旋转与全等三角形
专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。
模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。
其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。
手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。
1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。
结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。
2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。
结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。
3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。
结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。
4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。
结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。
例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。
三角形全等之手拉手模型倍长中线截长补短法旋转寻找三角形全等方法归纳总结精修订

三角形全等之手拉手模型倍长中线截长补短法旋转寻找三角形全等方法归纳总结SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180°(3)OA平分∠BOC变形:例1.如图在直线ABC的同一侧作两个等边三角形ABD∆,连结AE与∆与BCECD,证明(1)DBC∆≅ABE∆(2)DCAE=(3)AE与DC之间的夹角为︒60(4)DFB≅∆AGB∆(5)CFB≅∆EGB∆(6)BH平分AHC∠(7)ACGF//变式精练1:如图两个等边三角形ABD∆,连结AE与CD,∆与BCE证明(1)DBC∆≅ABE∆(2)DCAE=(3)AE与DC之间的夹角为︒60(4)AE与DC的交点设为H,BH平分AHC∠变式精练2:如图两个等边三角形ABD∆,∆与BCE连结AE与CD,证明(1)DBCABE∆∆≅(2)DCAE=(3)AE与DC之间的夹角为︒60(4)AE与DC的交点设为H,BH平分AHC∠例2:如图,两个正方形ABCD与DEFG,连结AG,,二者相交于点HCE问:(1)CDEADG∆∆是否成立≅(2)AG是否与CE相等(3)AG与CE之间的夹角为多少度(4)HD是否平分AHE∠例3:如图两个等腰直角三角形ADC与AG,,二者相交于点HEDG,连结CE问:(1)CDE∆是否成立ADG∆≅(2)AG是否与CE相等(3)AG与CE之间的夹角为多少度(4)HD是否平分AHE∠例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD , 问:(1)DBC ABE ∆≅∆是否成立 (2)AE 是否与CD 相等(3)AE 与CD 之间的夹角为多少度 (4)HB 是否平分AHC ∠二、倍长与中点有关的线段倍长中线类考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。
三角形全等之手拉手模型、倍长中线、截长补短法、旋转、寻找三角形全等方法归纳总结49762

一、手拉手模型要点一:手拉手模型特点:由两个等顶角的等腰三角形所组成,并且顶角的 顶点为公共顶点结论:(1)△ABD ≌△AEC (2)∠α+∠BOC=180° (3)OA 平分∠BOC 变形:例 1.如图在直线ABC 的同一侧作两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60 (4)DFB AGB ∆≅∆ (5)CFB EGB ∆≅∆ (6)BH 平分AHC ∠ (7)AC GF //变式精练1:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠变式精练2:如图两个等边三角形ABD ∆与BCE ∆,连结AE 与CD ,证明(1)DBC ABE ∆≅∆ (2)DC AE =(3)AE 与DC 之间的夹角为︒60(4)AE 与DC 的交点设为H ,BH 平分AHC ∠例2:如图,两个正方形ABCD 与DEFG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?例3:如图两个等腰直角三角形ADC 与EDG ,连结CE AG ,,二者相交于点H问:(1)CDE ADG ∆≅∆是否成立? (2)AG 是否与CE 相等?(3)AG 与CE 之间的夹角为多少度? (4)HD 是否平分AHE ∠?例4:两个等腰三角形ABD ∆与BCE ∆,其中BD AB =,,EB CB =α=∠=∠CBE ABD ,连结AE 与CD ,问:(1)DBC ABE ∆≅∆是否成立? (2)AE 是否与CD 相等?(3)AE 与CD 之间的夹角为多少度? (4)HB 是否平分AHC ∠?二、倍长与中点有关的线段倍长中线类☞考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。
等边三角形的旋转全等课件

(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与 AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小 值.如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.
谢谢!
大小不等的等边 三角形擦出 的火花
如图,△ABC和△CEF是两个大小不 等的等边三角形,有一个公共顶点C 且点F在CB的延长线上,连接AF和 BE.线段AF和BE有怎样的大小关系?
请证明你的结论.
按照题干要求摆放你手中 的两个三角形纸片,并连 接相应的线段,标注字母
分析题意,说说你的方法 和应该注意的问题
书写过程
如图,△ABC和△CEF是两个大小不 等的等边三角形,有一个公共顶点C 且点F在CB的延长线上,连接AF和 BE.线段AF和BE有怎样的大小关系? 请证明你的结论.
1.如果删除题干中的一些限制条件并撤去例图,图形会发生变 化吗?利用你手中的三角形纸片摆一摆. 2.每得到一个不同的构图,立即画出图形并标注相应的字母. 你得到了几个新图?
A
A
F B
cF
B
cF
A
B c F
B A
c F
B
c
A
F
在不E 同的构图B 中E,AF与BE的E 关系还成 立吗?请c 任选两个F 图形进行 E
A
B A
A
BA
A B
c
EF
A
cE
F
cE
B
B
B
E
E
E
你能把以下的题目对应到哪个图形?
1.(2011•南充)如图,等腰梯形ABCD中,AD∥BC,
三角形全等(旋转、一线三等角)七年级下数学培优

三角形全等:旋转复习:已知∠ BAC的平分线与BC的垂直平分线DG相交于点D,DE⊥AB,DF⊥ AC,垂足分别为E、F,(1)连接CD、BD,求证:△ CDF≌△BDE;2.(4分)如图,在锐角△ABC 中,AC=7cm,S△ABC=14cm2,AD 平分∠BAC ,M 、N分别是AD 和AB 上的动点,则BM+MN 的最小值是___________ cm.例 1.如图 1,C 是线段 BE 上一点,以 BC 、CE 为边分别在 BE 的同侧作等边△ ABC 和等边△ DCE , 连结 AE 、BD .( 1)求证: BD=AE ;(2)如图 2,若 M 、N 分别是线段 AE 、BD 上的点,且 AM=BN ,请判断△ CMN 的形状,并说 明理由.例 2(1)在图 1中,AC 与 BD 相等吗,有怎样的位置关系?请说明理由。
