中考数学专题训练(附详细解析):格点问题

合集下载

2023年中考数学《网格作图》真题及答案解析

2023年中考数学《网格作图》真题及答案解析

2023中考真题抢先练:数学网格作图1.(2023达州18题)如图,网格中每个小正方形的边长均为1,△ABC 的顶点均在小正方形的格点上.(1)将△ABC 向下平移3个单位长度得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕点C 顺时针旋转90度得到△A 2B 2C 2,画出△A 2B 2C 2;(3)在(2)的运动过程中请计算出△ABC 扫过的面积.第1题图【推荐区域:安徽陕西】【参考答案】解:(1)如解图,△A 1B 1C 1即为所求;(2)如解图,△A 2B 2C 2即为所求;第1题解图(3)由图可得,△ABC 为等腰直角三角形,∴51222=+==BC AB ,AC =101322=+,∴25552121=´´=×=D BC AB S ABC ,∴△A 1B 1C 1在旋转过程中扫过的面积为2ABCACA S S D +扇形290360p ´=+52=52π+52.反比例与一次函数性质综合题2.(2023自贡24题)如图,点A (2,4)在反比例函数xm y =1图象上,一次函数b kx y +=2的图象经过点A ,分别交x 轴,y 轴于点B ,C ,且△OAC 与△OBC 的面积比为2:1.(1)求反比例函数和一次函数的解析式;(2)请直接写出y 1≥y 2时,x 的取值范围.第2题图【推荐区域:安徽江西甘肃】【参考答案】解:(1)将A (2,4)代入x m y =1中得24m =,解得m =8,∴xy 81=,∵C (0,b ),∴12OAC S OC D =·2=b ,∵△OAC 与△OBC 的面积比为2:1,∴b OB OC S OBC 2121=´=D ,解得OB =1,∴B (-1,0)或(1,0),①将A (2,4),B (-1,0)代入b kx y +=2中,得îíì+-=+=,,b k b k 024解得ïîïíì==,,3434b k ∴34342+=x y ;②将A (2,4),B (1,0)代入b kx y +=2中,得îíì+=+=,,b k b k 024解得îíì-==,,44b k ∴442-=x y ;综上可知,一次函数的解析式为34342+=x y 或442-=x y ;(2)当34342+=x y 时,x ≤-3或0<x ≤2;当442-=x y 时,x ≤-1或0<x ≤2.解直角三角形的实际应用3.(2023达州19题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱,如图所示,秋千链子的长度为3m ,当摆角∠BOC 恰为26°时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角∠AOC 为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m ;参考数据:sin 26°=0.44,cos 26°≈0.9,tan 26°≈0.49,sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.2)第3题图【推荐区域:安徽江西河南甘肃】【参考答案】解:如解图,过点B 作BD ⊥ON 于点D ,过点A 作AE ⊥ON 于点E ,作AF ⊥MN于点F,第3题解图∴四边形BDNM,AENF均为矩形,∴BM=DN=0.9,AF=EN,在Rt△OBD中,OD=OB·cos26°=3cos26°,∴ON=OD+DN=3cos26°+0.9,在Rt△OAE中,OE=OA·cos50°=3cos50°,∴EN=ON-OE=3cos26°+0.9-3cos50°,∴AF=3cos26°+0.9-3cos50°≈3×0.9+0.9-3×0.64=1.68≈1.7(m),答:座板距地面的最大高度为1.7m.4.(2023重庆A卷24题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图:①A—D—C—B;②A—E—B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B的南偏西60°方向.( 1.41≈1.73)(1)求AD的长度;(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?第4题图【推荐区域:安徽江西河南甘肃】【参考答案】解:(1)如解图,过点D作DF⊥AB于点F.第4题解图由题意可知,AB∥CD,BC⊥AB,∴四边形BCDF是矩形,且BC=10,CD=14.∴DF=BC=10,在Rt△ADF中,∠DAF=45°,∴AD≈14(千米),答:AD的长度约为14千米;(2)由题意可知,EA⊥AB,∠ABE=90°-60°=30°,∵AF=DF=10,BF=CD=14,∴AB=AF+BF=10+14=24,∴在Rt△ABE中,AE AB BE=2AE线路①:AD+CD+BC≈38.1(千米),线路②:AE+BE41.52(千米),∵38.1<41.52,∴小明应选择线路①.二次函数的实际应用5.(2023南充23题)某工厂计划从A ,B 两种产品中选择一种生产并销售,每日产销x 件,已知A 产品成本价m 元/件(m 为常数,且4≤m ≤6),售价8元/件,每日最多产销500件,同时每日共支付专利费30元;B 产品成本价12元/件,售价20元/件,每日最多产销300件,同时每日支付专利费y 元,y (元)与每日产销x (件)满足关系式201.080x y +=.(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润;(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.[利润=(售价一成本)×产销数量一专利费]【推荐区域:安徽河北云南江西】【参考答案】解:(1)根据题意,得30)8(1--=x m w ,0≤x ≤500.)01.080()1220(22x x w +--=80801.02-+-=x x ,0≤x ≤300;(2)∵8-m >0,∴1w 随x 的增大而增大,又0≤x ≤500,∴当x =500时,1w 的值最大,39705001+-=m w 最大.1520)400(01.080801.0222+--=-+-=x x x w .∵-0.01<0,对称轴为直线x =400,当0≤x ≤300时,2w 随x 的增大而增大,∴当x =300时,2w 最大=-0.01×(300-400)2+1 520=1 420(元).(3)①若最大1w =最大2w ,即-500m +3970=1420,解得m =5.1;②若最大1w >最大2w ,即-500m +3970>1 420,解得m <5.1;③若最大1w <最大2w ,即-500m +3 970<1420,解得m >5.1.又∵4≤m ≤6,∴综上可得,为获得最大日利润:当m =5.1时,选择A ,B 产品产销均可;当4≤m <5.1时,选择A 种产晶产销;当5.1<m ≤6时,选择B 种产品产销.二次函数性质综合题6.(2023遂宁25题)在平面直角坐标系中,O 为坐标原点,抛物线c bx x y ++=241经过点O (0,0),对称轴过点B (2,0),直线l 过点C (2,-2)且垂直于y 轴.过点B 的直线1l 交抛物线于点M ,N ,交直线l 于点Q ,其中点M ,Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ ,PO ,其中PO 交1l 于点E ,设△OQE 的面积为1S ,△PQE 的面积为2S ,求12S S 的最大值.第6题图【推荐区域:安徽陕西】【参考答案】解:(1)由题意得0b 2124c =ìïïí-=ï´ïî,,解得01c b =ìí=-î,,∴抛物线的解析式为y =214x -x ;(2)如解图,过点M ,Q 作MD ⊥x 轴,QH ⊥x 轴分别于点D ,H ,第6题解图∴DM ∥HQ ,∴△BDM ∽△BHQ ,∴BM BQ =DM HQ ,∴38=2DM ,∴DM =34,∴点M 的纵坐标为-34,代入y =34x 2-x 中,解得x M =1或x M =3,∵点M 在抛物线对称轴的左侧,∴x M =1,∴点M (1,-34),设直线BM 的解析式为y =kx +b 1,将点M (1,-34)和点B (2,0)代入,得113=402k b k b ì-+ïíï=+î,,解得13=432k b ìïïíï=-ïî,,∴直线BM 的解析式为y =2343-x ,联立2143342y x x y x ì=-ïïíï=-ïî,,解得134x y =ìïí=-ïî,或63x y =ìí=î,,∵点N 在对称轴的右侧,∴点N (6,3);(3)由题意可知,点Q 的坐标为(0,-2),设点P (m ,14m 2-m ),由题意得直线y OP =(14m -1)x ,直线l 1的解析式为y BQ =x -2,联立1(1)42y m x y x ì=-ïíï=-î,,∴点E 的横坐标为x E =88m -,∴S 1=21OQ ·x E =21×2×m -88=m-88,S 2=21OQ ·(P E x x -)=21×2(m -m-88)=m m m ---8882,∴22188888S m m m S m ---=-=1812-+-m m =1)4812+--m (,∵81-<0,∴当m =4时,12S S 有最大值,最大值为1,∴12S S 的最大值为1.。

