2021年高考数学第一轮专题复习课件4.1任意角、弧度制及任意角的三角函数
高考数学复习考点知识讲解课件21 任意角和弧度制及任意角的三角函数

(2)已知α为第二象限角,则
A.3
B.-3
C.1
2 sin α
1−cos2
α
+
1−sin2 α
的值是(
cosα
D.-12
答案:C
解析:(2)由题意,
2 sin α
1−cos2 α
+
1−sin2 α 2 sin α
=
cosα
sin α
因为α为第二象限角,所以sin α>0,cos α<0,
2 sin α
长是一定值C(C>0)”,其它不变,求解?
C
1
1
C 2
2
解析:扇形周长C=2R+l=2R+αR,所以R= ,所以S扇= α·R = α·
2+α
2
2
2+α
2
2
2
C α
1
C
1
C
= ·
=
·
≤
.
2 4+4α+α2
2 4 +4+α
16
α
2
C
当且仅当α2=4,即α=2时,扇形面积有最大值 .
16
反思感悟 弧长、扇形面积问题的解题策略
终边在第三象限.
3.[必修4·P20习题A组T2改编]已知角α的终边过点P(8m,3),且cos
4
α=- ,则m的值为(
)
5
1
A.-
2
1
B.
2
C.-
3
2
D.
3
2
答案:A
解析:由已知得m<0且
8m
4
5
1
2
专题4.1任意角的三角函数 同角三角函数的基本关系(2021年高考数学一轮复习专题)

专题 任意角的三角函数 同角三角函数的基本关系一、题型全归纳题型一 象限角及终边相同的角【题型要点】(1)表示区间角的三个步骤 ①先按逆时针方向找到区域的起始和终止边界;①按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间; ①起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合. (2)象限角的两种判断方法①图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角; ①转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ①Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.【易错提醒】注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k ·180°(k ①Z )表示终边落在角α的终边所在直线上的角. 【例1】(2020·辽宁鞍山一中一模)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角【解析】 因为α是第二象限角,所以π2+2k π<α<π+2k π,k ①Z ,所以π4+k π<α2<π2+k π,k ①Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.【例2】(2020·东北师大附中摸底)集合{α|k π+π4≤α≤k π+π2,k ①Z }中的角所表示的范围(阴影部分)是( )【解析】当k =2n (n ①Z )时,2n π+π4≤α≤2n π+π2,n ①Z ,此时α的终边和π4≤α≤π2的终边一样;当k =2n +1时,2n π+π+π4≤α≤2n π+π+π2,此时α的终边和π+π4≤α≤π+π2的终边一样.故选C.题型二 扇形的弧长、面积公式【题型要点】弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量. 【易错提醒】运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度. 【例1】已知扇形的圆心角是α ,半径为R ,弧长为l . (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【解析】 (1)α=60°=π3,l =10×π3=10π3(cm).(2)由已知得,l +2R =20,则l =20-2R ,0<R <10,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5时,S 取得最大值25,此时l =10 cm ,α=2 rad.【例2】.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为 .【解析】:设圆的半径为r ,则扇形的半径为2r 3,记扇形的圆心角为α,则12α⎝⎛⎭⎫2r 32πr 2=527,所以α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r32πr =518题型三 三角函数的定义命题角度一 利用三角函数定义求值【题型要点】三角函数的定义中常见的三种题型及解决方法(1)已知角α的终边上的一点P 的坐标,求角α的三角函数值 方法:先求出点P 到原点的距离,再利用三角函数的定义求解.