COD 均是等腰直角三角形,∠ AOB =∠ COD = 90o , (2)若△ COD 绕点 O 顺时针旋转一定角度后,到达图 2 的位置,请问 AC 与 BD 还相等吗,还具有那种位置 关系吗?为什么?( 3)若△ COD 绕点 O 顺时针旋转一定角度后, 到达图 3的位置,请问 AC 与 BD 还相等吗?还具有上问中的 位置关系吗?为什么?.如图 1、图 2、图 3,△ AOB ,△3、在等边ABC的两边AB、AC所在直线上分别有两点M、N,D为VABC外一点,且MDN 60 ,BDC 120 ,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN 之间的数量关系及AMN 的周长Q 与等边ABC 的周长L的关系.图 1 图 2 图3I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时;L (II)如图2,点M、N 边AB、AC上,且当DM DN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明;(III)如图3,当M、N 分别在边AB、CA的延长线上时,若AN=x ,则Q=(用x 、L 表示).4 如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB 为一边向外作等边三角形△ ABE,将BM绕点 B 逆时针旋转60 °得到BN,连接EN.(1)求证:△ AMB≌△ ENB;(2)若AM+BM+C的M值最小,则称点M为△ ABC的费尔马点.若点M为△ ABC的费尔马点,试求此时∠ AMB、∠BMC、∠ CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ ABE和等边△ ACF,连接CE、BF,设交点为M,则点M即为△ ABC的费尔马点.试说明这种作法的依据.5.(1)如图(1),已知:在△ ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠ BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m 上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ ABF和△ACF均为等边三角形,连接BD、CE,若∠ BDA=∠AEC=∠BAC,试判断△ DEF的形状.6.如图①,已知,在△ ABC 中,∠ ACB=90°,AC=BC ,点 D 是AB 边上的中点,点 M 和点 N 是 动点,分别从 A ,C 出发,以相同的速度沿 AC ,CB 边上运动.(1)判断 DM 与 DN 的关系,并说明理由;( 2)若 AC=BC=2,请直接写出四边形 MCND 的面积;(3)如图②,当点 M 运动到 C 点后,将改变方向沿着 CB 运动,此时,点N 在 CB 延长线上,过M 作 ME ⊥CD 于点 E ,过点 N 作NF ⊥DB 交DB 延长线于 F ,求证:7.( 12分)已知两个全等的等腰直角 △ABC 、 △DEF ,其中∠ACB= ∠ DFE=90 °,E 为 AB 中点,△DEF 可 绕顶点 E 旋转,线段 DE ,EF 分别交线段 CA ,CB (或它们所在直线)于 M 、N .(1)如图 l ,当线段 EF 经过△ABC 的顶点 C 时,点N 与点 C 重合,线段 DE 交 AC 于M ,求证:AM=MC ; (2)如图 2,当线段 EF 与线段 BC 边交于 N 点,线段 DE 与线段 AC 交于 M 点,连 MN ,EC ,请探究 AM , MN , CN 之间的等量关系,并说明理由;(3)如图 3,当线段 EF 与 BC 延长线交于 N 点,线段 DE 与线段 AC 交于 M 点,连 MN ,EC ,请猜想 AM , MN , CN 之间的等量关系,不必说明理由.ME=NF .8.【感知】如图①,△ ABC是等边三角形,CM 是外角∠ ACD的平分线,E是边BC中点,在CM上截取CF=BE,连接AE、EF、AF.易证:△ AEF是等边三角形(不需要证明).【探究】如图②,△ ABC是等边三角形,CM是外角∠ ACD的平分线,E是边BC上一点(不与点B、C重合),在CM上截取CF=BE,连接AE、EF、AF.求证:△ AEF是等边三角形.【应用】将图②中的“E是边BC上一点”改为“E是边BC延长线上一点”,其他条件不变.当四边形ACEF是轴对称图形,且AB=2时,请借助备用图,直接写出四边形ACEF的周长.21、 若m 2 m 1 0, 则m 3 2m 2 322、如图, AE ⊥AB 且 AE=AB ,BC ⊥ CD 且 BC=CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积 S 是.27、在△ ABC 中,点 D 、E 分别为 BC 、AD 的中点, F 为 CE 的三等分点,则 S BFE 。
专题01 全等三角形中的手拉手旋转模型(解析版)

专题01 全等三角形中的手拉手旋转模型【模型展示】【模型证明】ECDABC CD CE ACD BCE AC BC ECD ABC ACD BCE ACE ECD ACE ACB ECDACB ECD ACB CD CE AC BC ECD ABC ∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆∠=∠∴∠+∠=∠+∠∴∠=∠=∠=∠==∴∆∆中与在为等边三角形与 60,,BDMN NCD MNC NCD MNC MCN MCN MCN CN CM ACN BCM AFB AFM BCM AFM BMC AMF MAF AFM BMC CBM BCM AFM AMF MAF BCM BMC CBM CADCBE ACD BCE ADBE ACD BCE //60606060,60)(180)(180180180∴∠=∠∴=∠=∠∴∆∆∴=∠=∴∆≅∆=∠=∠=∠∴∠=∠∠+∠-=∠∠+∠-=∠∴=∠+∠+∠=∠+∠+∠∠=∠∴∆≅∆=∴∆≅∆为等边三角形为等边三角形即P Q NMFECABD【模型拓展】【题型演练】一、单选题1.如图,在ABCV中,90ABC∠=°,分别以AB,AC为边作等边ABD△和等边ACEV,连结DE,若3AB=,5AC=,则ED=()A.B.C.4D.【答案】C【分析】在Rt△ABC中可直接运用勾股定理求出BC,然后结合“手拉手”模型证得△ABC≌△ADE,即可得到DE=BC,从而求解即可.【详解】解:在Rt△ABC中,AB=3,AC=5,∴由勾股定理得:BC=4,∵ABD △和ACE V 均为等边三角形,∴AB =AD ,AC =AE ,∠BAD =∠CAE =60°,∴∠BAD -∠CAD =∠CAE -∠CAD ,即:∠BAC =∠DAE ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS ),∴DE =BC =4,故选:C .【点睛】本题考查全等三角形的判定与性质,勾股定理的应用,掌握全等三角形的判定与性质,熟练运用勾股定理解三角形是解题关键.2.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下结论错误的是( )A .∠AOB =60°B .AP =BQC .PQ ∥AED .DE =DP【答案】D【分析】利用等边三角形的性质,BC ∥DE ,再根据平行线的性质得到∠CBE =∠DEO ,于是∠AOB =∠DAC +∠BEC =∠BEC +∠DEO =∠DEC =60°,得出A 正确;根据△CQB ≌△CPA (ASA ),得出B 正确;由△ACD ≌△BCE 得∠CBE =∠DAC ,加之∠ACB =∠DCE =60°,AC =BC ,得到△CQB ≌△CPA (ASA ),再根据∠PCQ =60°推出△PCQ 为等边三角形,又由∠PQC =∠DCE ,根据内错角相等,两直线平行,得出C 正确;根据∠CDE =60°,∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,可知∠DQE ≠∠CDE ,得出D 错误.【详解】解:∵等边△ABC 和等边△CDE ,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,即∠ACD =∠BCE,在△ACD 与△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠DAC ,又∵∠ACB =∠DCE =60°,∴∠BCD =60°,即∠ACP =∠BCQ ,又∵AC =BC ,在△CQB 与△CPA 中,ACP BCQ AC BCPAC CBQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CQB ≌△CPA (ASA ),∴CP =CQ ,又∵∠PCQ =60°可知△PCQ 为等边三角形,∴∠PQC =∠DCE =60°,∴PQ ∥AE ,故C 正确,∵△CQB ≌△CPA ,∴AP =BQ ,故B 正确,∵AD =BE ,AP =BQ ,∴AD -AP =BE -BQ ,即DP =QE ,∵∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE =60°,∴∠DQE ≠∠CDE ,故D 错误;∵∠ACB =∠DCE =60°,∴∠BCD =60°,∵等边△DCE ,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正确.故选:D.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量.3.如图,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC=5,AD=AE=2,点P,Q,R分别是BC,DC,DE的中点.把△ADE绕点A在平面自由旋转,则△PQR的面积不可能是()A.8B.6C.4D.2【答案】A【分析】连接BD、CE,BD的延长线交CE的延长线于O,AC交BO于H.证明△BAD≌△CAE,然后可推出△PQR是等腰直角三角形,S△PQR=12•PQ2,由AB=5,AD=2可知3≤BD≤7,从而得到32≤PQ≤72,那么9 8≤12•PQ2≤498,即可得出答案.【详解】解:连接BD、CE,BD的延长线交CE的延长线于O,AC交BO于H.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ABH=∠OCH,∵∠AHB=∠CHO,∴∠O=∠BAH=90°,∵点P ,Q ,R 分别是BC ,DC ,DE 的中点,∴PQ =12BD ,PQ ∥BO ,QR =12EC ,QR ∥CO ,∵BO ⊥OC ,∴PQ ⊥RQ ,PQ =QR ,∴△PQR 是等腰直角三角形,∴S △PQR =12•PQ 2,∵AB =5,AD =2,∴3≤BD ≤7,∴32≤PQ ≤72,∴98≤12•PQ 2≤498,∴△PQR 的面积不可能是8,故答案为:A .