中考数学总复习第38课 网格型问题

中考数学总复习第38课 网格型问题

点评:(1)本题给出一段资料,提供网格作为探索问题的工具,主要考查直角三角形斜边中
线、高的性质以及特
较大.
(2)理解λA 的意义,根据题目要求画出图象是解题的关键.
解析:(1)如解图 10,作 BC 边上的中线 AD.∵AC⊥DC,∴λA=CBDD=1.
边上的高和中线,点
D
是垂足,点
E

BC
的中点,规定:λA
=DE.特别地, BE
当点 D,E 重合时,规定:λA=0.另外,对λB,λC 作类似的规定.
(1)如图 38-10②,在△ABC 中,∠C=90°,∠A=30°,求λA,λC;
(2)在每个小正方形边长均为 1 的 4×4 的方格纸上,画一个△ABC,使其顶点
4aa++kk==30,,解得
a=-1, k=4,
∴y=-(x-2)2+4=-x2+4x.
向右平移 1 个单位,向上平移 1 个单位可得到另一条符合题
意的抛物线,
可平移 6 次,
∴一共有 7 条抛物线.
同理:开口向上的抛物线也有 7 条.
∴满足上述条件且对称轴平行于 y 轴的抛物线条数是 7+7=14.故选 C.
名师点拨
与图形变换有关的网格型问题,常常会考查网格中的 画图、图形描述或图形操作、运动轨迹的路径(面积)、以 及利于网格进行图案或方案设计等方面,一般而言,这类 问题常常会以我们学过的平移、旋转与对称的知识为基 础,难度不大,掌握图形变换的本质特征是解题的关键.
【预测演练 3-1】 如图 38-8,8×8 方格纸上的两条对称轴 EF ,MN 交于中心点 O,对△ABC 分别作下列变换:①先以点 A 为中心顺时针 方向旋转 90°,再向右平移 4 格,向上平移 4 格; ②先以点 O 为中心 作中心对称图形,再以点 A 的对应点为中心逆时针方向旋转 90°;③ 先以直线 MN 为轴作轴对称图形,再向上平移 4 格,再以点 A 的对应 点为中心顺时针方向旋转 90°.其中能将△ABC 变换成△PQR 的是

中考数学复习专题之格点问题共29页PPT资料PPT文档31页

中考数学复习专题之格点问题共29页PPT资料PPT文档31页

中考数学复习专题之格点问题共29页 PPT资料
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

中考数学第二轮专题复习(网格问题)

中考数学第二轮专题复习(网格问题)
●2 6
●B
P
(2)点P在y轴的负半轴

O
x
P ● 3.网格中的存在问题解题策略:
假设入手,分类讨论
1、在正方形网格中,每个小方格都是边长为1
的正方形,A、B两点在小方格的顶点上,位
置如图所示,点C也在小方格的顶点上,且A、
B、C为顶点的三角形的面积为1个平方单位,
则点C的个数为( D )
(A)3 (B)4 (C)5 (D)6
... ...
2 、08丽水16)如图, 在已建立直角坐标系的4×4 正方形方格纸中,△ABC是格点三角形(三角形 的三个顶点都是小正方形的顶点), 若以格点P、 A、B为顶点的三角形与△ABC相似(全等除外), 则格点P的坐标是________(_1_,4_)_(_3_,4.)
系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和
最小值分别是多少?
M
Q
①向下平移时
A
B
C
O
N
P
如图,在20×20的等距网格(每格的宽和高均是1个单位长)中,
Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度
先向下平移,当BC边与网的底部重合时,继续同样的速度向右平
移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,
△QAC的面积为y.
(2)如图,在Rt△ABC的平移过程中,请你求出y与x的函数关
系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和
最小值分别是多少?
M
Q
②向右平移时 O
A
N
B
C
P
请说说这一堂课你的收获与体验 跟大家分享?
请探究:在x轴上是否存在这样的点P,使以A、

