高数第五版答案(同济)12-9
高等数学同济五版下册答案

习题8−11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为{(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为{(x , y )|1≤x 2+y 2≤4},边界为{(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集, 导集为{(x , y )| y ≥x 2}, 边界为{(x , y )| y =x 2}.(4){(x , y )|x 2+(y −1)2≥1}∩{(x , y )|x 2+(y −2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为{(x , y )|x 2+(y −1)2=1}∪{(x , y )|x 2+(y −2)2=4}.2. 已知函数yx xy y x y x f tan ),(22−+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅−+= ),(tan 2222y x f t y x xy y x t =⎟⎠⎞⎜⎝⎛−+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v=F (x , u )+F (x , v )+F (y , u )+F (y , v ).4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x −y , xy ).解 f (x +y , x −y , xy )=(x +y )xy +(xy )(x +y )+(x −y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2−2x +1);解 要使函数有意义, 必须y 2−2x +1>0,故函数的定义域为D ={(x , y )|y 2−2x +1>0}.(2)yx y x z −++=11; 解 要使函数有意义, 必须x +y >0, x −y >0,故函数的定义域为D ={(x , y )|x +y >0, x −y >0}.(3)y x z −=;解 要使函数有意义, 必须y ≥0,0≥−y x 即y x ≥, 于是有x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z −−+−=; 解 要使函数有意义, 必须y −x >0, x ≥0, 1−x 2−y 2>0,故函数的定义域为D ={(x , y )| y −x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u −+++−−−=(R >r >0); 解 要使函数有意义, 必须R 2−x 2−y 2−z 2≥0且x 2+y 2+z 2−r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +−→; 解110011lim 22)1,0(),(=+−=+−→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xy y x 42lim)0,0(),(+−→; 解 xy y x 42lim)0,0(),(+−→)42()42)(42(lim )0,0(),(+++++−=→xy xy xy xy y x 41)42(1lim)0,0(),(−=++−=→xy y x . (4)11lim )0,0(),(−+→xy xy y x ; 解 11lim )0,0(),(−+→xy xy y x )11)(11()11(lim )0,0(),(−+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xy xy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→; 解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xyxy y x . (6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++−→. 解 22221lim )cos(1lim )()cos(1lim )0,0(),(2222)0,0(),(2222)0,0(),(y x y x y x y x y x e y x y x e y x y x →→→⋅++−=++− 01sin lim cos 1lim 00==−=→→t t t t t . 7. 证明下列极限不存在:(1)y x y x y x −+→)0,0(),(lim; 证明 如果动点p (x , y )沿y =0趋向(0, 0),则 1lim lim00)0,0(),(==−+→=→x x y x y x x y y x ; 如果动点p (x , y )沿x =0趋向(0, 0),则 1lim lim00)0,0(),(−=−=−+→=→y y y x y x y x y x . 因此, 极限y x y x y x −+→)0,0(),(lim不存在. (2)22222)0,0(),()(lim y x y x y x y x −+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0),则 1lim )(lim 44022222 )0,0(),(==−+→=→x x y x y x y x x xy y x ; 如果动点p (x , y )沿y =2x 趋向(0, 0),则 044lim )(lim 2440222222 )0,0(),(=+=−+→=→x x x y x y x y x x xy y x . 因此, 极限22222)0,0(),()(lim y x y x y x y x −+→不存在. 8. 函数xy x y z 2222−+=在何处间断? 解 因为当y 2−2x =0时, 函数无意义,所以在y 2−2x =0处, 函数x y x y z 2222−+=间断. 9. 证明0lim 22)0,0(),(=+→yx xy y x .证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+, 所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x yx xy y x y x . 因此 0lim 22)0,0(),(=+→yx xy y x . 证明 因为2||22y x xy +≤, 故22||22222222y x yx y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤−+22|0|2222y x yx xy , 所以0lim 22)0,0(),(=+→yx xy y x . 10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x −x 0|<δ时, 有|f (x )−f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x −x 0|<δ, 从而 |F (x , y )−F (x 0, y 0)|=|f (x )−f (x 0)|<ε,所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8−21. 