【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解题的关键是灵活运用所学知识解决问题.4.如图,在ABC V 中,AB AC =,点D 、F 是射线BC 上两点,且AD AF ⊥,若AE AD =,15BAD CAF ∠=∠=°;则下列结论中正确的有( )①CE BF ⊥;②ABD ACE △≌△;③ABC ADCE S S =四边形△;④122BC EF AD CF-=-A .1个B .2个C .3个D .4个【答案】D【分析】由AD ⊥AF ,∠BAD=∠CAF ,得出∠BAC=90°,由等腰直角三角形的性质得出∠B=∠ACB=45°,由SAS 证得△ABD ≌△ACE (SAS ),得出BD=CE ,∠B=∠ACE=45°,S △ABC =S 四边形ADCE ,则∠ECB=90°,即EC ⊥BF ,易证∠ADF=60°,∠F=30°,由含30°直角三角形的性质得出EF=2CE=2BD ,DF=2AD ,则BD=12EF ,由BC-BD=DF-CF ,得出BC-12EF=2AD-CF ,即可得出结果.【详解】∵AD ⊥AF ,∠BAD=∠CAF ,∴∠BAC=90°,∵AB=AC ,∴∠B=∠ACB=45°,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠B=∠ACE=45°,S △ABC =S 四边形ADCE ,∴∠ECB=90°,∴EC ⊥BF ,∵∠B=45°,∠BAD=15°,∴∠ADF=60°,∴∠F=30°,∴EF=2CE=2BD ,DF=2AD ,∴BD=12EF ,∵BC-BD=DF-CF ,∴BC-12EF=2AD-CF ,∴①、②、③、④正确.故选:D .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、含30°角直角三角形的性质、外角的定义等知识,熟练掌握直角三角形的性质、证明三角形全等是解题的关键.5.如图,正ABC V 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个①60AFB ∠=° ②连接FC ,则CF 平分BFD ∠ ③3BF DF = ④BF AF FC=+A .4B .3C .2D .1【答案】A【分析】根据“手拉手”模型证明BCE ACD V V ≌,从而得到CBE CAD ∠=∠,再结合三角形的外角性质即可求解60AFB ACB ∠=∠=°,即可证明①;作CM BE ⊥于M 点,CN AD ⊥于N 点,证明CEM CDN V V ≌,结合角平分线的判定定理即可证明②;利用面积法表示BCF △和DCF V 的面积,然后利用比值即可证明③;利用“截长补短”的思想,在AD 上取点Q ,使得FC FQ =,首先判断出FCQ V 为等边三角形,再结合“手拉手”模型推出BCF ACQ V V ≌即可证明④.【详解】解:①∵ABC V 和CDE △均为等边三角形,∴60ACB ECD ∠=∠=°,AC BC =,EC DC =,∴ACB ACE ECD ACE ∠+∠=∠+∠,∴BCE ACD ∠=∠,在BCE V 和ACD △中,BC AC BCE ACDEC DC =⎧⎪∠=∠⎨⎪=⎩∴()BCE ACD SAS V V ≌,∴CBE CAD ∠=∠,∵AFB CBE CDA ∠=∠+∠,ACB CDA CAD ∠=∠+∠,∴60AFB ACB ∠=∠=°,故①正确;②如图所示,作CM BE ⊥于M 点,CN AD ⊥于N 点,则90CME CND ∠=∠=°,∵BCE ACD V V ≌,∴CEM CDN ∠=∠,在CEM V 和CDN △中,CME CND CEM CDNCE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CEM CDN AAS V V ≌,∴CM CN =,∴CF 平分BFD ∠,故②正确;③如图所示,作FP BD ⊥于P 点,∵1122BCF S BF CM BC FP ==V g g ,1122DCF S DF CN CD FP ==V g g ,∴11221122BCFDCF BF CM BC FP S S DF CN CD FP ==V V g g g g ,∵CM CN =,∴整理得:BF BC DF CD=,∵3BC CD =,∴33BF CD DF CD==,∴3BF DF =,故③正确;④如图所示,在AD 上取点Q ,使得FC FQ =,∵60AFB ACB ∠=∠=°,CF 平分BFD ∠,∴120BFD ∠=°,1602CFD BFD ∠=∠=°,∴FCQ V 为等边三角形,∴60FCQ ∠=°,CF CQ =,∵60ACB ∠=°,∴ACB ACF FCQ ACF ∠+∠=∠+∠,∴BCF ACQ ∠=∠,在BCF △和ACQ V 中,BC AC BCF ACQCF CQ =⎧⎪∠=∠⎨⎪=⎩∴()BCF ACQ SAS V V ≌,∴BF AQ =,∵AQ AF FQ =+,FQ FC =,∴BF AF FC =+,故④正确;综上,①②③④均正确;故选:A .【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质等,理解等边三角形的基本性质,掌握全等三角形中的辅助线的基本模型,包括“手拉手”模型,截长补短的思想等是解题关键.6.如图,点C 是线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,有以下5个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°.其中一定成立的结论有( )个A .1B .2C .3D .4【答案】D 【分析】①由于△ABC 和△CDE 是等边三角形,可知AC=BC ,CD=CE ,∠ACB=∠DCE=60°,从而证出△ACD ≌△BCE ,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60∘,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,DC=CE,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°-60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,∠CAD=∠CBE,AC=BC,∠ACB=∠BCQ=60°,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60∘,∴∠ACB=∠CPQ ,∴PQ ∥AE ;故②正确;④∵AD=BE ,AP=BQ ,∴AD−AP=BE−BQ ,即DP=QE ,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ ,∠CDE=60°,∴∠DQE≠∠CDE ,∴DE≠QE ,则DP≠DE ,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE ,∠EDC=60°=∠BCD ,∴BC ∥DE ,∴∠CBE=∠DEO ,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤,错误的结论只有④,故选D .【点睛】本题考查全等三角形的判定和性质,以及等边三角形的判定和性质,此图形是典型的“手拉手”模型,熟练掌握此模型的特点是解题的关键.二、填空题7.如图,ABD △、CDE △是两个等边三角形,连接BC 、BE .若30DBC ∠=°,6BD =,8BC =,则BE =________.【答案】BE =10【分析】连接AC ,根据题意易证△ACD ≌△BED(SAS),根据全等三角形的性质可得AC=BE ,再根据勾股定理求出AC 的值即可得出结论.【详解】如图,连接AC ,∵ABD △、CDE △是两个等边三角形,∴AB=BD=AD=2,CD=DE ,∠ABD=∠ADB=∠CDE=60,∴∠ADB+∠BDC=∠CDE+∠BDC ,∴∠ADC=∠BDE ,在△ACD 与△BDE 中AD BD ADC BDE CD DE =⎧⎪=⎨⎪=⎩∠∠,∴△ACD ≌△BED (SAS ),∴AC=BE ,∵30DBC ∠=°,∴∠ABC=∠ABD+∠DBC=60°+30°=90°,在Rt △ABC 中,AB=6,BC=8,∴10=,∴BE=10,故答案为:10.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,勾股定理,孰练的掌握知识点是解题关键.8.如图,△ABC 中,∠C =90°,AC =BC =△ABC 绕点A 顺时针方向旋转60°到△AB 'C '的位置,连接BC ',BC '的延长线交AB '于点D ,则BD 的长为 _____.【分析】连接BB ′,根据旋转的性质可得AB =AB ′,判断出△ABB ′是等边三角形,根据等边三角形的三条边都相等可得AB =BB ′,然后利用“边边边”证明△ABC ′和△B ′BC ′全等,根据全等三角形对应角相等可得∠ABC ′=∠B ′BC ′,延长BC ′交AB ′于D ,根据等边三角形的性质可得BD ⊥AB ′,利用勾股定理列式求出AB ,然后根据等边三角形的性质和等腰直角三角形的性质求出BD .