 2+2k +1−k 2=2k +1 , 即可得出结论;(3)利用 (k +1)2−(k −1)2=2k ×2=4k 即可解答.22.答案:解:(1)设键盘的单价为x 元/个,鼠标的单价为y 元/个,根据题意得:{3x +y =1902x +3y =220解得:{x =50y =40答:键盘的单价为50元/个,鼠标的单价为40元/个.(2)设购买键盘m 个,则购买鼠标(50−m)个,根据题意得:50×0.8m +40×0.85(50−m)≤1820,解得:m ≤20.所以最多可购买键盘20个答:最多可购买键盘20个.解析:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.(1)设键盘的单价为x 元/个,鼠标的单价为y 元/个,根据“购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买键盘m 个,则购买鼠标(50−m)个,根据总价=单价×折扣率×数量,结合总费用不超过1820元,即可得出关于m 的一元一次不等式,解之取其最大值即可得出结论.23.答案:解:(1)∵∠B =50°,∠C =60°,∴∠BAC =180°−50°−60°=70°,∵AD 平分∠BAC ,∴∠BAD=1∠BAC=35°;2(2)∵△ABC旋转得到△ADE,∠C=60°,∴∠E=∠C=60°,∵AC⊥DE,∴∠AFE=90°,∴∠CAE=90°−∠E=90°−60°=30°,∵∠CAE是旋转角,∴旋转角的度数为30°.解析:本题主要考查三角形的内角和定理,角平分线的定义及旋转的性质.(1)可利用三角求出形的内角和定理求出∠BAC的度数,再利用角平分线的定义即可求解;(2)根据旋转的性质可求∠E得度数,再利用直角三角形的性质可求解∠CAE,即为所求的旋转角的度数.24.答案:解:(1)把A(1,a)代入y=−x+7得,a=−1+7=6,∴A(1,6),中可得k=6;把(1,6)代入y=kx(x>0)的图象如图:(2)画出直线y=−x+7和函数y=6x由图象可知:点P的坐标.(2,4),(3,3),(4,2).中可得k的值;解析:(1)把A(1,a)代入y=−x+7求得a,得到A(1,6),把(1,6)代入y=kx(2)画出直线y=−x+7和函数y=6的图象可得点P.x本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,并利用数形结合的思想.25.答案:解:(1)∵BA=BC,∠BAC=60°,M是AC的中点,∴BM⊥AC,AM=MC,∵将线段PA绕点P顺时针旋转2α得到线段PQ,∴AM=MQ,∠AMQ=120°,∴CM=MQ,∠CMQ=60°,∴△CMQ是等边三角形,∴∠ACQ=60°,∴∠CDB=30°;(2)如图2,连接PC,AD,∵AB=BC,M是AC的中点,∴BM⊥AC,即BD为AC的垂直平分线,∴AD=CD,AP=PC,PD=PD,在△APD与△CPD中,∵{AD=CD PD=PD PA=PC,∴△APD≌△CPD(SSS),∴∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC,∠ADC=2∠1,∠4=∠PCQ=∠PAD,∴∠PAD+∠PQD=∠4+∠PQD=180°,∴∠APQ+∠ADC=360°−(∠PAD+∠PQD)=180°,∴∠ADC=180°−∠APQ=180°−2α,∴2∠CDB=180°−2α,∴∠CDB=90°−α;(3)∵∠CDB=90°−α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°−2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∵点P在线段BM上运动,∠PAD最大为2α,∠PAD最小等于α,∴2α>180°−2α>α,∴45°<α<60°.解析:(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ 是等边三角形,即可得出答案;(2)首先利用已知得出△APD≌△CPD ,进而得出∠PAD +∠PQD =∠PQC +∠PQD =180°,即可求出;(3)由(2)得出∠CDB =90°−α,且PQ =QD ,进而得出∠PAD =∠PCQ =∠PQC =2∠CDB =180°−2α,得出α的取值范围即可.本题是几何变换综合题,考查了旋转的性质,等边三角形的判定和性质,全等三角形的判定与性质,得出∠APQ +∠ADC =360°−(∠PAD +∠PQD)=180°是解题关键.26.答案:解:(1)∵直线y =12x +1与y 轴交于点A , ∴A(0,1),∵y =12x 2+bx +c 过(1,0)和(0,1),则{12+b +c =0c =1, 解得{b =−32c =1. ∴抛物线的解析式为y =12x 2−32x +1;(2)设点E 的横坐标为m ,则它的纵坐标为12m 2−32m +1,即E 点的坐标(m,12m 2−32m +1),又∵点E 在直线y =12x +1上,∴12m 2−32m +1=12m +1 解得m 1=0(舍去),m 2=4,∴E 的坐标为(4,3).如图, ,(Ⅰ)当A 为直角顶点时,过A 作AP 1⊥DE 交x 轴于P 1点,设P 1(a,0),易知D 点坐标为(−2,0),由Rt △AOD∽Rt △P 1OA 得DO OA =OA OP 1,即21=1a ,∴a=12,∴P1(12,0);(Ⅱ)同理,当E为直角顶点时,过E作EP2⊥DE交x轴于P2点,由Rt△AOD∽Rt△P2ED得,DO OA=DE EP2,即21=3√5EP2,∴EP2=3√52,∴DP2=3√5×√52=152,∴OP2=152−2=112,P2点坐标为(112,0).(Ⅲ)当P为直角顶点时,过E作EF⊥x轴于F,设P3(b,0),由∠OP3A+∠FP3E=90°,得∠OP3A=∠FEP3,∴Rt△AOP3∽Rt△P3FE,∴AOP3F =OP3EF,即14−b=b3,解得b1=3,b2=1,∴此时的点P3的坐标为(1,0)或(3,0),综上所述,满足条件的点P的坐标为(12,0)或(1,0)或(3,0)或(112,0).解析:本题考查了待定系数法求二次函数的解析式,直角三角形的性质,一次函数的应用,相似三角形的判定及性质,勾股定理,二次函数的应用二次函数的性质,直线和抛物线的交点等;分类讨论的思想是解题的关键.(1)根据直线的解析式求得点A(0,1),那么把A,B坐标代入y=12x2+bx+c即可求得函数解析式;(2)将直线解析式与抛物线的解析式结合即可求得点E的坐标.△PAE是直角三角形,应分点P为直角顶点,点A是直角顶点,点E是直角顶点三种情况探讨.。