求下列函数的偏导数:(1) z =x 3y −y 3x ;解 323y y x xz −=∂∂, 233xy x y z −=∂∂. (2)uvv u s 22+=; 解 21)(u v v u v v u u u s −=+∂∂=∂∂, 21)(v u u u v v u v v s −=+∂∂=∂∂. (3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理)ln(21xy y y z =∂∂. (4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅−⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y −= 根据对称性可知)]2sin()[cos(xy xy x yz −=∂∂. (5)yx z tan ln =; 解 y x y y y x yxx z 2csc 21sec tan 12=⋅⋅=∂∂, y x y x y x y x yx y z 2csc 2sec tan 1222−=−⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(−−+=⋅+=∂∂y y xy y y xy y xz , ]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xy xy xy y ++++=. (7)z yx u =;解 )1(−=∂∂z y x zy x u , x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂, x x zy z y x x z u z y z y ln )(ln 22⋅−=−=∂∂. (8) u =arctan(x −y )z ;解 z z y x y x z x u 21)(1)(−+−=∂∂−, z z y x y x z y u 21)(1)(−+−−=∂∂−, z z y x y x y x z u 2)(1)ln()(−+−−=∂∂. 2. 设gl T π2=, 试证0=∂∂+∂∂g T g l T l . 解 因为l g l T ⋅⋅=∂∂1π, g g g l gT 121(223⋅−=⋅−⋅=∂∂−ππ, 所以 0=⋅−⋅=∂∂+∂∂gl g l g T g l T l ππ. 3. 设)11(y x e z +−=, 求证z yz y x z x 222=∂∂+∂∂. 解 因为211(1xe x z y x ⋅=∂∂+−, 2)11(1y e y z y x ⋅=∂∂+−, 所以 z e e y z y x z x y x y x 2)11()11(22=+=∂∂+∂∂+−+− 4. 设yx y x y x f arcsin )1(),(−+=, 求. )1 ,(x f x解 因为x x x x f =−+=1arcsin )11()1 ,(, 所以1)1 ,()1 ,(==x f dxd x f x . 5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 242x x x z ==∂∂, αtan 1)5,4,2(==∂∂xz , 故4πα=. 6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4−4x 2y 2;解 2384xy x x z −=∂∂, 2222812y x xz −=∂∂; y x y y z 2384−=∂∂, 2222812x y yz −=∂∂; xy y x y yy x z 16)84(232−=−∂∂=∂∂∂. (2)x y z arctan=; 解 22222)(11y x y x y xy x z +−=−⋅+=∂∂, 22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy y z +=⋅+=∂∂, 22222)(2y x xy y z +−=∂∂; 22222222222222)()(2)()(y x x y y x y y x y x y y y x z +−=+−+−=+−∂∂=∂∂∂. (3) z =y x .解 y y x z x ln =∂∂, y y xzx 222ln =∂∂; 1−=∂∂x xy y z , 222)1(−−=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂−−y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, −1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x ,f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0,所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2,f yz (0, −1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyy x xy x z , x xy y x z 122==∂∂, 023∂∂∂yx z , y xy x y x z 12==∂∂∂, 2231y y x z −=∂∂∂. 9. 验证:(1)满足nx e y tkn sin 2−=22xy k t y ∂∂=∂∂; 证明 因为nx e kn kn nx e ty t kn t kn sin )(sin 2222⋅−=−⋅⋅=∂∂−−, nx ne x y t kn cos 2−=∂∂, nx e n xy t kn sin 2222−−=∂∂, nx e kn xy k t kn sin 222−−=∂∂, 所以22x y k t y ∂∂=∂∂. (2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂.证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r x r −=∂∂−=∂∂, 由对称性知32222ry r y r −=∂∂, 32222r z r z r −=∂∂, 因此 322322322222222rz r r y r r x r z r y r x r −+−+−=∂∂+∂∂+∂∂ r r r r r z y x r 23)(332232222=−=++−=.习题8−31. 求下列函数的全微分:(1)yx xy z +=; 解 dy y z dx x z dz ∂∂+∂∂=dy yxx dx y y )()1(2−++=. (2)x ye z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+−=∂∂+∂∂=. (3) 22yx y z +=; 解 因为2/3222322)()(21y x xy y x y x z +−=+−=∂∂−, 2/3222222222)(y x x y x y x y y y x z +=++⋅−+=∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++−=)()(2/322xdy ydx y x x −+−=. (4)u =x yz .