(2)已知角α的一个三角函数值和终边上一点P 的横坐标或纵坐标,求与角α有关的三角函数值方法:先求出点P 到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题.(3)已知角α的终边所在的直线方程(y =kx ,k ≠0),求角α的三角函数值方法:先设出终边上一点P (a ,ka ),a ≠0,求出点P 到原点的距离(注意a 的符号,对a 分类讨论),再利用三角函数的定义求解.【例1】(2020·合肥一检)函数y =log a (x -3)+2(a >0且a ≠1)的图象过定点P ,且角α的终边过点P ,则sin α+cos α的值为( ) A.75 B.65 C.55D .355【解析】因为函数y =log a (x -3)+2的图象过定点P (4,2),且角α的终边过点P ,所以x =4,y =2,r =25,所以sin α=55,cos α=255,所以sin α+cos α=55+255=355.故选D. 【例2】已知角α的终边经过点P (-x ,-6),且cos α=-513,则tan α= .【解析】因为角α的终边经过点P (-x ,-6),且cos α=-513,所以cos α=-x x 2+36=-513,即x =52.所以P ⎝⎛⎭⎫-52,-6,所以tan α=125. 【例3】(2020·山西太原三中模拟)若角α的终边落在直线y =-x 上,则sin α|cos α|+|sin α|cos α= . 【解析】:因为角α的终边落在直线y =-x 上,所以角α的终边位于第二或第四象限.当角α的终边位于第二象限时,sin α|cos α|+|sin α|cos α=sin α-cos α+sin αcos α=0;当角α的终边位于第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α+-sin αcos α=0.所以sin α|cos α|+|sin α|cos α=0.命题角度二 判断三角函数值的符号【题型要点】三角函数值的符号及角的位置的判断已知一角的三角函数值(sin α,cos α,tan α)中任意两个的符号,可分别确定出角α终边所在的可能位置,二者的交集即为该角的终边位置.注意终边在坐标轴上的特殊情况. 【例3】若sin αcos α>0,cos αtan α<0,则α的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限、【解析】由sin αcos α>0,得α的终边落在第一或第三象限,由cos αtan α=cos α·sin αcos α=sin α<0,得α的终边落在第三或第四象限,综上α的终边落在第三象限.故选C.【例4】(2018·高考全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)题型四 同角三角函数的基本关系式命题角度一 公式的直接应用【题型要点】1.同角三角函数的基本关系(1)平方关系:sin 2x +cos 2x =1.(2)商数关系:tan x =sin x cos x ⎝⎛⎭⎫其中x ≠k π+π2,k ①Z . 2.利用同角三角函数的基本关系求解问题的关键是熟练掌握同角三角函数的基本关系的正用、逆用、变形.同角三角函数的基本关系本身是恒等式,也可以看作是方程,对于一些题,可利用已知条件,结合同角三角函数的基本关系列方程组,通过解方程组达到解决问题的目的.【例1】(2020·北京西城区模拟)已知α①(0,π),cos α=-35,则tan α=( )A.34 B .-34 C.43D .-43【解析】因为cos α=-35且α①(0,π),所以sin α=1-cos 2α=45,所以tan α=sin αcos α=-43.故选D.【例2】已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .【解析】由tan α=-13,得sin α=-13cos α,且sin α>0,cos α<0,将其代入sin 2α+cos 2α=1,得109cos 2α=1,所以cos α=-31010,sin α=1010,故sin α+cos α=-105.命题角度二 sin α,cos α的齐次式问题【题型要点】关于sin α与cos α的齐n 次分式或齐二次整式的化简求值的解题策略 已知tan α,求关于sin α与cos α的齐n 次分式或齐二次整式的值.