用回溯法解决0-1背包问题
《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。
A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。
A.B.C.D. void backtrack (int t){if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1); swap(x[t], x[i]);}}void backtrack (int t){if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1); }}10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。
F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。
B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。
C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。
贪心算法-01背包问题

贪⼼算法-01背包问题1、问题描述:给定n种物品和⼀背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装⼊背包的物品,使得装⼊背包中物品的总价值最⼤?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找⼀n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最⼤.即⼀个特殊的整数规划问题。
2、最优性原理:设(y1,y2,…,yn)是 (3.4.1)的⼀个最优解.则(y2,…,yn)是下⾯相应⼦问题的⼀个最优解:证明:使⽤反证法。
若不然,设(z2,z3,…,zn)是上述⼦问题的⼀个最优解,⽽(y2,y3,…,yn)不是它的最优解。
显然有∑vizi > ∑viyi (i=2,…,n)且 w1y1+ ∑wizi<= c因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n)说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的⼀个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,⽭盾。
3、递推关系:设所给0-1背包问题的⼦问题的最优值为m(i,j),即m(i,j)是背包容量为j,可选择物品为i,i+1,…,n时0-1背包问题的最优值。
由0-1背包问题的最优⼦结构性质,可以建⽴计算m(i,j)的递归式:注:(3.4.3)式此时背包容量为j,可选择物品为i。
此时在对xi作出决策之后,问题处于两种状态之⼀:(1)背包剩余容量是j,没产⽣任何效益;(2)剩余容量j-wi,效益值增长了vi ;使⽤递归C++代码如下:#include<iostream>using namespace std;const int N=3;const int W=50;int weights[N+1]={0,10,20,30};int values[N+1]={0,60,100,120};int V[N+1][W+1]={0};int knapsack(int i,int j){int value;if(V[i][j]<0){if(j<weights[i]){value=knapsack(i-1,j);}else{value=max(knapsack(i-1,j),values[i]+knapsack(i-1,j-weights[i]));}V[i][j]=value;}return V[i][j];}int main(){int i,j;for(i=1;i<=N;i++)for(j=1;j<=W;j++)V[i][j]=-1;cout<<knapsack(3,50)<<endl;cout<<endl;}不使⽤递归的C++代码:简单⼀点的修改//3d10-1 动态规划背包问题#include <iostream>using namespace std;const int N = 4;void Knapsack(int v[],int w[],int c,int n,int m[][10]);void Traceback(int m[][10],int w[],int c,int n,int x[]);int main(){int c=8;int v[]={0,2,1,4,3},w[]={0,1,4,2,3};//下标从1开始int x[N+1];int m[10][10];cout<<"待装物品重量分别为:"<<endl;for(int i=1; i<=N; i++){cout<<w[i]<<" ";}cout<<endl;cout<<"待装物品价值分别为:"<<endl;for(int i=1; i<=N; i++){cout<<v[i]<<" ";}cout<<endl;Knapsack(v,w,c,N,m);cout<<"背包能装的最⼤价值为:"<<m[1][c]<<endl;Traceback(m,w,c,N,x);cout<<"背包装下的物品编号为:"<<endl;for(int i=1; i<=N; i++){if(x[i]==1){cout<<i<<" ";}}cout<<endl;return 0;}void Knapsack(int v[],int w[],int c,int n,int m[][10]){int jMax = min(w[n]-1,c);//背包剩余容量上限范围[0~w[n]-1] for(int j=0; j<=jMax;j++){m[n][j]=0;}for(int j=w[n]; j<=c; j++)//限制范围[w[n]~c]{m[n][j] = v[n];}for(int i=n-1; i>1; i--){jMax = min(w[i]-1,c);for(int j=0; j<=jMax; j++)//背包不同剩余容量j<=jMax<c{m[i][j] = m[i+1][j];//没产⽣任何效益}for(int j=w[i]; j<=c; j++) //背包不同剩余容量j-wi >c{m[i][j] = max(m[i+1][j],m[i+1][j-w[i]]+v[i]);//效益值增长vi }}m[1][c] = m[2][c];if(c>=w[1]){m[1][c] = max(m[1][c],m[2][c-w[1]]+v[1]);}}//x[]数组存储对应物品0-1向量,0不装⼊背包,1表⽰装⼊背包void Traceback(int m[][10],int w[],int c,int n,int x[]){for(int i=1; i<n; i++){if(m[i][c] == m[i+1][c]){x[i]=0;}else{x[i]=1;c-=w[i];}}x[n]=(m[n][c])?1:0;}运⾏结果:算法执⾏过程对m[][]填表及Traceback回溯过程如图所⽰:从m(i,j)的递归式容易看出,算法Knapsack需要O(nc)计算时间; Traceback需O(n)计算时间;算法总体需要O(nc)计算时间。
算法设计技巧与分析习题答案

算法设计技巧与分析习题答案【篇一:算法设计与分析考试题及答案】一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列x={b,c,a,d,b,c,d},y={a,c,b,a,b,d,c,d},请给出序列x和y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器m1和m2上加工作业i所需的时间分别为ai和bi,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,c=9,v={6,10,3},w={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
第5章 回溯法(竞赛专用)

tji 作业1 作业2 作业3
机器1 2 3 2
机器2 1 1 3
这3个作业的6种可能的调度方案是1,2,3;1,3,2;2,1,3;2,3,1; 3,1,2;3,2,1;它们所相应的完成时间和分别是19,18,20, 21,19,19。易见,最佳调度方案是1,3,2,其完成时间和为 11 18。
15
Q Q Q Q Q
n后问题
解向量:(x1, x2, … , xn) 显约束:xi=1,2, … ,n 隐约束: 1)不同列:xi≠xj 2)不处于同一正、反对角线:|i-j|≠|xi-xj| ≠
private static boolean place (int k) { for (int j=1;j<k;j++) if ((Math.abs(k-j)==Math.abs(x[j]-x[k]))||(x[j]==x[k])) return false; return true; } private static void backtrack (int t) { if (t>n) sum++; else for (int i=1;i<=n;i++) { x[t]=i; if (place(t)) backtrack(t+1); }
16
解空间:子集树 n 可行性约束函数: wi xi ≤ c1 ∑ i =1 上界函数:
0-1背包问题
private static double bound(int i) {// 计算上界 double cleft = c - cw; // 剩余容量 double bound = cp; // 以物品单位重量价值递减序装入物品 while (i <= n && w[i] <= cleft) { cleft -= w[i]; bound += p[i]; i++; } // 装满背包 if (i <= n) bound += p[i] / w[i] * cleft; return bound; }
算法设计与分析考试题及答案-算法设计与优化答案

1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
算法期末复习题2

填空题:1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:确定性有穷性可行性 0个或多个输入一个或多个输出2.算法的复杂性有时间复杂性和空间复杂性之分,衡量一个算法好坏的标准是时间复杂度高低。
3.某一问题可用动态规划算法求解的显著特征是该问题具有最优子结构性质。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含一个(最优)解6.动态规划算法的基本思想是将待求解问题分解成若干子问题_,先求解子问题,然后从这些子问题的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为回溯法。
8.0-1背包问题的回溯算法所需的计算时间为o(n*2n),用动态规划算法所需的计算时间为o(min{nc,2n})。
9.动态规划算法的两个基本要素是最优子结构和重叠子问题。
10.二分搜索算法是利用动态规划法实现的算法。