【详解】解:如图,连接BB ′,∵△ABC 绕点A 顺时针方向旋转60°得到△AB ′C ′,∴AB =AB ′,∠BAB ′=60°,∴△ABB ′是等边三角形,∴AB =BB ′,在△ABC ′和△B ′BC ′中,AB BB AC B C BC BC =¢⎧⎪¢=¢¢⎨⎪¢=¢⎩,∴△ABC ′≌△B ′BC ′(SSS ),∴∠ABC ′=∠B ′BC ′30=° ,延长BC ′交AB ′于D ,则BD ⊥AB ′,∵∠C =90°,AC =BC ,∴AB 2=AB ’,∴AD =112AB =∴BD =,【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC ′在等边三角形的高上是解题的关键,也是本题的难点.9.如图,ABC V 是边长为5的等边三角形,BD CD =,120BDC ∠=°.E 、F 分别在AB 、AC 上,且60EDF ∠=°,则三角形AEF 的周长为______.【答案】10【分析】延长AB 到N ,使BN =CF ,连接DN ,求出∠FCD =∠EBD =∠NBD =90°,根据SAS 证△NBD ≌△FCD ,推出DN =DF ,∠NDB =∠FDC ,求出∠EDF =∠EDN ,根据SAS 证△EDF ≌△EDN ,推出EF =EN ,易得△AEF 的周长等于AB +AC .【详解】解:延长AB 到N ,使BN =CF ,连接DN ,∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵BD =CD ,∠BDC =120°,∴∠DBC =∠DCB =30°,∴∠ACD =∠ABD =30°+60°=90°=∠NBD ,∵在△NBD 和△FCD 中,BD DC NBD FCD BN CF =⎧⎪∠=∠⎨⎪=⎩,∴△NBD ≌△FCD (SAS ),∴DN =DF ,∠NDB =∠FDC ,∵∠BDC =120°,∠EDF =60°,∴∠EDB +∠FDC =60°,∴∠EDB +∠BDN =60°,即∠EDF =∠EDN ,在△EDN 和△EDF 中,DE DE EDF EDN DN DF =⎧⎪∠=∠⎨⎪=⎩,∴△EDN ≌△EDF (SAS ),∴EF =EN =BE +BN =BE +CF ,即BE +CF =EF .∵△ABC 是边长为5的等边三角形,∴AB =AC =5,∵BE +CF =EF ,∴△AEF 的周长为:AE +EF +AF =AE +EB +FC +AF =AB +AC =10,故答案为:10.【点睛】本题考查了等边三角形性质和判定,等腰三角形的性质,三角形的内角和定理,全等三角形的性质和判定的综合运用.注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ P AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_____.(把你认为正确的序号都填上)【答案】①②③⑤为等边三角形,再证【分析】根据等边三角形的性质及SAS即可证明;根据全等三角形的性质证明MCN明△ACD≌△BCE即可求解.【详解】解:①△ABC和△DCE均是等边三角形,点A,C,E在同一条直线上,∴AC=BC,EC=DC,∠BCE=∠ACD=120°∴△ACD≌△ECB∴AD=BE,故本选项正确,符合题意;②∵△ACD≌△ECB∴∠CBQ=∠CAP,又∵∠PCQ=∠ACB=60°,CB=AC,∴△BCQ≌△ACP,∴CQ=CP,又∠PCQ=60°,∴△PCQ为等边三角形,∴∠QPC=60°=∠ACB,∴PQ P AE,故本选项正确,符合题意;③∵∠ACB=∠DCE=60°,∴∠BCD=60°,∴∠ACP=∠BCQ,∵AC=BC,∠DAC=∠QBC,∴△ACP≌△BCQ(ASA),∴CP=CQ,AP=BQ,故本选项正确,符合题意;④已知△ABC 、△DCE 为正三角形,故∠DCE =∠BCA =60°⇒∠DCB =60°,又因为∠DPC =∠DAC +∠BCA ,∠BCA =60°⇒∠DPC >60°,故DP 不等于DE ,故本选项错误,不符合题意;⑤∵△ABC 、△DCE 为正三角形,∴∠ACB =∠DCE =60°,AC =BC ,DC =EC ,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,∴△ACD ≌△BCE (SAS ),∴∠CAD =∠CBE ,∴∠AOB =∠CAD +∠CEB =∠CBE +∠CEB ,∵∠ACB =∠CBE +∠CEB =60°,∴∠AOB =60°,故本选项正确,符合题意.综上所述,正确的结论是①②③⑤.三、解答题11.如图,ACB △和ECD V 都是等腰直角三角形,,,CA CB CD CE ACB ==△的顶点A 在ECD V 的斜边DE 上,连接BD .(1)求证:BD AE =.(2)若3cm,6cm AE AD ==,求AC 的长.【答案】(1)证明见解析;(2)AC =.【分析】(1)根据同角的余角相等得出∠BCD=∠ACE ,然后根据SAS 定理证明△BCD ≌△ACE ,从而得出结论;(2)根据全等三角形的性质得出∠BDC=∠AEC ,然后结合等腰直角三角形的性质求得∠BDA 是直角三角形,从而利用勾股定理求解.【详解】(1)∵ACB △和ECD V 都是等腰直角三角形,∴90ACB ECD ∠=∠=°,∴90,90ACD BCD ACD ACE ∠+∠=°∠+∠=°,∴BCD ACE ∠=∠,在BCD △和ACB △中,CB CA BCD ACECD CE =⎧⎪∠=∠⎨⎪=⎩∴()BCD ACE SAS V V ≌,∴BD AE =.(2)∵BCD ACE V V ≌,∴BDC AEC ∠=∠,又∵ECD V 是等腰直角三角形,∴45CDE CED ∠=∠=°,∴45BDC ∠=°,∴90BDC CDE ∠+∠=°,∴BDA ∠是直角三角形,∴22222223645AB BD AD AE AD =+=+=+=,在等腰直角三角形ACB 中,22222AB AC BC AC =+=,∴AC =【点睛】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.12.如图,A 、B 、C 在同一直线上,且△ABD ,△BCE 都是等边三角形,AE 交BD 于点M ,CD 交BE 于点N ,MN ∥AC ,求证:(1)∠BDN=∠BAM ;(2)△BMN 是等边三角形.【答案】(1)证明过程见详解;(2)证明过程见详解。
全等三角形的复习(旋转中的全等三角形)
B
B
图形的全等的复习
——旋转中的全等三角形
例1. 用两个全等的等边三角形ABC 和ACD 拼成菱形ABCD ,把一个含60°的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB 、AC 重合,然后将三角尺绕点A 按逆时针方向旋转.⑴当三角尺的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(如图1),通过观察或测量BE 、CF 的长度,你能得出BE 、CF 有什么数量关系?请证明你的结论.
⑵当三角板两边分别与菱形的两边BC 、CD 的延长线相交于E 、F 时,(如图2),你在⑴中得出的结论还成立吗?简要说明理由。
C
C
C
例2.
⑴如图,点A 为线段CD 上一点,△CAB 和△ADE 是等边三角形,连结CE ,与AB 交于点M ,连结BD ,交AE 于点P . ①求证:CE=BD ; ②求证:AM=AP.
⑵若将等边三角形ADE 绕着点A 逆时针旋转到如图的位置,使得点B 、E 、D 在同一直线上时, 求证:CE=BE+AE.
⑶若将等边三角形ADE 绕着点A 继续逆时针旋转到如图的位置,使得点B 、D 、E 在同一直线上时, 试猜测CE 、BE 和AE 之间的数量关系,并说明理由.
思考.已知:如图所示,在△ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作经过点A 的直线MN 的垂线段BD 、CE ,垂足分别为D 、E. ⑴求证:DE=BD+CE ;
⑵若将△BAC 绕着点A 逆时针旋转到直线MN 经过∠BAC 的内部,那么⑴的结论还成立吗?请给出你的结论,并说明理由.。
第6讲 平移、旋转、翻折与三角形全等(讲义)
1 / 4图1NMEDCBA图2NMEDCBA第6讲 平移、旋转、翻折与三角形全等一、专项练习【板块一】平移与全等问题1. 如图,已知△ABC(1)请你在BC 边上分别取两点D 、E (BC 的中点除外),连接AD 、AE ,写出使此图中只存在两对.....面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB +AC >AD +AE .【板块二】旋转与全等问题2. 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.2 / 4图1NM FEC BA图2NMCBA3. 如图1,点C 为线段AB 上一点,△ACM ,△CBN 是等边三角形,直线AN ,BM 分别交两三角形于点E 、F .连接EF . (1)求证:AN =BM ;(2)求证:△CEF 为等边三角形;(3)将△ACM 绕点C 按逆时针方向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两小题的结论是否仍然成立(不要求证明).3 / 4HF ED CBA4. 如图,EF 分别是正方形ABCD 的边BC 、CD 上的点,且∠EAF =45°,AH ⊥EF ,H 为垂足,求证:AH =AB .【板块三】翻折与全等问题5. 如图①所示,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F . 请你判断并写出FE 与FD 之间的数量关系.(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其他条件均不变,请问,你在(1)中得到的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.6.已知△ABC,∠BAD=∠CAD,AB=2AC,AD=BD,求证:DC⊥AC.ACDB4/ 4。