【例3】 已知tan αtan α-1=-1,求下列各式的值:(1)sin α-3cos αsin α+cos α;(2)sin 2α+sin αcos α+2. 【解析】 由已知得tan α=12.(1)sin α-3cos αsin α+cos α=tan α-3tan α+1=-53.(2)sin 2α+sin αcos α+2=sin 2α+sin αcos αsin 2α+cos 2α+2=tan 2α+tan αtan 2α+1+2=⎝⎛⎭⎫122+12⎝⎛⎭⎫122+1+2=135. 命题角度三 sin α±cos α,sin αcos α之间的关系【题型要点】sin α±cos α与sin αcos α关系的应用技巧(1)通过平方,sin α+cos α,sin α-cos α,sin αcos α之间可建立联系,若令sin α+cos α=t ,则sin αcos α=t 2-12,sin α-cos α=±2-t 2(注意根据α的范围选取正、负号). (2)对于sin α+cos α,sin α-cos α,sin αcos α这三个式子,可以知一求二. 【例4】 已知α①(-π,0),sin α+cos α=15.(1)求sin α-cos α的值;(2)求sin 2α+2sin 2α1-tan α的值.【解析】(1)由sin α+cos α=15,平方得sin 2α+2sin αcos α+cos 2α=125,整理得2sin αcos α=-2425.所以(sin α-cos α)2=1-2sin αcos α=4925.由α①(-π,0),知sin α<0,又sin α+cos α>0,所以cos α>0,则sin α-cos α<0,故sin α-cos α=-75.(2)sin 2α+2sin 2α1-tan α=2sin α(cos α+sin α)1-sin αcos α=2sin αcos α(cos α+sin α)cos α-sin α=-2425×1575=-24175.【例5】.(2020·长春模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32B.32C .-34D .34【答案】B.【解析】:因为5π4<α<3π2,所以cos α<0,sin α<0且|cos α|<|sin α|,所以cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,所以cos α-sin α=32.故选B.题型五 诱导公式的应用【题型要点】1.三角函数的诱导公式①化负为正,化大为小,化到锐角为止;①角中含有加减π2的整数倍时,用公式去掉π2的整数倍.3.常见的互余和互补的角①常见的互余的角:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等;①常见的互补的角:π3+θ与2π3-θ;π4+θ与3π4-θ等.【例1】.若角A ,B ,C 是①ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C 2=sin B 2 D .sin B +C 2=-cos A2【答案】C.【解析】:因为A +B +C =π,所以A +B =π-C ,A +C 2=π-B 2,B +C 2=π-A2,所以cos(A +B )=cos(π-C )=-cos C ,sin(A +B )=sin(π-C )=sin C ,cos A +C 2=cos ⎪⎭⎫ ⎝⎛2-2B π=sin B 2,sin B +C 2=sin ⎪⎭⎫⎝⎛2-2A π=cos A 2.【例2】已知cos ⎪⎭⎫⎝⎛θπ-6=a ,则cos ⎪⎭⎫ ⎝⎛+θπ65+sin ⎪⎭⎫⎝⎛θπ-32的值是 .【解析】:因为cos ⎪⎭⎫⎝⎛+θπ65=cos ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+θππ-62=-cos ⎪⎭⎫⎝⎛θπ-6=-a . sin ⎪⎭⎫⎝⎛θπ-32=sin ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+θππ-62=cos ⎪⎭⎫ ⎝⎛θπ-6=a ,所以cos ⎪⎭⎫ ⎝⎛+θπ65+sin ⎪⎭⎫⎝⎛θπ-32=0. 二、高效训练突破 一、选择题1.(2019·洛阳一中月考)计算:sin 11π6+cos 10π3=( ) A .-1B .1C .0D .12-32【解析】:原式=sin ⎪⎭⎫⎝⎛6-2ππ+cos ⎪⎭⎫ ⎝⎛3-3ππ=-sin π6+cos ⎪⎭⎫ ⎝⎛+3ππ=-12-cos π3=-12-12=-1. 2.给出下列四个命题: ①-3π4是第二象限角; ①4π3是第三象限角; ①-400°是第四象限角; ①-315°是第一象限角. 