解 因为1−⋅=∂∂yz x yz x u , x zx y u yz ln =∂∂, x yx zu yz ln =∂∂, 所以xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=− 2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分.解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x x z, 3221=∂∂==y x y z,所以 dy dx dz y x 323121⋅+===. 3. 求函数xy z =当x =2, y =1, Δx =0.1, Δy =−0.2时的全增量和全微分. 解 因为x y x x y y z −Δ+Δ+=Δ, y x x xy dz Δ+Δ−=12, 所以, 当x =2, y =1, Δx =0.1, Δy =−0.2时,119.0211.02)2.0(1−=−+−+=Δz , 125.0)2.0(211.041−=−+×−=dz . 4. 求函数z =e xy 当x =1, y =1, Δx =0.15, Δy =0.1时的全微分.解 因为y xe x ye y yz x x z dz xy xy Δ+Δ=Δ∂∂+Δ∂∂= 所以, 当x =1, y =1, Δx =0.15, Δy =0.1时,e e e dz 25.01.015.0=⋅+⋅=*5. 计算33)97.1()102(+的近似值.解 设33y x z +=, 由于y y z x x z y x y y x x Δ∂∂+Δ∂∂++≈Δ++Δ+3333)()(332233233y x y y x x y x +Δ+Δ++=, 所以取x =1, y =2, Δx =0.02, Δy =−0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+−⋅⋅+⋅++≈+.*6. 计算(1.97)1.05的近似值(ln2=0.693).解 设z =x y , 由于y yz x x z x x x y y y Δ∂∂+Δ∂∂+≈Δ+Δ+)(y x x x yx x y y y Δ+Δ+=−ln 1, 所以取x =2, y =1, Δx =−0.03, Δy =0.05可得(1.97)1.05≈2−0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cn 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z Δ+Δ+=Δ+Δ=≈Δ, 当x =6, y =8, Δx =0.05, Δy =−0.1时,05.0)1.0805.0686122−=⋅−⋅+≈Δz . 这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h ,ΔV ≈dV =2πRh ΔR +πR 2Δh ,当R =4, h =20, ΔR =Δh =0.1时,ΔV ≈2×3.14×4×20×0.1+3.14×42×0.1≈55.3(cm 3)这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差.解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z Δ⋅∂∂+Δ⋅∂∂≤≈Δ|)|||(122y y x x yx Δ+Δ+=. 令x =7, y =24, |Δx |≤0.1, |Δy |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm . *10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60°±1°, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=. zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈Δ. 令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则 55.2718021278631.0232631.023278=×××+××+××≈πδs , 82.21273sin 786321=⋅⋅⋅=πS , %29.182.212755.27==S s δ, 所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55 m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和. 证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u Δ+Δ≤Δ+Δ=Δ∂∂+Δ∂∂=≈Δ. 所以两数之和的绝对误差|Δu |等于它们各自的绝对误差|Δx |与|Δy |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和.证明 设u =xy , yx v =, 则Δu ≈du =ydx +xdy , 2y xdy ydx dv v −=≈Δ, 由此可得相对误差;ydy x dx xy xdy ydx u du u u +=+=≈Δy y x x y dy x dx Δ+Δ=+≤; y dy x dx yx y xdy ydx v dv v v −=⋅−==Δ2y y x x y dy x dx Δ+Δ=+≤.习题8−41. 设z =u 2−v 2, 而u =x +y , v =x −y , 求x z ∂∂, yz ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x , yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(−1)=2(u −v )=4y . 2. 设z =u 2ln v , 而yx u =, v =3x −2y , 求x z ∂∂, y z ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2yy x x y x y x −+−=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ )2()(ln 222−+−⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x −−−−=. 3. 设z =e x −2y , 而x =sin t , y =t 3, 求dtdz . 解 dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅−⋅+=−− .)6(cos )6(cos 22sin 223t t e t t e t t y x −=−=−− 4. 设z =arcsin(x − y ), 而x +3t , y =4t 3, 求dtdz . 解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x −−−+⋅−−= 232)43(1)41(3t t t −−−=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz . 解 dx dy y z x z dx dz ⋅∂∂+∂∂=xx x e x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+−=a z y e u ax , 而y =a sin x , z =cos x , 求dx du . 