11.一个算法复杂性的高低体现在计算机运行该算法所需的时间和存储器资源上,因此算法的复杂性有时间复杂性和空间复杂性之分。
12.出自于“平衡子问题”的思想,通常分治法在分割原问题,形成若干子问题时,这些子问题的规模都大致相同。
13.动态规划算法有一个变形方法备忘录方法。
这种方法不同于动态规划算法“自底向上”的填充方向,而是“自顶向下”的递归方向,为每个解过的子问题建立了备忘录以备需要时查看,同样也可避免相同子问题的重复求解。
14、这种不断回头寻找目标的方法称为回溯法。
15、直接或间接地调用自身的算法称为递归算法。
16、 记号在算法复杂性的表示法中表示渐进确界或紧致界。
17、由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
18、建立计算模型的目的是为了使问题的计算复杂性分析有一个共同的客观尺度。
19、下列各步骤的先后顺序是②③④①。
①调试程序②分析问题③设计算法④编写程序。
20、最优子结构性质的含义是问题的最优解包含其子问题的最优解。
ACM背包问题
背包问题
如果给你一个背包,要你从许多东西里选择一些装进来,只要这个包装得下,你就可 以将包里的东西全部拿走了,那么你会如何选择物品呢?这里你需要考虑的是背包的体积 和承重限制,当然最重要的是你拿走的东西的总价值最大。这样的问题就是背包问题,许 多问题都可以转化为背包问题来考虑。背包问题是一个在运筹学领域里常见的典型 NP-C 难题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有一定的意义。
while (goods[0].flag<goods[i].flag) {
goods[i+1]=goods[i]; i--; } goods[i+1]=goods[0]; } ///////////////////////////////////////////
·78·
第 4 章 背包问题
cout<<"最优解为:"<<endl; for(i=1;i<=n;i++) {
4.3.1 〖案例 2〗0/1 背包
需对容量为 c 的背包进行装载。从 n 个物品中选取装入背包的物品,每件物品 i 的重 量为 wi,价值为 pi。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最 佳装载是指所装入的物品价值最高。限制:每个物品不能被分割,要不被装载,要不不被 装载。
第一行物品个数,接下来分别为物品价值,再接下来分别为物品的价值。再接下来分 别为物品的重量,最后为背包的容量。
数据结构与算法: 不需要特殊的数据结构 算法采用贪婪法 首先输入物品信息和背包容量,然后每次选比重最大的装载。
struct goodinfo
{ float p; float w; float X; int flag;
基于0-1背包问题的两种算法
回溯 法有 “ 用 解 题 法 ” 称 。用 它 可 以 系统 通 之
地搜 索 问题 的所 有解 。 回溯法 是一个 既带有 系统性 又 带有跳跃 性 的搜 索算 法 。回溯法 的求解 目标 是找 出解 空 间树 上满 足 约束 条 件 的所 有解 , 深 度优 按 先 的策略 , 根 结点 出发 搜索 。算 法 搜 索 至 的 从 任一 结点 时 , 先判 断 该 结 点是 否包 含 问题 的解 。如
X) ∈I,} ≤i , n, o1, 1 ≤ 使得∑w ; , i ≤C 而且
l: 】
泛 的应 用 , 多 实 际 问 题 都 可 转 换 为 0—1背 包 问 很
题 , 效解决 0—1 有 背包 问题 具有重 要意 义 。
ቤተ መጻሕፍቲ ባይዱ;1 三
/ ) 达到最大 。 i X 因此 , 0—1 背包 问题是一个特殊 的 整数 规划问题 。
摘
要 :0—1背 包问题 是组 合优化领 域 里的 一个典 型 问题 ,是属 于 易于描述 却难 于解决 的 N P难
题 ,有效 解决 0—1背 包问题 具有 重要 意义 。首先给 出 了0—1 包问题 的描 述 ,然后 详细介 绍 了 背
回溯法和分 支限界 法的算 法思 想和搜 索策略 ,并 对 两种算法进 行 了比较和 分析 。
( . c ol fC mp t c n e Ya ’ nU iesy, a ’ n7 60 , hn ; 1S h o o o ue S i c , h a nv ri Y n a 10 0 C ia r e t
2 S f r ee r h a d D v lp n e tr Y ’ iv ri , a ’ n 7 6 0 , hn ) . o wa eR sa c n e eo me t n e , a a Un e s t C n n y t Y n a 1 0 0 C i a
算法设计与分析考试题及答案
1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。
2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。
3.某一问题可用动态规划算法求解的显著特征是____________________________________。
4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。
5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。
6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。
7.以深度优先方式系统搜索问题解的算法称为_____________。
8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。