其中正确的命题有( ) A .1个 B .2个 C .3个 D .4个【答案】C【解析】:.-3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,①正确.-400°=-360°-40°,从而①正确.-315°=-360°+45°,从而①正确.3.(2020·镇江期中)已知sin(π+α)=-13,则tan ⎪⎭⎫⎝⎛απ-2的值为( )A .2 2B .-22 C.24D .±22【解析】:因为sin(π+α)=-13,所以sin α=13,cos α=±223,tan ⎪⎭⎫ ⎝⎛απ-2=cos αsin α=±2 2.故选D.4.(2019·武汉调研)已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3 C.π6D .π3【解析】:因为sin(π+θ)=-3cos(2π-θ),所以-sin θ=-3cos θ, 所以tan θ=3,因为|θ|<π2,所以θ=π3.5.(2020·江西南昌一模)已知点P (tan α,cos α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解析】:由题意知tan α<0,cos α<0,根据三角函数值的符号规律可知,角α的终边在第二象限.故选B.6.若圆弧长度等于圆内接正方形的边长,则该圆弧所对圆心角的弧度数为( ) A.π4 B.π2 C.22D .2【解析】:设圆的直径为2r ,则圆内接正方形的边长为2r ,因为圆的圆弧长度等于该圆内接正方形的边长,所以圆弧的长度为2r ,所以圆心弧度为2rr= 2. 7.(2020·海淀期末)已知f (α)=())(απαπαπαπ+⋅⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+⋅-tan 2cos 2cos 2sin ,则⎪⎭⎫⎝⎛3πf =( ) A.12 B.22 C.32D .-12【解析】:.f (α)=())(απαπαπαπ+⋅⎪⎭⎫ ⎝⎛+-⎪⎭⎫⎝⎛+⋅-tan 2cos 2cos 2sin =-sin α·(-sin α)sin α·tan α=sin 2αsin α·sin αcos α=cos α,则⎪⎭⎫ ⎝⎛3πf =cos π3=12.8.已知sin α+cos α=2,则tan α+cos αsin α的值为( )A .-1B .-2 C.12D .2【解析】:因为sin α+cos α=2,所以(sin α+cos α)2=2,所以sin αcos α=12.所以tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α=2.故选D.9.(2020·马鞍山质量检测)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α 【解析】:如图所示作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4<α<-π2,所以角α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α.10.(2019·大同模拟)1.已知-π2<α<0,sin α+cos α=15,则1cos 2α-sin 2α的值为( )A.75B.257C.725 D .2425【解析】:因为-π2<α<0,所以cos α>0,sin α<0,可得cos α-sin α>0,因为(sin α+cos α)2+(cos α-sin α)2=2, 所以(cos α-sin α)2=2-(sin α+cos α)2=2-125=4925,cos α-sin α=75,cos 2α-sin 2α=15×75=725,所以1cos 2α-sin 2α的值为257. 二、填空题1.(2020·楚雄龙江中学期中)与角2 020°的终边相同,且在0°~360°内的角是 .【解析】:因为2 020°=220°+5×360°,所以在0°~360°内终边与2 020°的终边相同的角是220°.2.(2020·许昌调研)设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan α= . 【解析】:因为α是第二象限角,所以cos α=15x <0,即x <0.又cos α=15x =x x 2+16, 解得x =-3,所以tan α=4x =-43. 3.设α是第三象限角,tan α=512,则cos(π-α)= . 【解析】:因为α为第三象限角,tan α=512,所以cos α=-1213,所以cos(π-α)=-cos α=1213. 4.