唐山市2020版中考数学一模试卷D卷

唐山市2020版中考数学一模试卷D卷

唐山市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2020七上·江都期末) 如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x﹣y的值为()A . -2B . 6C .D . 22. (2分)如图是由5个大小相同的正方体组合而成的几何体,它的主视图是()A .B .C .D .3. (2分) (2016七下·太原期中) 蚕丝是最细的天然纤维,它的截面直径约为0.000001米,这一数据用科学记数法表示为()A . 1×106米B . 1×10﹣5米C . 1×10﹣6米D . 1×105米4. (2分) (2018九上·金华期中) 任意掷一枚骰子,下列情况出现的可能性比较大的是()A . 面朝上的点数是3B . 面朝上的点数是奇数C . 面朝上的点数小于2D . 面朝上的点数不小于35. (2分)(2017·包头) 已知下列命题:①若>1,则a>b;②若a+b=0,则|a|=|b|;③等边三角形的三个内角都相等;④底角相等的两个等腰三角形全等.其中原命题与逆命题均为真命题的个数是()A . 1个B . 2个C . 3个D . 4个6. (2分) (2016九上·恩施月考) 如图,直线AB,AD与⊙O相切于点B,D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是()A . 70°B . 105°C . 100°D . 110°二、填空题 (共10题;共13分)7. (1分) (2019八下·乌兰浩特期中) 已知,则 =________8. (1分) (2018九下·盐都模拟) 甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为=16.7,乙比赛成绩的方差为=28.3,那么成绩比较稳定的是________(填“甲”或“乙”).9. (1分) (2016九上·仙游期末) 将抛物线先向右平移3个单位长度,再向上平移2个单位长度后得到新的抛物线的顶点坐标为 ________ .10. (1分) (2018九上·十堰期末) 如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30°,弦EF∥AB,连接OC交EF于H点,连接CF,若CF=5,则HE的长为________.11. (3分)抛物线y=﹣x2﹣2x+3用配方法化成y=a(x﹣h)2+k的形式是________,抛物线与x轴的交点坐标是________,抛物线与y轴的交点坐标是________.12. (1分)如图,点A的坐标为(8,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF、等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为________.13. (1分) (2017八下·宜兴期中) 如图,在正方形ABCD中,AB=2cm,对角线AC、BD交于点O,点E以一定的速度从A向B移动,点F以相同的速度从B向C移动,连结OE、OF、EF.则线段EF的最小值是________cm.14. (1分)网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x,则依题意可得关于x的一元二次方程为________.15. (1分) (2019七上·哈尔滨月考) 平面直角坐标系中,点A的坐标为,平行于x轴的直线AB与一三象限的角平分线相交于B点,则点B的坐标为________.16. (2分)(2019·周至模拟) 如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,若MO=5,则ON=________.根据图象猜想,线段MN的长度的最小值________.三、解答题 (共11题;共102分)17. (10分) (2019八下·越城期末) 计算或化简:(1);(2)18. (5分) (2017八上·曲阜期末) 先化简再求值:(﹣)÷ (取一个你认为合适的数)19. (12分) (2020·甘孜) 为了解同学们最喜欢一年四季中的哪个季节,数学社在全校随机抽取部分同学进行问卷调查,根据调查结果,得到如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了________名同学;扇形统计图中,“春季”所对应的扇形的圆心角的度数为________;(2)若该学校有1500名同学,请估计该校最喜欢冬季的同学的人数;(3)现从最喜欢夏季的3名同学A,B,C中,随机选两名同学去参加学校组织的“我爱夏天”演讲比赛,请用列表或画树状图的方法求恰好选到A,B去参加比赛的概率.20. (6分) (2019九上·鱼台期末) 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)21. (10分)(2017·抚顺模拟) 如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若AE=6,CE=2 .