全等三角形旋转模型知识点-+典型题及答案(1)
全等三角形旋转模型知识点-+典型题及答案(1)一、全等三角形旋转模型1.问题提出:(1)如图1,在ABC 中,AB AC BC =≠,点D 和点A 在直线BC 的同侧,BD BC =,90BAC ∠=︒,30DBC ∠=︒,连接AD ,将ABD △绕点A 逆时针旋转90︒得到ACD ',连接BD '(如图2),可求出ADB ∠的度数为______.问题探究:(2)如图3,在(1)的条件下,若BAC α∠=,DBC β∠=,且120αβ+=︒,DBC ABC ∠<∠ ,①求ADB ∠的度数.②过点A 作直线AE BD ⊥,交直线BD 于点E ,7,2BC AD ==.请求出线段BE 的长.答案:A解析:(1)30°;(2)①30︒;②73-【分析】(1)由旋转的性质,得△ABD ≌ACD '∆,则ADB AD C '∠=∠,然后证明BCD '∆是等边三角形,即可得到30ADB AD C '∠=∠=︒;(2)①将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .与(1)同理证明D BC '∆为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出3DE =【详解】解:(1)根据题意,∵AB AC BC =≠,90BAC ∠=︒,∴ABC ∆是等腰直角三角形,∴45ABC ACB ∠=∠=︒,∵30DBC ∠=︒,∴15ABD ∠=︒,由旋转的性质,则△ABD ≌ACD '∆,∴ADB AD C '∠=∠,15ABD ACD '∠=∠=︒,BC CD '=,∴60BCD '∠=︒,∴BCD '∆是等边三角形,∴60BD C '∠=︒,BD CD ''=∵AB AC =,AD AD ''=,∴ABD '∆≌ACD '∆,∴30AD B AD C ''∠=∠=︒,∴30ADB AD C '∠=∠=︒;(2)①DBC ABC ∠<∠,60120α︒︒∴<<.如图1,将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .AB AC =,ABC ACB ∴∠=∠,BAC α∠=,()111809022ABC αα︒︒∴∠=-=-, 1902ABD ABC DBC αβ︒∴∠=∠-∠=--, 119090180()22D CB ACD ACB αβααβ''︒︒︒∴∠=∠+∠=--+-=-+. 120,αβ︒+=60D CB '︒∴∠=.,BD BC BD CD '==,,BC CD '∴=D BC '∴为等边三角形,D B D C ''∴=,AD B AD C ''∴≌,AD B AD C ''∴∠=∠,1302AD B BD C ''︒∴∠=∠=, 30ADB ︒∴∠=.②如图2,由①知,30ADB ︒∠=,在Rt ADE △中,30,2ADB AD ︒∠==, 3DE ∴=.BCD '是等边三角形,7BD BC '∴==,7BD BD '∴==,73BE BD DE ∴=-=-.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.2.如图,点B ,C ,D 在同一条直线上,△BCF 和△ACD 都是等腰直角三角形,连接AB ,DF ,延长DF 交AB 于点E .(1)如图1,若AD =BD ,DE 是∠ADB 的平分线,BC =1,求CD 的长度;(2)如图2,连接CE ,求证:DE =2CE +AE ;(3)如图3,改变△BCF 的大小,始终保持点在线段AC 上(点F 与点A ,C 不重合).将ED 绕点E 顺时针旋转90°得到EP ,取AD 的中点O ,连接OP .当AC =2时,直接写出OP 长度的最大值.解析:(1)21CD =;(2)证明见解析;(3)22+【分析】 (1)根据等腰直角三角形的性质,求出1FC BC ==,再判断出FA FB =,即可得出结论;(2)先判断出ABC DFC ≅△△,得出BAC CDF ∠=∠,进而判断出ACE DCH ≅△△,得出AE DH =,CE CH =,即可得出结论;(3)先判断出2OE OQ ==,再判断出OED QEP ≅△△,进而求出2PQ OD ==.即可得出结论. 【详解】(1)解:BCF 和ACD △都是等腰直角三角形,AC CD ∴=,1FC BC ==,2FB =,AD BD =,DE 是ABD ∆的平分线,DE ∴垂直平分AB ,2FA FB ∴==,21AC FA FC ∴=+=+,21CD ∴=+;(2)证明:如图2,过点C 作CH CE ⊥交ED 于点H ,BCF 和ACD △都是等腰直角三角形,AC DC ∴=,FC BC =,90ACB DCF ∠=∠=︒;()ABC DFC SAS ∴≅△△,BAC CDF ∴∠=∠,90ECH ∠=︒,90ACE ACH ∴∠+∠=︒,90ACD ∠=︒,90DCH ACH ∴∠+∠=︒,ACE DCH ∴∠=∠.在ACE 和DCH 中,BAC CDF AC DCACE DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACE DCH ASA ∴≅△△,AE DH ∴=,CE CH =,2EH CE ∴=.2DE EH DH CE AE =+=+;(3)OP 的最大值是22+.解:如图3,连接OE ,将OE 绕点E 顺时针旋转90︒得到EQ ,连接OQ ,PQ ,则2OQ OE =.由(2)知,90AED ABC CDF ABC BAC ∠=∠+∠=∠+∠=︒,在Rt AED △中,点O 是斜边AD 的中点,122222OE OD AD AC ∴===== 2222OQ OE ∴===,在OED 和QEP △中, OE QE OED QEP DE PE =⎧⎪∠=∠⎨⎪=⎩,()OED QEP SAS ∴≅△△,2PQ OD ∴==22OP OQ PQ +=+O 、P 、Q 三点共线时,取“=”号,OP ∴的最大值是22+【点睛】此题是几何变换综合题,主要等腰直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.3.如图1所示,矩形ABCD 中,点E ,F 分别为边AB ,AD 的中点,将△AEF 绕点A 逆时针旋转α(0°<α≤360°),直线BE 、DF 相交于点P .(1)若AB=AD,将△AEF绕点A逆时针旋转至如图2所示的位置,则线段BE与DF的数量关系是.(2)若AD=nAB(n≠1),将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由.(3)若AB=8,BC=12,将△AEF旋转至AE⊥BE,请算出DP的长.答案:B解析:(1)BE=DF;(2)不成立,结论:DF=nBE;理由见解析(3)634或634【分析】(1)如图2中,结论:BE=DF,BE⊥DF.证明△ABE≌△ADF(SAS),利用全等三角形的性质可得结论;(2)结论:DF=nBE,BE⊥DF,证明△ABE∽△ADF(SAS),利用相似三角形的性质可得结论;(3)分两种情形画出图形,利用相似三角形的性质以及勾股定理求解即可.【详解】解:(1)结论:BE=DF,BE⊥DF,理由:∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,AE=12AB,AF=12AD,∴AE=AF,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,故答案为:BE=DF;(2)结论不成立,结论:DF=nBE,∵AE=12AB,AF=12AD,AD=nAB,∴AF=nAE,∴AF∶AE=AD∶AB,∴AF∶AE=AD∶AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF∶BE=AF∶AE=n,∠ABE=∠ADF,∴DF=nBE;(3)如图4-1中,当点P在BE的延长线上时,在Rt△AEB中,∵∠AEB=90°,AB=8,AE=12AB=4,∴BE=22AB AE-=43,∵△ABE∽△ADF,∴ABAD =BE DF,∴812=43DF,∴DF=63,∵四边形AEPF是矩形,∴AE=PF=4,∴PD=DF-PF=634-;如图4-2中,当点P在线段BE上时,同法可得DF=63PF=AE=4,∴PD=DF+PF=634,综上所述,满足条件的PD的值为634-或634.【点睛】此题考查了矩形的性质,全等三角形的判定及性质,旋转的性质,相似三角形的判定及性质,勾股定理,注意应用分类思想解决问题, 是一道较难的几何综合题.4.如图,ABD △和ACE △都是等边三角形.(1)连接CD 、BE 交于点P ,求∠BPD ;(2)连接PA ,判断线段PA 、PB 、PD 之间的数量关系并证明;(3)如图,等腰ABC 中AB =AC ,∠BAC =α(0<α<90),在ABC 内有一点M ,连接MA 、MB 、MC .