化简:cos (α-π)sin (π-α)·sin(α-π2)·cos(3π2-α)= . 【解析】:cos (α-π)sin (π-α)·sin(α-π2)·cos(3π2-α)=-cos αsin α·(-cos α)·(-sin α)=-cos 2α. 5.(2020·惠州调研)已知角α的终边上一点P 的坐标为⎪⎭⎫ ⎝⎛32cos ,32sin ππ,则角α的最小正值为 . 【解析】:由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ①Z ),所以α的最小正值为11π6. 6.若两个圆心角相同的扇形的面积之比为1①4,则这两个扇形的周长之比为 .【解析】:设两个扇形的圆心角的弧度数为α,半径分别为r ,R (其中r <R ),则12αr 212αR 2=14, 所以r ①R =1①2,两个扇形的周长之比为2r +αr 2R +αR=1①2. 7.已知sin ⎪⎭⎫ ⎝⎛απ-2-cos ⎪⎭⎫ ⎝⎛+απ27-=1225,且0<α<π4,则sin α= ,cos α= .【解析】:sin ⎪⎭⎫ ⎝⎛απ-2-cos ⎪⎭⎫ ⎝⎛+απ27-=-cos α·(-sin α)=sin αcos α=1225. 因为0<α<π4,所以0<sin α<cos α.又因为sin 2α+cos 2α=1,所以sin α=35,cos α=45. 8.(2020·福州调研)若1+cos αsin α=2,则cos α-3sin α= . 【解析】:因为1+cos αsin α=2,所以cos α=2sin α-1,又sin 2α+cos 2α=1,所以sin 2α+(2sin α-1)2=1, 5sin 2α-4sin α=0,解得sin α=45或sin α=0(舍去),所以cos α-3sin α=-sin α-1=-95. 三 解答题1.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值.【解析】:因为角θ的终边过点(x ,-1)(x ≠0),所以tan θ=-1x,又tan θ=-x ,所以x 2=1,所以x =±1. 当x =1时,sin θ=-22,cos θ=22,此时sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22,此时sin θ+cos θ=- 2. 2.已知α为第三象限角,f (α)=sin (α-π2)·cos (3π2+α)·tan (π-α)tan (-α-π)·sin (-α-π). (1)化简f (α);(2)若cos(α-3π2)=15,求f (α)的值. 【答案】(1)-cos α;(2)265 【解析】:(1)f (α)=sin (α-π2)·cos (3π2+α)·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α. (2)因为cos(α-3π2)=15,所以-sin α=15,从而sin α=-15.又α为第三象限角,所以cos α=-1-sin 2α=-265,所以f (α)=-cos α=265.。
2024届新高考一轮复习人教A版 第四章 第1节 任意角和弧度制及任意角的三角函数 课件(35张)

与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角.
*
(2)确定 kα, (k∈N )终边位置的方法:先写出 kα或 的范围,然后根据 k 的可能取值
确定 kα或 的终边所在位置.
弧度制及其应用
[例1] 已知扇形的圆心角是α,半径为R,弧长为l.
(1)若α= ,R=10 cm,求扇形的弧长 l;
rad,1°=
rad≈0.017 45 rad,1 rad=
3.任意角的三角函数
(1)定义
设α是一个任意角,α∈R,它的终边 OP 与单位圆交于点 P(x,y),那么 sin α= y ,
cos α= x ,tan α= (x≠0).
(2)三角函数值的符号规律
三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.
第四章
第1节
三角函数(必修第一册)
任意角和弧度制及任意角的三角函数
[课程标准要求]
1.了解任意角的概念和弧度制的概念.
2.能进行弧度与角度的互化.
3.理解任意角的三角函数(正弦、余弦、正切)的定义.
1.角的概念的推广
(1)定义:角可以看成一条射线绕着它的 端点 旋转所成的图形.
按旋转方向不同分为 正角 、 负角 、 零角 .
2.面积(周长)一定的扇形,周长最小(面积最大)时,扇形的弧长l与半径r满足
l=2r,即扇形圆心角等于2 rad.
3.若角α∈(0, ),则 sin α<α<tan α.