①求⊙O的半径②求线段CE,BE与劣弧所围成的图形的面积(结果保留根号和π)22. (5分)(2017·抚顺模拟) 如图,小明在大楼45米高(即PH=45米)的窗户P处进行观测,测得山坡上A处的俯角为15°,山脚B处得俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:.点P、H、B、C、A 在同一个平面上.点H、B、C在同一条直线上且PH⊥HC,求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732.23. (4分)如图,是反比例函数y= 的图象中的一支,请回答(1)另一支在第________象限.(2) m的取值范围为________.(3)点A(﹣2,y1)和B(﹣1,y2)都在该图象上,则y1________y2(填>或<或=)(4)若直线y=﹣x与图象交于点P,且线段OP=6,则m=________.24. (10分)如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.(1)请直接写出线段BE与线段CD的关系:;(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;②当AC=时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由25. (15分)某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y(万件)与销售单价x(元)之间的部分数据如下:销售单价x(元/件)…20253035…每月销售量y(万件)…60504030…(1)求出每月销售量y(万件)与销售单价x(元)之间的函数关系式.(2)求出每月的利润z(万元)与销售单x(元)之间的函数关系式.(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)26. (10分)在等边三角形ABC中,点D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点.(1)求∠F的度数;(2)若CD=4,求DF的长.27. (15分)(2019·容县模拟) 如图,抛物线的图象与轴交于两点(点在点的左边)与轴交于点 ,抛物线的顶点为 .(1)求点的坐标;(2)点为线段上一点(点不与点重合),过点作轴的垂线,与直线交于点,与抛物线交于点,过点作交抛物线于点,过点作轴于点 ,可得矩形 .如图,点在点左边,当矩形的周长最大时,求此时的的面积;(3)在(2)的条件下,当矩形的周长最大时,连接,过抛物线上一点作轴的平行线,与直线交于点 (点在点的上方)若,求点的坐标.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共13分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共11题;共102分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、。

唐山市2019-2020学年中考数学模拟试卷

唐山市2019-2020学年中考数学模拟试卷

(2)证明△ABC≌△EDC(AAS)即可求解;
(3)当∠ABC=α =90°时,△ABC 的外心在其直角边上,∠ABC=α >90°时,△ABC 的外心在其外
部,即可求解.
【详解】
解:(1)在四边形 BADC 中,∠B+∠ADC=360°﹣∠BAD﹣∠DCB=180°,
而∠ADC+∠EDC=180°,
刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,B 90 , A 30 , BC 6cm;图②中, D 90 , E 45 , DE 4cm .图③是刘卫同学所做的一个 实验:他将 DEF 的直角边 DE 与 ABC 的斜边 AC 重合在一起,并将 DEF 沿 AC 方向移动.在移 动过程中, D 、 E 两点始终在 AC 边上(移动开始时点 D 与点 A 重合). (1)在 DEF 沿 AC 方向移动的过程中,刘卫同学发现: F 、 C 两点间的距离逐渐 ▲ .
C.三角形内角和为 180° D.叙利亚不会发生战争 8.下列说法中正确的是( ) A.两条对角线互相垂直的四边形是菱形 B.两条对角线互相平分的四边形是平行四边形 C.两条对角线相等的四边形是矩形 D. 两条对角线互相垂直且相等的四边形是正方形 9.如图,矩形 ABCD 中,AB=2, AD=1, 分别以 AB、CD 为直径做半圆,两弧交于点 E、F,则线段 EF 的长 为( )
于点 C.若△OBC 和△OAD 的周长相等,则 OD 的长是( )
52
A.2
B.2 2
C.
D.4
2
12.如图,将图 1 中阴影部分拼成图 2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式
()
A.(a+b)(a﹣b)=a2﹣b2