解 dxdz dz u dx dy y u x u dx du ⋅∂+⋅∂∂+∂∂= )sin (1cos 11)(222x a e x a a e a z y ae ax ax ax −⋅+−⋅+++−= )sin cos cos sin (122x x a x a x a a e ax ++−+=x e ax sin =. 7. 设y x z arctan =, 而x =u +v , y =u −v , 验证22v u v uv z u z +−=∂∂+∂∂. 证明 )()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂ )()(111)(11222y x y x y y x −⋅++⋅+=)1()()(111)(11222−⋅−⋅++⋅++y x yx y y x 22222v u v u y x y +−=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数):(1) u =f (x 2−y 2, e xy );解 将两个中间变量按顺序编为1, 2号,2122212)()(f ye f x xe f x y x f x u xy xy ′+′=∂∂⋅′+∂−∂⋅′=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy ′+′−=∂∂⋅′+∂−∂⋅′=∂∂. (2) ,(zy y x f u =; 解 1211)()(f yz y x f y x x f x u ′=∂∂⋅′+∂∂⋅′=∂∂, )()(21z y y f y x y f y u ∂∂⋅′+∂∂′=∂∂2121f z f yx′+′−=,)()(21z y z f z x z f z u ∂∂⋅′+∂∂′=∂∂22f z y ′−=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅′+⋅′+⋅′=∂∂3211321f yz f y f ′+′+′=, 3232f xz f x xz f x f yu ′+′=⋅′+⋅′=∂∂, 33f xy xy f zu ′=⋅′=∂∂. 9. 设z =xy +xF (u ), 而xy u =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅)([])()([yu u F x x y x u u F x u F y x ∂∂′+⋅+∂∂′++= )]([)]()([u F x y u F xy u F y x ′+⋅+′−+= =xy +xF (u )+xy =z +xy .10. 设)(22y x f y z −=, 其中f (u )为可导函数, 验证211y zy z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222′−=⋅′⋅−=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()(′−+=−⋅′⋅−=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+′+′−=∂∂⋅+∂∂⋅211y z zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22xz ∂∂, y x z ∂∂∂2, 22y z ∂∂. 解 令u =x 2+y 2, 则z =f (u ),f x xu u f x z ′=∂∂′=∂∂2)(, f y y u u f y z ′=∂∂′=∂∂2)(, f x f x u f x f xz ′′+′=∂∂⋅′′+′=∂∂2224222,f xy yu f x y x z ′′=∂∂⋅′′=∂∂∂422, f y f y u f y f y z ′′+′=∂∂⋅′′+′=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).u f y vf y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0, vf u f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数.)()()(22u f x y uf y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂ 222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=, )(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yv v u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u f y uf xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(, )()()()(22v f y u f y x vf u f x y y z y y z ∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ yv v f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vf x u v f v u f x u f x2222222v f v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =; 解 令u =x , yx v =, 则z =f (u , v ). v f y u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1, vf y xdy dv v f y z ∂∂⋅−=⋅∂∂=∂∂2. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xv v f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂= 22222212v f y v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=, 1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= yv v f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅−∂∂⋅∂∂∂=22211 221v f y x v f y v u f y x ∂∂⋅−∂∂⋅−∂∂∂⋅−= ()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅−∂∂⋅−∂∂=∂∂∂∂=∂∂22423222322vf y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅−∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1′⋅y 2+f 2′⋅2xy =y 2f 1′+2xyf 2′,z y =f 1′⋅2xy +f 2′⋅x 2=2xyf 1′+x 2f 2′;z xx =y 2[f 11′′⋅y 2+f 12′′⋅2xy ]+2yf 2′′+2xy [f 