1.若sin α<0,且tan α>0,则α是( C
A.第一象限角
【志鸿优化设计】(湖南专用)高考数学一轮复习 第四章三角函数、解三角形4.1任意角和弧度制及任意

第四章 三角函数、解三角形4.1 任意角和弧度制及任意角的三角函数考纲要求1.了解任意角的概念和弧度制的概念. 2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义.1.任意角 (1)角的分类任意角可按旋转方向分为____、____、____. (2)2(1)弧度制长度等于__________长的弧所对的圆心角叫做1弧度的角,以__________作为单位来度量角的制度叫做弧度制.(2)角度与弧度之间的换算360°=__________rad,180°=__________rad,1°=π180rad ,1 rad =__________.(3)弧长、扇形面积公式 设扇形的弧长为l ,圆心角为α(弧度),半径为r ,则l =__________;S 扇形=__________=__________.有向线段MP 叫做角的正弦线 有向线段OM 叫做α的余弦线 有向线段AT 叫做角的正切线1.终边与坐标轴重合的角α的集合为( ).A .{α|α=k ·360°,k ∈Z }B .{α|α=k ·180°,k ∈Z }C .{α|α=k ·90°,k ∈Z }D .{α|α=k ·180°+90°,k ∈Z }2.设角α终边上一点P (-4a,3a )(a <0),则sin α的值为( ). A .35 B .-35 C .45 D .-453.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是( ).A .2B .sin 2C .2sin 1D .2sin 14.已知sin θ<0,tan θ>0,那么θ是( ). A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角5.若点P 在角23π的终边上,且|OP |=2,则点P 的坐标为__________.一、象限角及终边相同的角【例1-1】若α是第三象限的角,则π-12α是( ).A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角【例1-2】已知角α是第一象限角,确定2α,α2的终边所在的位置.方法提炼1.对与角α终边相同的角的一般形式α+k ·360°的理解. (1)k ∈Z ;(2)α是任意角;(3)终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无穷多个,它们相差360°的整数倍.2.已知α的终边位置,确定k α,αk(k ∈N *)的终边的方法:先用终边相同角的形式表示出角α的范围,再写出k α或αk 的范围,然后就k 的可能取值讨论k α或αk的终边所在位置.提醒:不少同学往往容易把“小于90°的角”等同于“锐角”,把“0°~90°的角”等同于“第一象限的角”.其实锐角的集合是{α|0°<α<90°},第一象限角的集合为{α|k ·360°<α<k ·360°+90°,k ∈Z }.请做演练巩固提升1二、扇形的弧长、面积公式的应用【例2】已知一扇形的圆心角为α(α>0),所在圆的半径为R .(1)若α=60°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积? 方法提炼(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷. (2)从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.(3)记住下列公式:①l =αR ;②S =12lR ;③S =12αR 2.其中R 是扇形的半径,l 是弧长,α(0<α<2π)为圆心角,S 是扇形面积.请做演练巩固提升2不理解三角函数的定义而致误【典例】 已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上的一点,且sin θ=-255,则y =__________.错解:因P (4,y )是角θ终边上的一点,且sin θ=-255.∴sin θ=y =-255.错因:题中P 点不在单位圆,不能直接用定义表示sin θ,而应利用下列方法求解, 若角α终边上任意一点P (x ,y ),|OP |=r ,则sin α=y r ,cos α=x r ,tan α=y x这两个定义是等价的.正解:P (4,y )是角θ终边上的一点,由三角函数的定义知sin θ=y16+y2,又sin θ=-255,∴y 16+y2=-255,解得y =-8. 答案:-8答题指导:对于三角函数的定义要牢固记忆,并且与单位圆中的要区分开,要知道只有在单位圆中点的纵坐标才是角θ的正弦,而本题的错因恰是对三角函数的定义理解不清而导致.1.若α=k ·180°+45°(k ∈Z ),则α在( ). A .第一或第三象限 B .第一或第二象限 C .第二或第四象限 D .第三或第四象限2.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ). A .1 B .4 C .1或4 D .2或43.(2012大纲全国高考)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =13.动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ).A .8B .6C .4D .34.角α的终边上有一点P (3t,4t )(t ∈R 且t ≠0),则sin α的值是__________. 5.已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.参考答案基础梳理自测知识梳理1.(1)正角 负角 零角 (2){α|2k π<α<2k π+π2,k ∈Z } {α|2k π+π2<α<2k π+π,k ∈Z }{α|2k π+π<α<2k π+3π2,k ∈Z } {α|2k π+3π2<α<2k π+2π,k ∈Z } 2.