河北省唐山市2020年(春秋版)数学中考一模试卷A卷

河北省唐山市2020年(春秋版)数学中考一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)如果一个数的平方等于它的倒数,那么这个数一定是()A . 0B . 1C . -1D . 1或-12. (2分) (2019九下·东台期中) 下列计算正确的是()A . 2x-x=1B . x2•x3=x6C . (-xy3)2=x2y6D . (m-n)2=m2-n23. (2分) (2019九上·福田期中) 如图所示的几何体的左视图是()A .B .C .D .4. (2分) (2020九下·静安期中) 某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是()成绩(环)78910次数1432A . 8、8B . 8、8.5C . 8、9D . 8、105. (2分) (2016九上·九台期末) 一副扑克牌,去掉大小王,从中任抽一张,恰好抽到的牌是6的概率是()A .B .C .D .6. (2分) (2019八上·乐东月考) 下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A . 2,2,5B . 3,2,6C . 1,2,2D . 1,2,37. (2分) (2018八上·武汉月考) 如图,已知∠MON=30°,点 A1、A2、A3、…在射线 ON 上,点 B1、B2、B3、…在射线 OM 上;△A1B1A2、△A2B2A3、△A3B3A4、…均为等边三角形.若 OA1=1,则△A2015B2015A2016 的边长为()A . 4028B . 4030C . 22014D . 220158. (2分)(2020·铜仁模拟) 如图所示,已知A(,y1),B(2,y2)为反比例函数图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A . ( ,0)B . (1,0)C . ( ,0)D . ( ,0)二、填空题 (共10题;共10分)9. (1分) (2020八上·重庆开学考) 新冠状病毒直径约为厘米,将用科学记数法表示为________.10. (1分)(2017·杭州模拟) 分解因式:ma2﹣4ma+4m=________.11. (1分)将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=________度.12. (1分)若x,y为实数,y= ,则4y﹣3x的平方根是________.13. (1分)(2017·广州) 如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=________.14. (1分) (2019八下·瑞安期中) 如果关于的方程有两个实数根,则非负整数的值是________.15. (1分) (2019九下·常德期中) 如图,AB是⊙O直径,CD是弦,若∠AOC =140°,则∠D的度数是________.16. (1分)某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:①月销量y(件)与售价x(元)的关系为y=-2x+400;②工商部门限制销售价x的范围为70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________(填序号).17. (1分) (2019九上·呼和浩特期中) 抛物线向左平移2个单位后,得到的函数关系式是,则 ________, ________.18. (1分) (2019八上·呼和浩特期中) 在平面直角坐标系中,,,若的面积为,且点在坐标轴上,则符合条件的点的坐标为________.三、解答题 (共10题;共89分)19. (10分) (2017八下·蒙阴期末) 计算:.20. (5分)(2017·准格尔旗模拟) 计算题(1)计算:()﹣1﹣(π+3)0﹣cos30°+ +| |(2)先化简,再求值:( +1)÷ ,其中x是满足不等式组的最小整数.21. (2分)(2017·市北区模拟) 为了提高学生汉字书写的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试方法是:听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<6020.04二60≤x<70100.2三70≤x<8014b四80≤x<90a0.32五90≤x<10080.16请根据表格提供的信息,解答以下问题:(1)直接写出表中a=________,b=________;(2)请补全右面相应的频数分布直方图;(3)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为________.(4)请根据得到的统计数据,简要分析这些同学的汉字书写能力,并为提高同学们的书写汉字能力提一条建议(所提建议不超过20字)22. (6分)(2018·兰州) 在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(1)画树状图列表,写出点M所有可能的坐标;(2)求点在函数的图象上的概率.23. (5分)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?24. (10分) (2017八下·萧山期中) 如图,在平行四边形中,是的中点,延长到点,使,连结,(1)求证:四边形是平行四边形;(2)若,,,求的长.25. (10分)(2017·黄石港模拟) 如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线;(2)当BC=4,AC=6时,求⊙O的半径;(3)在(2)的条件下,求线段BG的长.26. (11分)(2020·乐平模拟) 如图,抛物线()的顶点为,对称轴与轴交于点,当以为对角线的正方形的另外两个顶点、恰好在抛物线上时,我们把这样的抛物线称为美丽抛物线,正方形为它的内接正方形.(1)当抛物线是美丽抛物线时,则 ________;当抛物线是美丽抛物线时,则 ________;(2)若抛物线是美丽抛物线时,则请直接写出,的数量关系;(3)若是美丽抛物线时,(2),的数量关系成立吗?为什么?(4)系列美丽抛物线(为小于的正整数)顶点在直线上,且它们中恰有两条美丽抛物线内接正方形面积比为.求它们二次项系数之和.27. (15分)(2020·舟山模拟) 如图,在矩形ABCD中,AB=6 ,BC=3 动点P从点A出发,沿AC 以每秒4个单位长度的速度向终点C运动.过点P(不与点A、C重合)作EF⊥AC,交AB或BC于点E,交AD或DC 于点F,以EF为边向右作正方形EFGH设点P的运动时间为t秒.(1)①AC=________.②当点F在AD上时,用含t的代数式直接表示线段PF的长________.(2)当点F与点D重合时,求t的值.(3)设方形EFGH的周长为l,求l与t之间的函数关系式.(4)直接写出对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值.28. (15分)(2020·铜川模拟) 已知抛物线L:y=x2+bx+c经过点M(2,﹣3),与y轴交于点C(0,﹣3).(1)求抛物线L的表达式;(2)试判断抛物线L与x轴交点的情况;(3)平移该抛物线,设平移后的抛物线为L′,抛物线L′的顶点记为P,它的对称轴与x轴交于点Q,已知点N(2,﹣8),怎样平移才能使得以M、N、P、Q为顶点的四边形为菱形?参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共89分)19-1、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、26-4、27-1、27-2、27-3、27-4、28-1、28-2、28-3、。