初中网格中的数学问题赏析

初中网格中的数学问题赏析

初中网格中的数学问题赏析在正方形的网格中,每个小正方形的边长都是相等的,每个小正方形的顶点叫做格点,我们把以格点的连线为边的图形叫格点图形.近年来,各地的中考试卷中频频出现这类与格点有关的数学问题,由于这类与网格有关的中考题大部分具有开放性,设计又新颖,能很好地考查学生的思维水平和思维能力,故很受命题者的青睐.但课本、作业本中这类问题的例题和习题却并不多见,在此,特作梳理,与大家一起赏析.一、网格中的三角形1. (2010·湖南)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是().A. 6 B. 7 C. 8 D. 9分析根据题意,结合图形,分两种情况讨论(如下图):① AB为等腰△ABC 底边,符合条件的C点有4个;② AB为等腰△ABC其中的一条腰,符合条件的C点有4个.故选C.本题考查了等腰三角形的判定,解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.本题是利用网格提供的相等线段来构图.2. 在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC 的面积为2个平方单位,则满足条件的格点C的个数是().A. 5B. 4C. 3D. 2分析 A、B两点的垂直距离为2,那么,只要保证水平距离为2即可使△ABC的面积为2个平方单位;A、B两点的水平距离为1,那么,只要保证垂直距离为4,即可使△ABC的面积为2个平方单位.符合条件的点坐标分别为:C(3,1),C(0,3),C(4,3),C(1,5).本题考查三角形面积的求法,注意分水平距离和垂直距离两种情况,数学分类思想是一种重要的数学思想.二、网格与三角函数1. (2010·贵州)在正方形网格中,△ABC的位置如图所示,则cos∠B的值为 .分析过点C向上作垂线与AB相交于点D,则∠B是Rt△BCD的一个内角,邻边和斜边均由图可知,所以很容易求出cos∠B的值.或是过点A作垂线交BC的延长线于D,也可求出.本题主要考查了余弦函数的定义,正确理解定义是解题的关键.本题是利用网格提供的垂线,构建直角三角形.2. (2010·四川)如图,∠D的正切值等于 .分析根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形边的比的问题.先利用同弧所对圆周角相等,得出∠D=∠A,然后利用正切等于对边比上邻边即可求出.本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.从网格中很容易找到相关的直角三角形.三、网格与面积1. (2006·苏州)如图,直角坐标系中,△ABC的顶点都在网格点上,其中A点坐标为(2,-1),则△ABC的面积为平方单位.分析根据图形,可以直接写出点A的坐标是(2,-1).分别过A、B、C三点作垂线,形成一个大矩形,求出大矩形的面积,用大矩形的面积减去三个直角三角形的面积,剩余的面积即为△ABC的面积.此类题要求学生要能够把不规则图形的面积转化为规则图形的面积.有关面积的割补法是解决不规则图形面积的常用方法.本题充分利用网格的特点,构建规则图形.2. (2009·吉林)如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是 .分析先用大正方形的面积减去三个直角三角形的面积得到△ABC的面积,△ABC的面积又等于AC乘以AC边上的高的一半,按这一等量关系列出方程,解出方程即可得出AC边上的高.四、网格与相似如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)?摇判断△ABC和△DEF是否相似,并说明理由;(2)?摇P,P,P,P,P,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).分析答案为:△DPP、△DPP、△DPP.本题主要考查学生识图、构图能力和对三角形相似判定知识的理解,对学生的观察力有一定的挑战性.网格中的相等线段以及相等的角对构图起到关键性的作用.五、网格与圆1. (2010· 河北)如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在圆的圆心是 .分析连接BC,弦AB、BC垂直平分线的交点即为圆心.本题主要考察学生对垂径定理的理解,和残圆确定圆心的方法.本题是由网格特点直接看出线段的垂直平分线.2. (2010·江苏).如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于(结果保留根号及π).