当MA +MB +MC 最小时,∠ABM = (用含α的式子表示)答案:D解析:(1)60BPD ∠=︒(2)PD PB PA =+,证明见详解(3)1602α︒-【分析】(1)证明()DAC BAE SAS ≅,得ADC ABE ∠=∠,就可以证明60BPD DAB ∠=∠=︒;(2)在DP 上截取PF=PB ,连接BF ,证明()DBF ABP SAS ≅,得DF PA =,即可证明PD PB PA =+;(3)分别以AB 和AC 为边,向两边作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,然后利用等腰三角形ADC ,求出ADC ∠的度数,即可得到ABM ∠的度数.【详解】解:(1)∵ABD △和ACE △是等边三角形,∴AD AB =,AC AE =,60DAB CAE ∠=∠=︒,∵DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,在DAC △和BAE △中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()DAC BAE SAS ≅,∴ADC ABE ∠=∠,∵ADC DAB ABE BPD ∠+∠=∠+∠,∴60BPD DAB ∠=∠=︒;(2)如图,在DP 上截取PF=PB ,连接BF ,∵60BPD ∠=︒,PF PB =,∴PFB △是等边三角形,∴BF BP =,60FBP ∠=︒,∴DBA FBP ∠=∠,∵DBA FBA FBP FBA ∠-∠=∠-∠,∴DBF ABP ∠=∠,在DBF 和ABP △中,DB AB DBF ABP BF BP =⎧⎪∠=∠⎨⎪=⎩,∴()DBF ABP SAS ≅,∴DF PA =,∵PD PF FD =+,∴PD PB PA =+;(3)如图,分别以AB 和AC 为边,作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,由(2)中的结论可得MD MA MB =+,则当D 、M 、C 三点共线时MA MB MC ++最小,即CD 的长,由(1)得ADC ABM ∠=∠,∵AD AB AC ==,60DAC α∠=︒+,∴()1806016022ADC αα︒-︒+∠==︒-,∴1602ABM α∠=︒-,故答案是:1602α︒-.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质,解题的关键是做辅助线构造全等三角形来进行证明求解.5.在平面直角坐标系中,点A 在y 轴正半轴上,点B 在x 轴负半轴上,BP 平分∠ABO . (1)如图1,点T 在BA 延长线上,若AP 平分∠TAO ,求∠P 的度数;(2)如图2,点C 为x 轴正半轴上一点,∠ABC =2∠ACB ,且P 在AC 的垂直平分线上. ①求证:AP //BC ;②D 是AB 上一点,E 是x 轴正半轴上一点,连接AE 交DP 于H .当∠DHE 与∠ABE 满足什么数量关系时,DP =AE .给出结论并说明理由.答案:D解析:(1)45°;(2)①见解析;②∠DHE +∠ABE =180°,理由见解析【分析】(1)由三角形的外角性质和角平分线的性质可得∠AOB =2∠P =90°,可求解; (2)①过点P 作PE ⊥AB 交BA 延长线于E ,过点P 作PF ⊥BC 于F ,连接PC ,由角平分线的性质可得PE =PF ,由垂直平分线的性质可得PA =PC ,由“HL ”可证Rt △APE ≌Rt △CPF ,可得∠EPA =∠CPF ,由四边形内角和定理可得∠EBF +∠EPF =180°,由角的数量关系可证∠ACB =∠PAC ,由平行线的判定可证AP ∥BC ;②如图3,在OE 上截取ON =OB ,连接AN ,通过证明△ADP ≌△NEA ,可得DP =AE .【详解】解:(1)∵BP 平分∠ABO ,AP 平分∠TAO ,∴∠PBT =12∠ABO ,∠TAP =12∠TAO , ∵∠TAO =∠ABO+∠AOB ,∠TAP =∠P+∠ABP ,∴∠AOB =2∠P =90°,∴∠P =45°;(2)①如图2,过点P 作PE ⊥AB 交BA 延长线于E ,过点P 作PF ⊥BC 于F ,连接PC ,又∵PB 平分∠ABC ,∴PE =PF ,∵P 在AC 的垂直平分线上,∴PA =PC ,∴∠PAC =∠PCA ,在Rt △APE 和Rt △CPF 中,AP PC PE PF =⎧⎨=⎩, ∴Rt △APE ≌Rt △CPF (HL ),∴∠EPA =∠CPF ,∴∠EPF =∠APC ,在四边形BEPF 中,∠EBF+∠BEP+∠EPF+∠PFB =180°,∴∠EBF+∠EPF =180°,∴∠ABC+∠APC =180°,∵∠APC+∠PAC+∠PCA =180°,∴∠ABC =∠PAC+∠PCA =2∠PAC ,∵∠ABC =2∠ACB ,∴∠ACB =∠PAC ,∴AP ∥BC ;②当∠DHE+∠ABE =180°时,DP =AE ,理由如下:如图3,在OE 上截取ON =OB ,连接AN ,∵OB =ON ,AO ⊥BE ,∴AB =AN ,∴∠ABN =∠ANB ,∵AP ∥BE ,BP 平分∠ABE ,∴∠APB =∠PBE =∠ABP ,∠ABN+∠BAP =180°,∴AP =AB ,∴AP =AN ,∵∠ANB+∠ANE =180°,∴∠BAP =∠ANE ,∵∠DHE+∠ABE =180°,∠DHE+∠ABE+∠BDH+∠BEH =360°,∴∠BDH+∠BEH =180°,∵∠ADP+∠BDP =180°,∴∠ADP =∠AEN ,在△ADP 和△NEA 中,DAP ANE ADP AEN AP AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP ≌△NEA (AAS ),∴DP =AE .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,角平分线的性质,线段垂直平分线的性质,四边形内角和定理等知识,添加恰当辅助线构造全等三角形是本题的关键. 6.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.请利用上面信息解决以下问题:已知Rt ABC 中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图①),求证:12DEF CEF ABC S S S +=△△△; (2)当EDF ∠绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S又有怎样的数量关系?请写出你的猜想,不需要证明.答案:D解析:(1)见解析;(2)图2成立,图3不成立:12DEF CEF ABC S S S -=△△△ 【分析】(1)根据等腰直角三角形和正方形的性质得到AED 、DFB △、EDF 、ECF △为全等的等腰直角三角形,据此即可证明;(2)对于图2:过点D 作DM AC ⊥,DN BC ⊥,根据中位线的性质和等量代换证得MD ND =和MDE NDF ∠=∠,结合90DME DNF ∠=∠=︒,证得DME DNF ∆≅∆,根据全等三角形的性质即可求证;对于图3:根据ASA 证明DME DNF ∆≅∆,根据全等三角形的性质即可求证.【详解】(1)证明:连接CD∵D 为AB 边的中点,AC BC =∴AD=CD=BD∴45DAC DCA DCB DBC ∠=∠=∠=∠=︒又∵DE AC ⊥,90EDF ∠=︒,90C ∠=︒,∴四边形ECFD 为矩形∴∠CFD=90°又∵∠DCF=45°∴CF=DF∴四边形ECFD 是正方形∴DE=DF∴DEF CEF DEC DFC S S S S +=+△△△△又∵12DCF DBF ABC S S S +=△△△,且DCF DBF S S =△△ ∴12DEF CEF ABC S S S +=△△△ (2)图2成立,图3不成立对于图2:过点D 作DM AC ⊥,DN BC ⊥,如图2,则90DME DNF MDN ∠=∠=∠=︒又∵90C ∠=︒∴DM BC ,DN AC∵D 为AB 边的中点 ∴根据中位线定理得到:12DN AC =,12MD BC = ∵AC=BC∴MD=ND∵90EDF ∠=︒∴90MDE EDN ∠+∠=︒,90NDF EDN ∠+∠=︒∴MDE NDF ∠=∠在DME ∆与DNF ∆中DME DNF MD NDMDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DME DNF ∆≅∆∴DME DNF S S ∆∆=∴DEF CEF DMCN DECF S S S S ∆∆==+四边形四边形 ∴12DMCN ABC S S =△ ∴12DEF CEF ABC S S S +=△△△ 对于图3:连接DC ,在DEC ∆与DBF ∆中135DCE DBF DC DBCDE BDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴DEC DBF ∆≅∆ ∴12DEF CFE DBC CFE ABC DBFEC S S S S S S ∆∆∆∆∆==+=+五边形 ∴12DEF CEF ABC S S S ∆∆∆-=. 【点睛】本题考查了全等三角形的判定和性质,中位线的性质,等腰直角三角形的性质,题目较为综合,利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.7.如图1,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC .(1)求证:△ABD ≌△ACE ;(2)如图2,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC ,∠ADB=90°,点E 在△ABC 内,延长DE 交BC 于点F ,求证:点F 是BC 中点;(3)△ABC 为等腰三角形,∠BAC=120°,AB=AC ,点P 为△ABC 所在平面内一点,∠APB=120°,AP=2,BP=4,请直接写出 CP 的长.答案:D解析:(1)证明见详解;(2)证明见详解;(3)2713【分析】(1)因为∠DAE=∠BAC ,可以得到∠DAB=∠EAC ,因为AD=AE ,AB=AC ,即可得到△ABD ≌△ACE ;(2)连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,由(1)可得△ABD ≌△ACE ,所以∠AEC=90°和CE=BD ,可以推出∠BDF=∠CEF ,再证明△DBF ≌△ECH ,所以BF=CH ,等量代换即可得到BF=FC ,即可解决;(3)点P 在△ABC 内部,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC ,可以得到△PP C '是直角三角形,利用勾股定理即可求出PC 的值;当点P 在△ABC 外部,将△APB 绕点A 逆时针旋转120︒得到PDC ∆,连接PP '和PC ,过点P 作PD ⊥'CP 于点D ,连接PD 可以得到△PP D ',△PP D '是直角三角形和,利用勾股定理即可求出'DP 及PC 的值.【详解】解:(1)证明:∵∠DAE=∠BAC∴∠DAB=∠EAC∵AD=AE ,AB=AC∴△ABD ≌△ACE(2)证明:连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,如图所示:∵△ADB ≌△AEC∴BD=EC ,∠ADB=∠AEC=90°∵AD=AE∴∠ADE=∠AED∵∠ADE+∠EDB=∠AED+∠CEH=90°∴∠EDB=∠CEH∵CF=CH∴∠CFH=∠CHF∴∠DFB=∠H∵CE=BD∴△DBF ≌△ECH∴BF=CH∴BF=CF∴点F 是BC 的中点(3)当点P 在△ABC 内部,如图所示,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4∴PP '=23,∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=90°,∴PC=()2223427+=.当点P 在△ABC 外部,如图所示,将△APB 绕点A 逆时针旋转120︒到△'AP C ,过点P 作PD ⊥'CP 于点D ,连接PD , ∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4,∴PP '3∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=150°,∴∠PP D '=30°,在Rt 'PDP 中,1'32PD PP ==, 22''3DP PP PD ∴=-=,''347DC DP P C ∴=+=+=,()222237213PC PD DC ∴=+=+=.综上所述,27213PC =或【点睛】本题主要考查了全等三角形以及旋转,合理的作出辅助线以及熟练旋转的性质是解决本题的关键.8.如图,直线y =﹣x +c 与x 轴交于点B (3,0),与y 轴交于点C ,过点B ,C 的抛物线y =﹣x 2+bx +c 与x 轴的另一个交点为A .(1)求抛物线的解析式和点A的坐标;(2)P是直线BC上方抛物线上一动点,PA交BC于D.设t=PDAD,请求出t的最大值和此时点P的坐标;(3)M是x轴上一动点,连接MC,将MC绕点M逆时针旋转90°得线段ME,若点E恰好落在抛物线上,请直接写出此时点M的坐标.答案:A解析:(1)y=﹣x2+2x+3,A(﹣1,0);(2)t的最大值为916,此时P(32,154);(3)M(9332-,0)或(9332+,0).【分析】(1)利用待定系数法解决问题即可;(2)连接AC,PC,PB,过点A作AE⊥BC于E,过等P作PF⊥BC于F.设P(m,﹣m2+2m+3).利用相似三角形的性质构建二次函数解决问题即可;(3)过点E作EH⊥x轴于H.设M(m,0),利用全等三角形的性质求出点E的坐标(用m表示),再利用待定系数法解决问题即可.【详解】解:(1)∵直线y=﹣x+c与x轴交于点B(3,0),与y轴交于点C,∴0=﹣3+c,解得c=3,∴C(0,3),∵抛物线经过B,C,∴9303b cc-++=⎧⎨=⎩,解得23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,令y=0,得到﹣x2+2x+3=0,解得x=﹣1或3,∴A(﹣1,0);(2)如图,连接AC,PC,PB,过点A作AE⊥BC于E,过点P作PF⊥BC于F.设P(m,﹣m2+2m+3).∵AE∥PF,∴△PFD∽△AED,∴PDAD =PFAE,∵S△PBC=12•BC•PF,S△ACB=12•BC•AE,∴PDAD =PBCABCSS∆∆,∵S△ABC=12•AB•OC=12×4×3=6,∴t=PDAD =6PBCS∆=211133(23)332226m m m⨯⨯+⨯⨯-++-⨯⨯=﹣14m2+34m=﹣14(m﹣32)2+916,∵﹣14<0,∴m=32时,t有最大值,最大值为916,此时P(32,154);(3)如图,过点E作EH⊥x轴于H,∵∠COM=∠EHM=∠CME=90°,∴∠EMH+∠CMH=90°,∠EMH+∠MEH=90°,∴∠MEH =∠CMO ,∵MC =ME ,∴△COM ≌△MHE (AAS ),∴OC =MH =3,OM =EH ,设M (m ,0),则E (m ﹣3,﹣m ),把E (m ﹣3,﹣m )代入y =﹣x 2+2x +3,可得﹣(m ﹣3)2+2(m ﹣3)+3=﹣m , 整理得,m 2﹣9m +12=0,解得m =9332-或9332+, ∴M (9332-,0)或(9332+,0). 【点睛】本题考查的是二次函数综合题,涉及全等三角形的性质和判定,相似三角形的性质和判定,解题的关键是利用数形结合的思想,在二次函数图象上构造全等三角形或相似三角形,利用几何的性质进行点坐标的求解.9.如图,BC ⊥CA ,BC =CA ,DC ⊥CE ,DC =CE ,直线BD 与AE 交于点F ,交AC 于点G ,连接CF .(1)求证:△ACE ≌△BCD ;(2)求证:BF ⊥AE ;(3)请判断∠CFE 与∠CAB 的大小关系并说明理由.答案:C解析:(1)见解析;(2)见解析;(3)∠CFE =∠CAB ,见解析【分析】(1)根据垂直的定义得到∠ACB =∠DCE =90°,由角的和差得到∠BCD =∠ACE ,即可得到结论;(2)根据全等三角形的性质得到∠CBD =∠CAE ,根据对顶角的性质得到∠BGC =∠AGE ,由三角形的内角和即可得到结论;(3)过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,根据全等三角形的性质得到AE =BD ,S △ACE =S △BCD ,根据三角形的面积公式得到CH =CI ,于是得到CF 平分∠BFH ,推出△ABC 是等腰直角三角形,即可得到结论.【详解】(1)证明:∵BC ⊥CA ,DC ⊥CE ,∴∠ACB =∠DCE =90°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC CA ACD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ;(2)∵△BCD ≌△ACE ,∴∠CBD =∠CAE ,∵∠BGC =∠AGE ,∴∠AFB =∠ACB =90°,∴BF ⊥AE ;(3)∠CFE =∠CAB ,过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,∵△BCD ≌△ACE ,∴ACE BCD AE BD,S S ∆∆==,∴CH =CI ,∴CF 平分∠BFH ,∵BF ⊥AE ,∴∠BFH =90°,∠CFE =45°,∵BC ⊥CA ,BC =CA ,∴△ABC 是等腰直角三角形,∴∠CAB =45°,∴∠CFE =∠CAB .【点睛】角的和差、对顶角的性质这些知识点在证明全等和垂直过程中经常会遇到,需要掌握。
专题6 类比探究—图形旋转中三角形全等题型(学生版)
专题6类比探究—图形旋转中三角形全等题型知识归纳几何类比探究题是近几年中招考试的必考题型,目前位于解答题的最后一题,分值为11分或12分.主要考查方式有求线段长,求角度,判断图形形状,判断两条线段的数量关系和位置关系并证明,考查知识点主要涉及特殊三角形,勾股定理,四边形的判定与性质,全等、相似三角形的判定及性质,二次函数等,综合性较强。
本专题主要对类比探究—图形旋转中三角形全等题型进行总结,对其解法进行归纳总结,所选题型为近几年期末考试中的常考题型。
解题思路总结图形的类比探究常以三角形、四边形为背景,与翻折、旋转相结合,考查三角形全等或相似的性质与判定,难度较大.此类题目第一问相对简单,后面的问题需要结合第一问的方法进行类比解答.根据其特征大致可分为:几何变换类比探究问题、旋转综合问题、翻折类问题等。