2020年河北中考数学第一次模拟模拟试题+答案解析


则下列说法不.正.确.的是( )
休闲类型 休闲方式 人数
A.当地老年人选择 A 型休闲方式的人数最少 B.当地老年人选择 B 型休闲方式的频率是 7
30 C.估计当地 6 万名老年人中约有 1.8 万人选择
C 型休闲方式 D.这次抽样调查的样本容量是 1500
A
老年大学
50
B
老年合唱队 350
C
老年舞蹈队 400
1
3.如图 1,OA 是表示北偏东 55°方向的一条射线,则 OA 的反向延长线 OB 表示的是( )
A.北偏西 55°方向上的一条射线
B.北偏西 35°方向上的一条射线
C.南偏西 35°方向上的一条射线
D.南偏西 55°方向上的一条射线
3.
【答案】D
【知识点】方位角
【难度】易
【分值】3 分
【解析】OA 的反向延长线 OB 表示的是:南偏西 55°方向上的一条射线或西偏南 35°方向
1.下列是中心对称图形但不是轴对称图形的是( )
A 1.
B
C
D
【答案】A
【知识点】轴对称图形
【难度】易
【分值】3 分
【解析】A.不是轴对称图形,是中心对称图形,符合题意;
B.是轴对称图形,不是中心对称图形,不合题意;
C.是轴对称图形,也是中心对称图形,不合题意;
D.是轴对称图形,也是中心对称图形,不合题意;故选:A.
故三种视图面积最小的是左视图.故选 C.
6.不等式 2x﹣1<4(x+1)的解集表示在如图 3 所示的数轴上,则阴影部分盖住的数是( )
A.﹣1
B.﹣2
C.﹣1.5
D.﹣2.56.【案】D【知识点】解一元一次不等式