分析连接AB、AC,分别作它们的垂直平分线,两线交点即为圆心.利用勾股定理求出圆的半径,由图可知扇形OAB圆心角为90°,利用弧长公式即可求出弧长.本题考查了勾股定理及弧长公式的应用.解题的关键是正确地求出扇形的圆心角及半径.3. 如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则△ABC外接圆半径的长度为 .分析先求出线段AB、 AC、 BC的长度,再利用余弦定理求角A的余弦值,从而得到角A的正弦值.再利用正弦定理,即可求得直径.半径为2.连接OC因为C(4,-2),利用勾股定理得半径的长等于根号下,等于,化简为2.六、网格中的运动(2010·江苏)如图在网格图中,⊙A的半径为2个单位长度,⊙B的半径为1个单位长度,要使运动的⊙B与静止的⊙A相内切,应将⊙B由图示位置向左平移个单位长度.分析⊙B与⊙A可以在右边相内切,也可以在左边相内切.当⊙B与⊙A在右边相内切,移动距离为4个单位长度,当⊙B与⊙A在左边相内切,移动距离为6个单位长度.故答案为:4或6.本题主要通过圆的移动来考查圆与圆的位置关系;题目中小圆向左移动,通过观察,可知两圆内切的两种情况,分别求出移动的距离.七、网格与图形的变换1. (2010·辽宁)如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)以直线BC为对称轴作△ABC的轴对称图形,得到△ABC,再将△ABC绕着点B逆时针旋转90°得到△ABC,请依此画出△ABC、△ABC;(2)求线段BC旋转到BC过程中所扫过的面积(计算结果用π表示);(3)求点C旋转过程所经过的路径长.分析(1)根据对称的性质,画出图形;(2)BC旋转到BC的过程中,旋转角为90°,半径为4,由弧长公式计算即可.所以B点所经过的路线长度是2π.本题考查了学生画一个图形的对称图形以及弧长公式的应用的能力.2. (2010·湖北)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为().A. (5,2)B. (2,5)C. (2,1)D. (1,2)分析连接AD、CF,再做这两线段的垂直平分线,交点就是点P.根据点A、点B 的坐标建立平面直角坐标系,然后写出点P的坐标.此题属于中等难度题,主要考查的知识点是旋转及其相关的性质,旋转的中心在连接对应点的垂直平分线上,做出两条垂直平分线,它们的交点就是旋转的中心点.3. (2010· 甘肃)如图均为7×6的正方形网格,点A、B、C在格点(小正方形的顶点)上.(1)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图中确定格点E,并画出一个以A、B、C、E为顶点的四边形,使其为中心对称图形.分析第(1)题可以将点A向下平移四格得到点D,或是将点A向右平移两格得到点D.第(2)题可以将点A向右平移一格得到点E,两题方法均不唯一,此题比较灵活地考查了等腰梯形、平行四边形、矩形的对称性,是道好题.八、网格与概率一只蚂蚁在如图所示的图案内任意爬动一段时间后停下,蚂蚁停在阴影内的概率为 .分析先确定黑色区域的面积与总面积的比值,此比值即为所求的概率.本题主要考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.网格对化不规则图形为规则图形提供了帮助,方便学生求出阴影部分的面积.九、网格与规律(2006·温州)在边长为l的正方形网格中,按下列方式得到“L”形图形,第1个“L”形图形的周长是8,第2个“L”形图形的周长是,第三个“L”形图形的周长是,则第n个“L”形图形的周长是 .分析第1个“L”形图形的周长是8=4+4,第2个“L”形图形的周长是12=4+2×4,第3个“L”形图形的周长是16=4+3×4,……,第n个“L”形图形的周长是4+n×4,即4n+4.本题也可以这样来分析:平移“L”形的上面和右下的两边,第1个“L”形图形周长变成一个正方形周长加上4,即4+4,第2个“L”形图形周长为4+2×4,第3个“L”形图形周长为4+3×4,第n个“L”形图形的周长是4+n×4.用整式描述几何图形的规律在近几年的中考题中经常出现,这类题目把几何和整式结合起来考查,使试题难度增大.它既考查学生的识图能力,又考查学生的判断推理能力.通过以上分析,我们不难发现:网格中的数学问题,往往是把网格的特点与数学问题有机结合起来.网格可以提供相等的线段、相等的角、垂线、平行线、化不规则图形为规则图形等.还能够很方便地进行图形的翻折、平移、旋转等.同学们在解决这类问题时,既要有札实的数学基础,灵活运用相关数学知识,还要注意结合网格的特点来分析和解决问题.。