(1)半径 弧度 (2)2π π ⎝ ⎛⎭⎪⎫180π° (3)|α|r 12lr 12|α|r 23.y x yx正 正 正 正 负 负负 负 正 负 正 负 sin α cos α tan α基础自测1.C 解析:当角α的终边在x 轴上时,可表示为k ·180°,k ∈Z .当角α的终边在y 轴上时,可表示为k ·180°+90°,k ∈Z .∴当角α的终边在坐标轴上时,可表示为k ·90°,k ∈Z . 2.B 解析:设P 与原点的距离为r , ∵P (-4a,3a ),a <0,∴r =(-4a )2+(3a )2=|5a |=-5a .∴sin α=3a r =-35.3.C 解析:由已知可得该圆的半径为1sin 1.∴2弧度的圆心角所对的弧长为2×1sin 1=2sin 1.4.C 解析:∵sin θ<0,∴θ在第三或第四象限或在y 轴的非正半轴上, 又tan θ>0,∴θ在第一或第三象限, ∴θ在第三象限.5.(-1,3) 解析:根据三角函数的定义,x =|OP |cos 23π=2×⎝ ⎛⎭⎪⎫-12=-1,y =|OP |sin 23π=2×32= 3.∴P 点的坐标为(-1,3).考点探究突破【例1-1】B 解析:由已知,得2k π+π<α<2k π+32π(k ∈Z ),∴-k π+π4<π-α2<-k π+π2(k ∈Z ).∴π-α2是第一或第三象限的角.【例1-2】 解:∵α是第一象限的角,∴k ·2π<α<k ·2π+π2(k ∈Z ).(1)k ·4π<2α<k ·4π+π(k ∈Z ). 即2k ·2π<2α<2k ·2π+π(k ∈Z ).∴2α的终边在第一象限或第二象限或y 轴的非负半轴上.(2)k ·π<α2<k ·π+π4(k ∈Z ),当k =2n (n ∈Z )时,2n π<α2<2n π+π4(n ∈Z ).∴α2的终边在第一象限.当k =2n +1(n ∈Z )时,(2n +1)π<α2<(2n +1)π+π4(n ∈Z ),即2n π+π<α2<2n π+5π4(n ∈Z ),∴α2的终边在第三象限. 综上,α2的终边在第一象限或第三象限.【例2】 解:(1)设弧长为l ,弓形面积为S 弓,则α=60°=π3,R =10,l =|α|R =π3×10=10π3(cm), S 弓=S 扇-S △=12×10π3×10-12×102×sin π3=50π3-5032=50⎝ ⎛⎭⎪⎫π3-32(cm 2).(2)扇形周长C =2R +l =2R +αR ,∴R =C2+α,∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2 =C 22α·14+4α+α2 =C 22·14+α+4α≤C 216. 当且仅当α2=4,即α=2弧度时,扇形面积有最大值为C 216cm 2.演练巩固提升1.A 解析:当k 为奇数时,α在第三象限;当k 为偶数时,α在第一象限.2.C 解析:设扇形的半径为r ,弧长为l ,则由题意得⎩⎪⎨⎪⎧2r +l =6,12rl =2.解得r =1,l =4或r =2,l =2.3.B 解析:如图,由题意:tan∠BEF =12,∴KX 21=12,∴X 2为HD 中点,X 2D X 3D =12,∴X 3D =13, X 4C X 3C =12,∴X 4C =13, X 5H X 4H =12,∴X 5H =12, X 5A X 6A =12,∴X 6A =13,∴X 6与E 重合, 故选B.4.±45解析:∵P (3t,4t ),∴原点O 到P 点的距离|OP |=5|t |,∴sin α=4t 5|t |=±45.5.解:∵角α的终边在直线3x +4y =0上,∴在角α的终边上任取一点P (4t ,-3t )(t ≠0),设P 到原点的距离为r , 则x =4t ,y =-3t .r =x 2+y 2=(4t )2+(-3t )2=5|t |,当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45.tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35.cos α=x r =4t -5t =-45.tan α=y x =-3t 4t =-34.。
高考数学一轮复习专题4.1任意角和弧度制及任意角的三角函数(讲)(2021年整理)

(浙江专版)2019年高考数学一轮复习专题4.1 任意角和弧度制及任意角的三角函数(讲)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2019年高考数学一轮复习专题4.1 任意角和弧度制及任意角的三角函数(讲))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2019年高考数学一轮复习专题4.1 任意角和弧度制及任意角的三角函数(讲)的全部内容。
第01节任意角和弧度制及任意角的三角函数【考纲解读】【知识清单】1.象限角及终边相同的角1.任意角、角的分类:①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边相同的角:终边与角α相同的角可写成α+k·360°(k∈Z).2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=错误!,l 是以角α作为圆心角时所对圆弧的长,r为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值错误!与所取的r的大小无关,仅与角的大小有关.3.弧度与角度的换算:360°=2π弧度;180°=π弧度. 2.三角函数的定义1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=错误!,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M 。
高考数学一轮复习---任意角和弧度制及任意角的三角函数