2020年中考数学第一次模拟试题附答案

2020年中考数学第一次模拟试题附答案一、选择题1.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个2.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分3.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++= 4.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3 B .x ≥-3且1x ≠ C .1x ≠ D .3x ≠-且1x ≠5.已知AC 为矩形ABCD 的对角线,则图中1∠与2∠一定不相等的是( )A .B .C .D .6.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( )A .110°B .125°C .135°D .140°8.如果关于x 的分式方程11222ax x x-+=--有整数解,且关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7 B .8 C .4 D .59.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .5210.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1 C .1,2 D .1,2,311.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .18二、填空题13.已知62x =+,那么222x x -的值是_____.14.若a b =2,则222a b a ab--的值为________. 15.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______16.使分式的值为0,这时x=_____. 17.分式方程32xx 2--+22x-=1的解为________. 18.当m =____________时,解分式方程533x m x x-=--会出现增根.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)20.分解因式:2x2﹣18=_____.三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.23.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .24.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A 级:非常满意;B 级:满意;C 级:基本满意;D 级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数______.(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为,,,,a b c d e )中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e 的概率.25.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C .2.B解析:B【解析】试题分析:A .对角线相等的平行四边形才是矩形,故本选项错误;B .矩形的对角线相等且互相平分,故本选项正确;C .对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D .矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B .考点:矩形的判定与性质.3.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 4.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x ≥-3,∴x ≠1,∴自变量x 的取值范围是:x≥-3且x≠1.故选B .5.D解析:D【解析】【分析】【详解】解:A 选项中,根据对顶角相等,得1∠与2∠一定相等;B 、C 项中无法确定1∠与2∠是否相等;D 选项中因为∠1=∠ACD ,∠2>∠ACD ,所以∠2>∠1.故选:D6.C解析:C【解析】从上面看,看到两个圆形,故选C .7.B解析:B【解析】【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.8.C解析:C【解析】解关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可.【详解】 由分式方程11222ax x x -+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =22a-, ∵关于x 的分式方程11222ax x x -+=--有整数解,且a 为整数 ∴a =0、3、4关于x 的不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩整理得4x a x >⎧⎨>⎩ ∵不等式组0322(1)x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4∴a≤4于是符合条件的所有整数a 的值之和为:0+3+4=7故选C .【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.9.C解析:C【解析】分析:延长GH 交AD 于点P ,先证△APH ≌△FGH 得AP=GF=1,GH=PH=12PG ,再利用勾股定理求得,从而得出答案.详解:如图,延长GH 交AD 于点P ,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.10.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.11.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=∴(22x=,∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.14.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a=2b时,原式=22b bb=32.故答案为32.点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.15.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.16.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.考点:分式方程的解法17.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m 由分母可知分式方程的增根是3当x=3时3-5=-m 解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m ,由分母可知,分式方程的增根是3,当x=3时,3-5=-m ,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a 次a 次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合 解析:2160【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.(1)y2与x的函数关系式为y2=-2x+200(1≤x<90);(2)W=22x180x2?000(1x50),120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元.【解析】【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x<50、50≤x<90两种情况分别列函数关系式可得;(3)当1≤x<50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x<90时,依据一次函数性质可得最值情况,比较后可得答案.【详解】(1)当1≤x<50时,设y1=kx+b,将(1,41),(50,90)代入,得k b41,50k b90,+=⎧⎨+=⎩解得k1,b40,=⎧⎨=⎩∴y1=x+40,当50≤x<90时,y1=90,故y1与x的函数解析式为y1=x40(1x50), 90(50x90);+≤<⎧⎨≤<⎩ 设y2与x的函数解析式为y2=mx+n(1≤x<90),将(50,100),(90,20)代入,得50m n100,90m n20,+=⎧⎨+=⎩解得:m2,n200,=-⎧⎨=⎩故y2与x的函数关系式为y2=-2x+200(1≤x<90).(2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x2+180x+2000;当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.22.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.23.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A =∠F AB ,根据等腰三角形的判定与性质,可得∠DAF =∠DF A ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=22FC FB+=2234+=5,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.24.(1)60;(2)54°;(3)1500户;(4)见解析,2 5 .【解析】【分析】(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A 级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中e的结果,根据概率公式即可得答案.【详解】(1)21÷35%=60(户)故答案为60(2)9÷60×360°=54°,C级户数为:60-9-21-9=21(户),补全条形统计图如所示:故答案为:54°(3)9 10000150060⨯=(户)(4)由题可列如下树状图:由树状图可知,所有可能出现的结果共有20种,选中e 的结果有8种∴P (选中e )=82205=. 【点睛】本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.25.(1)223a 5ab 3b -+-;(2)m m 2-. 【解析】【分析】 ()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可;()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-; (2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- m m 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.。