解决此类问题要善于将复杂图象分解为几个基本图形,通过添加副主席补全或构造基本图形,借助转化、方程、数形结合、分类讨论等数学思想解决几何证明问题,计算则把几何与代数知识综合起来,渗透数形结合思想,考查学生分析问题的能力、逻辑思维和推理能力.常考题型专练一、解答题1.如图1,△ABC和△DCE都是等边三角形.探究发现(1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由.拓展运用(2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长.(3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD 的长.2.在△ABC中,∠BAC=90°,点O是斜边BC上的一点,连接AO,点D是AO上一点,过点D分别作DE AB∥,DF AC∥,交BC于点E、F.(1)如图1,若点O为斜边BC的中点,求证:点O是线段EF的中点.(2)如图2,在(1)的条件下,将△DEF绕点O顺时针旋转任意一个角度,连接AD,CF,请写出线段AD和线段CF的数量关系,并说明理由.(3)如图3,若点O是斜边BC的三等分点,且靠近点B,当∠ABC=30°时,将△DEF绕点O顺时针旋转任意一个角度,连接AD、BE、CF,请求出BEAD的值.3.在等腰直角三角形ABC中,∠ACB=90°,AC=BC,D是AB边上的中点,Rt△EFG的直角顶点E在AB边上移动.(1)如图1,若点D与点E重合且EG⊥AC、DF⊥BC,分别交AC、BC于点M、N,易证EM=EN;如图2,若点D与点E重合,将△EFG绕点D旋转,则线段EM与EN的长度还相等吗?若相等请给出证明,不相等请说明理由;(2)将图1中的Rt△EGF绕点O顺时针旋转角度α(0∘<α<45∘).如图2,在旋转过程中,当∠MDC=15∘时,连接MN,若AC=BC=2,请求出写出线段MN的长;(3)图3,旋转后,若Rt△EGF的顶点E在线段AB上移动(不与点D、B重合),当AB=3AE时,线段EM与EN 的数量关系是________;当AB=m·AE时,线段EM与EN的数量关系是__________.4.(1)问题发现:如图1,在等边ABC ∆中,点D 为BC 边上一动点,//DE AB 交AC 于点E ,将AD 绕点D 顺时针旋转60︒得到DF ,连接CF .则AE 与FC 的数量关系是_____,ACF ∠的度数为______.(2)拓展探究:如图2,在 Rt ABC ∆中,90ABC ∠=︒,60ACB ∠=︒,点D 为BC 边上一动点,//DE AB 交AC 于点E ,当∠ADF=∠ACF=90°时,求AE FC 的值.(3)解决问题:如图3,在ABC ∆中,:BC AB m =,点D 为BC 的延长线上一点,过点D 作//DE AB 交AC 的延长线于点E ,直接写出当ADF ACF ABC ∠=∠=∠时AE FC 的值.5.在等边△ABC 中,点D 是BC 边上一点,点E 是直线AB 上一动点,连接DE,将射线DE 绕点D 顺时针旋转120°,与直线AC 相交于点F .(1)若点D 为BC 边中点.①如图1,当点E 在AB 边上,且DE AB ⊥时,请直接写出线段DE 与DF 的数量关系________;②如图2,当点E 落在AB 边上,点F 落在AC 边的延长线上时,①中的结论是否仍然成立?请结合图2说明理由;(2)如图3,点D 为BC 边上靠近点C 的三等分点.当:3:2AE BE =时,直接写出CF AF 的值.6.在ABCD 中,BAD ∠=α,以点D 为圆心,适当的长度为半径画弧,分别交边AD 、CD 于点M 、N ,再分别以M 、N 为圆心,大于 MN 的长为半径画弧,两弧交于点K ,作射线DK ,交对角线AC 于点G ,交射线AB 于点E ,将线段EB 绕点E 顺时针旋转α得线段EP .(1)如图1,当120α=︒时,连接AP ,线段AP 和线段AC 的数量关系为;(2)如图2,当90α=︒时,过点B 作BF EP ⊥于点F ,连接AF ,请求出∠FAC 的度数,以及AF ,AB ,AD 之间的数量关系,并说明理由;(3)当120α=︒时,连接AP ,若13BE AB =,请直接写出线段AP 与线段DG 的比值.7.在数学兴趣小组活动中,小亮进行数学探究活动.(1)△ABC是边长为3的等边三角形,E是边AC上的一点,且AE=1,小亮以BE为边作等边三角形BEF,如图(1)所示.则CF的长为.(直接写出结果,不说明理由)(2)△ABC是边长为3的等边三角形,E是边AC上的一个动点,小亮以BE为边作等边三角形BEF,如图(2)所示.在点E从点C到点A的运动过程中,求点F所经过的路径长.思路梳理并填空:当点E不与点A重合时,如图,连结CF,∵△ABC、△BEF都是等边三角形∴BA=BC,BE=BF,∠ABC=∠EBF=60°∴①∠ABE+=∠CBF+;∴∠ABE=∠CBF∴△ABE≌△CBF∴∠BAE=∠BCF=60°又∠ABC=60°∴∠BCF=∠ABC∴②______∥______;当点E在点A处时,点F与点C重合.当点E在点C处时,CF=CA.∴③点F所经过的路径长为.(3)△ABC是边长为3的等边三角形,M是高CD上的一个动点,小亮以BM为边作等边三角形BMN,如图(3)所示.在点M从点C到点D的运动过程中,求点N所经过的路径长.(4)正方形ABCD的边长为3,E是边CB上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形BFGH,其中点F,G都在直线AE上,如图(4).当点E到达点B时,点F,G,H与点B重合.则点H所经过的路径长为.(直接写出结果,不说明理由)8.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题一:题中出现什么的时候,我们应该想到旋转(构造旋转的条件)
1.图中有相等的边(等腰三角形、等边三角形、正方形、正多边形)
2.这些相等的边中存在共端点。
3.如果旋转(将一条边和另一条边重合),会出现特殊的角:大角夹半角、手拉手、
被分割的特殊角。
问题二:旋转都有哪些模型
构造旋转辅助线模型:
1.大角夹半角
2.手拉手(寻找旋转)
3.被分割的特殊角
旋转使用技巧
1.题干中出现对图形的旋转——现成的全等
2.图形中隐藏着旋转位置关系的全等形——找到并利用
3.题干中没提到旋转,图形中也没有旋转关系存在——通过作辅助线构造旋转!
典型例题
【例1】如图,P是正△ABC内的一点,若将△PBC绕点B旋转到
△P'BA ,则∠PBP'的度数是( )
A.45° B.60°
C.90° D.120°
【例2】如图,正方形BAFE与正方形ACGD共点于A,连接BD、CF,求证:BD=CF并求出∠
DOH
的度数。
【例3】如图,正方形ABCD中,∠FAD=∠FAE 。求证:BE+DF=AE。
【例4】已知:如图:正方形ABCD中,∠MAN=45°,∠MAN的两边分别交CB、DC于点M、
N。求证:BM+DN=MN
。
【例5】如图,正方形ABCD中,∠EAF=45°,连接对角线BD交AE于M,交AF于N,证明:
DN2+BM2=MN
2
【例6】如图,已知△OAB和△OCD是等边三角形,连结AC和BD,相交于点E,AC和BO交
于点F,连结BC。求∠AEB的大小。
【例7】如图所示:△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且AP=3,
CP
=2, BP=1,求∠BPC的度数。
课后习题
1.如图,P是正ABC内的一点,且BP是∠ABC的角平分线,若将
PBC
绕点P旋转到PBA,则PBP的度数是( )
A.45° B.60° C.90° D.120°
2.如图:△ABC中,AB=AC,BC为最大边,点D、E分别在BC、AC上,
BD=CE,F为BA延长线上一点,BF=CD
,则下列正确的是( )
A.DF=DE B.DC=DF
C.EC=EA D.不确定
3.如图,四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,
则下列正确的是( )
P
'
A
B
C
P
C
B
A
F
D
E
B
D
A
C
A.BD2=AB2+BC2 B.BD2<AB2+
BC
2
C.BD2>AB2+BC2 D.不确定
4.已知ABC△中,90ACB°,CDAB于D,AE为角平分线
交CD于F,则图中的直角三角形有( )
A.7个 B.6个 C.5个 D.4个
5.如图,DA⊥AB,EA⊥AC,AD=AB,AE=AC,则下列正确的是( )
A.ABDACE△≌△
B.
ADFAES△≌△
C.
BMFCMS△≌△
D.
ADCABE△≌△
6.如图,已知P为正方形ABCD的对角线AC上的一点(不与A、
C
重合),PE⊥BC与点E,PF⊥CD与点F,若四边形PECF绕点C逆时
针旋转,连结BE、DF,则下列一定正确的是( )
A.BP=DP B.BE2+EC2=
BC
2
C.BP=DF D.BE=DF
7.如图,等腰直角△ADB与等腰直角△AEC共点于A,连结BE、
CD
,则下列一定正确的是( )
A.BE=DC B.AD∥CE
C.BE⊥CE D.BE=CE
8.如图,等边三角形ABE与等边三角形AFC共点于A,
连接BF、CE,则EOB的度数为( )
A.45° B.60°
C.90° D.120°
9.如图,在四边形ABCD中,ABAD,90BD∠∠,E、
F
分别是边BC、CD上的点,且12EAFBAD∠∠。则下列
F
E
D
C
B
A
S
F
E
D
C
B
A
M
DCBA
E
P
F
A
B
C
D
O
E
O
G
F
E
C
B
A
F
EDCB
A
一定正确的是( )
A.EFBEFD B.
EFBEFD
C.EFBEFD
D.
222
EFBEFD
10.在正方形ABCD中,BE=3,EF=5,DF=4,则∠BAE+∠
DCF
为( )
A.45° B.60°
C.90° D.120°
F
E
D
C
B
A