9.动态规划算法的两个基本要素是___________和___________。
10.二分搜索算法是利用_______________实现的算法。
二、综合题(50分)1.写出设计动态规划算法的主要步骤。
2.流水作业调度问题的johnson算法的思想。
3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。
4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。
求解0-1背包问题算法研究
现代经济信息求解0-1背包问题算法研究田秀芹 百色学院数学与统计学院摘要:本文主要概述了求解0-1背包问题的两大类算法:精确算法和近似算法,并分析了这些算法的优缺点,并提出了求解该问题的算法发展趋势。
关键词:0-1背包问题;精确算法;近似算法中图分类号:TP312 文献识别码:A 文章编号:1001-828X(2017)010-0386-03The Study of the 0-1 Knapsack Problem AlgorithmAbstract: This paper mainly summarizes the solving 0-1 knapsack problem algorithm of two categories: accurate and approximate algorithms, and analyzes the advantages and disadvantages of these algorithms, and put forward the development trend of algorithms to solve the problem.Keywords: 0-1 knapsack problem, precise algorithm, approximate algorithmDantzig[1]在20世纪50年代首次提出了背包问题(Knapsack problem,简称KP),在文献[2]中,阐述了该问题是一个NP-难问题,在背包问题中,我们很难设计出多项式时间算法,除非P=NP。
0-1背包问题就是,给定一个容量为的背包和件具有价值的物品,在不超过背包容量的前提下,选择若干物品放入背包,使得装入背包的物品总价值最大。
同时给出一种放置物品的方案。
背包问题就有普遍的应用背景,在日常的许多实践中如:材料切割、资源有效分配问题、资金估算的问题、运输过程的货仓装载等起着很大的作用,许多的组合优化问题都可以简化为背包问题,背包问题的各种解法也可用来解决组合优化问题,因此对0-1背包问题的解法进行深入的研究具有重大的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
void Print()
{
int i;
printf("\n路径为{");
for(i=1;i<n;++i)
printf("%d,",bestAnswer[i]);
printf("%d}\t价值为%d\n",bestAnswer[i],bestPrice);
}
void main()
{
int i;
/*输入部分*/
printf("\n最优解路径为{");
for(i=1;i<n;++i)
printf("%d,",bA[i]);
printf("%d}\t总价值为%d\n",bA[i],bp);
printf("\n\n总共搜索结点数%d\n",times);
}
printf("请依次输入%d个物品的价值:\n",n);
for(i=1;i<=n;i++)
scanf("%d",&price[i]);
printf("各符合条件的路径为:\n");
Backtracking(1);
printf("*******************************************************\n");
printf("请输入物品的数量:\n");
scanf("%d",&n);
printf("请输入背包的容量(能承受的重量):\n");
scanf("%d",&c);
printf("请依次输入%d个物品的重量:\n",n);
for(i=1;i<=n;i++)
scanf("%d",&weight[i]);
int bestPrice=0; //当前最优值
int bestAnswer[100]; //当前最优解
int bp=0;
int bA[100]; ();
void Backtracking(int i)
{
times+=1;
if(i>n)
{
Print();
bestPrice += price[i];
Backtracking(i+1); //完成上面的递归,返回到上一结点,物品i不放入背包,准备递归右子树
currentWeight -= weight[i];
bestPrice -= price[i];
}
bestAnswer[i] = 0;
Backtracking(i+1);
if(bestPrice>bp)
{
bp=bestPrice;
for(int j=1;j<=n;j++)
bA[j]=bestAnswer[j];
}
return;
}
if(currentWeight+weight[i]<=c)
{ //将物品i放入背包,搜索左子树
bestAnswer[i] = 1;
currentWeight += weight[i];
#include<stdio.h>
int c; //背包容量
int n; //物品数
int weight[100]; //存放n个物品重量的数组
int price[100]; //存放n个物品价值的数组
int currentWeight=0; //当前重量
int currentPrice=0; //当前价值