河北省唐山市2020版中考数学一模试卷B卷

河北省唐山市2020版中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019八下·安庆期中) 一元二次方程(a-3)x2-2x+a2-9=0 的一个根是 0, 则 a 的值是()A . 2B . 3C . 3 或-3D . -32. (2分)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A .B .C .D .3. (2分)(2016·安陆模拟) 若规定sin(α﹣β)=sinαcosβ﹣cosαsinβ,则sin15°=()A .B .C .D .4. (2分) (2019九上·萧山期中) 设函数,,若当时,,则()A . 当时,B . 当时,C . 当时,D . 当时,5. (2分) (2016七下·兰陵期末) 为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A . 样本容量是200B . D等所在扇形的圆心角为15°C . 样本中C等所占百分比是10%D . 估计全校学生成绩为A等大约有900人6. (2分)若二次函数y=x2+x+m(m﹣2)的图象经过原点,则m的值必为()A . 0或2B . 0C . 2D . 无法确定7. (2分)如图,在菱形ABCD中,E为边CD上一点,连结AE并延长,交BC的延长线于点F,若CE=1,DE=2,则CF长为()A . 1B . 1.5C . 2D . 2.58. (2分)(2016·石家庄模拟) 抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表所示.给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴是在y轴的右侧;③抛物线一定经过点(3,0);④在对称轴左侧,y随x增大而减小.从表可知,下列说法正确的个数有()A . 1个B . 2个C . 3个D . 4个9. (2分)某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A . 200(1﹣x)2=162B . 200(1+x)2=162C . 162(1+x)2=200D . 162(1﹣x)2=20010. (2分) A(﹣4,﹣5),B(﹣6,﹣5),则AB等于()A . 4B . 2C . 5D . 311. (2分)(2017·天门模拟) 若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1 , 0),(x2 , 0),且x1<x2 ,图象上有一点M(x0 , y0)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y0的解;③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0;⑤x0<x1或x0>x2 ,其中正确的有()A . ①②B . ①②④C . ①②⑤D . ①②④⑤12. (2分)(2017·洛宁模拟) 如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A . (sinα,sinα)B . (cosα,cosα)C . (cosα,sinα)D . (sinα,cosα)二、填空题 (共4题;共4分)13. (1分)列等式表示“x的三分之一减y的差等于6”是________.14. (1分)(2017·通州模拟) 如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为________.15. (1分)△ABC中,∠C=90°,AB=8,cosA=,则AC的长是________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省唐山市玉田县2017届九年级数学下学期第一次模拟试题
玉田县2017年九年级第一次模拟考试
数学参考答案及评分标准
一、选择题


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16



B C D A B C D A C B B D B C C D

二、填空题

17.2ba 18.62 19.(1)49(2) 123n.
三、解答题
20. 解:(π﹣2017)0+|1﹣3|+2﹣1﹣2sin60°

=1+3﹣1+21﹣2×23………………………………………………………4分
=1+3﹣1+21﹣3 …………………………………………………………5分
=21 ……………………………………………………………………………7分
21.(1)证明:∵△ABC≌△ABD, ∴∠ABC=∠ABD, ……………………………1分
∵CE∥BD,∴∠CEB=∠DBE, …………………………………………2分
∴∠CEB=∠CBE. …………………………………………………………3分
(2)四边形CEDB是菱形. ………………………………………………………4分
理由:∵△ABC≌△ABD,∴BC=BD, ……………………………………5分
∵∠CEB=∠CBE,∴CE=CB, ……………………………………6分
∴CE=BD ……………………………………………………………7分
∵CE∥BD,∴四边形CEDB是平行四边形, ………………………8分
∵BC=BD,∴四边形CEDB是菱形.…………………………………9分

22. 解:(1)∵m=(2,4),n=(2,﹣3),

∴nm=2×2-4×(﹣3)…………………………………………………2分
=16; …………………………………………………………………3分
(2)两函数图象相交. ………………………………………………………………4分
理由如下:

∵m=(x﹣a,1),n=(2x,x+1),

∴y=nm=(x﹣a)·2x-(x+1)=2x2﹣2ax-x-1
∴y=2x2﹣(2a+1)x -1……………………………………………………6分
联立方程:x2﹣(2a+1)x-1=-x+1,
化简得:x2﹣ax -1=0,…………………………………………………………7分
∵△=b2﹣4ac= a2+4>0,
∴方程有两个不相等的实数根,………………………………………………8分
∴两函数图象相交.……………………………………………………………9分