高考数学一轮复习---任意角和弧度制及任意角的三角函数一、基础知识 1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }. 终边相同的角不一定相等,但相等的角其终边一定相同. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用. (2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0). (2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总 (1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=x r ,tan α=yx (x ≠0).(3)象限角(4)轴线角三、考点解析考点一 象限角及终边相同的角 例、(1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角 (2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. 跟踪训练1.集合},4{Z k k k ∈+≤≤ππαπα中的角所表示的范围(阴影部分)是( )2.在-720°~0°范围内所有与45°终边相同的角为________.考点二 三角函数的定义典例、已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解题技法]用定义法求三角函数值的2种类型及解题方法:(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解. (2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.跟踪训练1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15 B.3715 C.3720 D.13152.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( ) A .-45 B .-35 C .35 D .45考点三 三角函数值符号的判定例、若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解题技法]三角函数值符号及角所在象限的判断:三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0. 跟踪训练1.下列各选项中正确的是( )A .sin 300°>0B .cos(-305°)<0C .tan ⎪⎭⎫⎝⎛-322π>0 D .sin 10<0 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限课后作业1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .82.已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( ) A .150° B .135° C .300° D .60°3.若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.},32{Z k k ∈-=ππαα B.},322{Z k k ∈+=ππαα C.},32{Z k k ∈-=ππαα D.},3{Z k k ∈-=ππαα4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3) D .[-2,3]5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( )A.3 B .-5 C.5 D.3或56.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3 7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________.8.在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________. 9.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________.10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎪⎭⎫ ⎝⎛m ,53,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.12.已知α为第三象限角.(1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.提高训练1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α 2.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.。
高三高考数学第一轮复习课件三角函数复习

]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2
。
(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+
任意角弧度制及任意角的三角函数文科一轮复习课件

•答 •思维升华 案
•题型分类·深度剖析
• 题型一
•角及其表示
•思维启迪 •解 析
•答 •思维升华 案
•题型分类·深度剖析
• 题型一
•角及其表示
•思维启迪 •解 析
•答 •思维升华 案
•题型分类·深度剖析
• 题型一
•角及其表示
•思维启迪 •解 析
•答 •思维升华 案
•第一、二 •象限或y轴的非负半轴上
•3 •4 •5 •6 •7 •8
•9 •10
•练出高分
•1
•B组 专项能力提升
•2
•3
•4
•5
•练出高分
•1
•B组 专项能力提升
•2
•3
•4
•5
•练出高分
•1
•B组 专项能力提升
•2
•3
•4
•5
•B
•练出高分
•1
•B组 专项能力提升
•2
•3
•4
•5
•B
•练出高分
•1
•B组 专项能力提升
•2
•练出高分
•1 •2
•A组 专项基础训练
•3 •4 •5 •6 •7 •8
•9 •10
•练出高分
•1 •2
•A组 专项基础训练
•3 •4 •5 •6 •7 •8
•9 •10
•练出高分
•1 •2
•A组 专项基础训练
•3 •4 •5 •6高分
•1 •2
•A组 专项基础训练
•扇形的弧长、面积公式的应用
•思维启迪
•解析
•思维升华
•题型分类·深度剖析
•1 cm
•2 •1 cm2