浙教版九年级数学《格点图中的作图与计算问题》

浙教版九年级数学《格点图中的作图与计算问题》

则满足条件的格点N有___3__个;
4
y
A
D
F·N1
B
OC
·N2
·EN3 x
例题解析
例2.【问题呈现】如图,在边长为1的正方形网格中, 连结格点A、N和M、C,AN与MC相交于点P,求tan∠CPN的值.
方法一:
A
C
P
M
N
E
例题解析
方法一:
A
C
EN//CM
P
∠CPN=∠ANE
M
N
在Rt△AEN中,tan∠ANE=2
网格中的作图与计算问题
问题引出
例1.如图,在7×6的方格中,△ABC的顶点均在格点上,试按要求仅 用不含刻度的直尺画出线段EF(E,F均为格点),各画出一条即可.
问题引出
【知识储备1】仅用不含刻度的直尺作线段中点、中垂线、 角平分线、等分线段等,往往需要通过格点图中的全等或 相似,或利用正方形网格的对称性和45°特殊角,又或利 用特殊平行四边形的相关性质.
问题解决
【问题解决】如图,在边长为1的正方形网格中,AN与CM相交于 点P,求tan∠CPN的值.
方法一:
E
AE//CM
∠CPN=∠EAN
在Rt△EAN中,tan∠EAN=1
tan∠CPN=1
问题解决
方法二:
E
CE//AN ∠CPN=∠ECM
在Rt△ECM中,tan∠ECM=1
tan∠CPN=1
tan∠CPN=2
E 【知识储备2】求一个锐角的三角函数值,我们往往需要找出 (或构造出)一个直角三角形.当发现问题中这个角不在直角 三角形中,我们常常利用网格画平行线等方法来解决.
例题解析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档