23.解:(1)9÷0.18=50,………………………………………………………………1分
∴m=50×0.06=3, ……………………………………………………… 2分
a
=50﹣9﹣21﹣3﹣2=15, ………………………………………………3分

b
=15÷50=0.30,…………………………………………………………4分

n
=2÷50=0.04; …………………………………………………………5分

(2)王晓的测试成绩在70≤x≤80范围内;………………………………………7分
(3)画树状图为: …………………………………………………………………9分
(五位同学请用A、B、C、D、E表示,其中小明为A,小敏为B)


共有20种等可能的结果,其中小明、小敏同时被选中的结果为2种,所以小
明、小敏同时被选中的概率=101202.………………………………10分
24.解:(1)恒温系统在这天保持大棚内温度20℃的时间为:12-2=10(小时)…2分
(2)把B(12,20)代入y=xk中得:
k
=12×20=240 ……………………………………………………………4分

(3)设AD的解析式为:y=mx+n
把(0,10)、(2,20)代入y=mx+n中得:




20210nm
n

解得,105nm
∴AD的解析式为:y=5x+10 ……………………………………………5分
当y=15时,15=5x+10,x=1 ……………………………………………6分

15=x240,x=15240=16 ………………………………………………………8分
∴16﹣1=15
答:恒温系统在一天24小时内大棚温度在15~20℃的时间有15小时…10分
25.解:发现:(1)如图12-1,
∵四边形ABCD是矩形,
∴∠A=∠C=90°,AB=CD=6.AD=BC=8,

∴BD=10862222ABAD, …………………………………2分
(2)当t=21时,BP=2,
∵PQ⊥BD,∴∠BPQ=∠C=90°,
∵∠PBQ=∠DBC,∴△PBQ∽△CBD,

∴CDPQBCPB,即682PQ,

∴PQ=23, 即正方形PQMN的边长为23 …………………………………4分
思考:∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,
由(1)可知,△PBQ∽△CBD,

∴BDBQDCPQBCPB,∴10684BQPQt,
∴PQ=3t,BQ=5t,
∴3t=8﹣5t,∴t=1.…………………………………7分
探究:如图,令⊙O与直线QM相切于点H,
QM与CD交于点E
.…………………………………8分

∵EC=43(8﹣5t),DO=3t,

∴OE=6﹣3t﹣43(8﹣5t)=43t,
∵OH⊥MQ,∴∠OHE=90°,
∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,
∵∠OHE=∠C=90°,∴△OHE∽△BCD,

∴BDOEBCOH,

∴104388.0t,…………………………9分
∴t=34,即当t=34s时,⊙O与直线QM相切.………………………………11分
26.解:(1)把x=0代入y=﹣3x+3得y=3,
∴B(0,3),…………………………………………………………………1分
把B(0,3)代入y=ax2﹣2ax+a+4,
∴3=a+4,………………………………………………………………………2分
∴a=﹣1,………………………………………………………………………3分
∴y=﹣x2+2x+3, ………………………………………………………………4分
(2) 令y=0代入得:0=﹣x2+2x+3,
∴x=﹣1或3,
∴抛物线与x轴的交点横坐标为﹣1和3,
∵M在抛物线上,且在第一象限内,
∴0<m<3,
令y=0代入y=﹣3x+3,
∴x=1,
∴A的坐标为(1,0),
由题意知:M的坐标为(m,﹣m2+2m+3),
S=S四边形OAMB﹣S
△AOB
=S△OBM+S△OAM﹣S△AOB
=21×m×3+21×1×(﹣m2+2m+3)﹣21×1×3

=mm2521-2………………………………………………………………6分
∵S =﹣21(m﹣25)2+825
∴当m=25时,S取得最大值825.……………………………………………7分
(3)①由(2)可知:当m=25时,y=﹣(25)2+2×25+3=47, ……………8分
∴M′的坐标为(25,47); …………………………………………9 分
②5 ……………………………………………………………………… 12分
详解:过B点作BD垂直于l′于D点,过M′点作M′E垂直于l′于E点,
则BD=d1,M′E=d2,

∵S△AB M′=21×AC×(d1+d2)
当d1+d2取得最大值时,AC应该取得最小值,
∴AC⊥B M′时,AC取得最小值.

∵B(0,3)和M′(25,47)

∴BM′=455,
∵S△AB M′=21×AC×BM′=825,
∴AC=5.

相关文档
最新文档