21′′⋅y 2+f 22′′⋅2xy ] =y 4f 11′′+2xy 3f 12′′+2yf 2′′+2xy 3f 21′′+4x 2y 2 f 22′′=y 4f 11′′+4xy 3f 12′′+2yf 2′′+4x 2y 2 f 22′′,z xy =2y f 1′+y 2[f 11′′⋅2xy +f 12′′⋅x 2]+2xf 2′+2xy [f 21′′⋅2xy +f 22′′⋅x 2] =2y f 1′+2xy 3f 11′′+x 2y 2 f 12′′+2xf 2′+4x 2y 2f 21′′+2x 3yf 22′′ =2y f 1′+2xy 3f 11′′+5x 2y 2 f 12′′+2xf 2′+2x 3yf 22′′,z yy =2xf 1′+2xy [f 11′′⋅2xy +f 12′′⋅x 2]+x 2[f 21′′⋅2xy +f 22′′⋅x 2] =2xf 1′+4x 2y 2f 11′′+2x 3y f 12′′+2x 3yf 21′′+x 4f 22′′=2xf 1′+4x 2y 2f 11′′+4x 3y f 12′′+x 4f 22′′.(4) z =f (sin x , cos y , e x +y ).解 z x =f 1′⋅cos x + f 3′⋅e x +y =cos x f 1′+e x +y f 3′,z y =f 2′⋅(−sin y )+ f 3′⋅e x +y =−sin y f 2′+e x +y f 3′,z xx =−sin x f 1′+cos x ⋅(f 11′′⋅cos x + f 13′′⋅e x +y )+e x +y f 3′+e x +y (f 31′′⋅cos x + f 33′′⋅e x +y ) =−sin x f 1′+cos 2x f 11′′+e x +y cos x f 13′′+e x +y f 3′+e x +y cos x f 31′′+e 2(x +y ) f 33′′ =−sin x f 1′+cos 2x f 11′′+2e x +y cos x f 13′′+e x +y f 3′+e 2(x +y ) f 33′′, z xy =cos x [f 12′′⋅(−sin y )+ f 13′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−sin y cos x f 12′′+e x +y cos x f 13′+e x +y f 3′−e x +y sin y f 32′+e 2(x +y )f 33′ =−sin y cos x f 12′′+e x +y cos x f 13′′+e x +y f 3′−e x +y sin y f 32′′+e 2(x +y )f 33′′, z yy =−cos y f 2′−sin y [f 22′′⋅(−sin y )+ f 23′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−cos y f 2′+sin 2y f 22′′−e x +y sin y f 23′′+e x +y f 3′−e x +y sin y f 32′′+ f 33′′⋅e 2(x +y ) =−cos y f 2′+sin 2y f 22′′−2e x +y sin y f 23′′+e x +y f 3′+f 33′′⋅e 2(x +y ).13. 设u =f (x , y )的所有二阶偏导数连续, 而3t s x −=, 3t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321y u x u t yy u t x x u t u ∂∂⋅+∂∂⋅−=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂−+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(2yu x u s s u s s u ∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ (23)(212222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= 2321(23)2321(212222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(2yu x u t t u t t u∂∂⋅+∂∂⋅−∂∂=∂∂∂∂=∂∂ )(21)(232222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂−= )2123(21)2123(232222y u x y u y x u x u ∂∂⋅+∂∂∂⋅−+∂∂∂⋅+∂∂⋅−−=22222412343y uy x u x u ∂∂⋅+∂∂∂⋅−∂∂⋅=,所以 22222222y u x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8−51. 设sin y +e x −xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x −xy 2, 则F x =e x −y 2, F y =cos y −2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222−−=−−−=−=.2. 设x y y x arctan ln 22=+, 求dxdy. 解 令xyy x y x F arctan ln ),(22−+=, 则22222222)()(11221y x y x xy x y y x x y x F x ++=−⋅+−+⋅+=,22222221)(11221yx x y x xy y x y y x F y +−=⋅+−+⋅+=,yx y x F F dx dyy x −+=−=. 3. 设022=−++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(−++=, 则 xyz yz F x −=1, xyzxz F y −=2, xyz xyF z −=1,xy xyz xyz yz F F x z z x −−=−=∂∂, xy xyz xyz xz F F y zz y −−=−=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及yz ∂∂, 解 令yz z x z y x F ln ),,(−=, 则z F x 1=, y yzyz F y 1)(12=−⋅−=, 2211z z x y y z z x F z +−=⋅−−=,所以 z x z F F x z z x +=−=∂∂, )(2z x y z F F y z z y +=−=∂∂.5. 设2sin(x +2y −3z )=x +2y −3z , 证明1=∂∂+∂∂yz x z证明 设F (x , y , z )=2sin(x +2y −3z )−x −2y +3z , 则 F x =2cos(x +2y −3z )−1,F y =2cos(x +2y −3z )⋅2−2=2F x , F z =2cos(x +2y −3z )⋅(−3)+3=−3F x ,313=−−=−=∂∂x x z x F F F F x z , 3232=−−=−=∂∂x x z y F F F F y z ,于是 13231=+=−−=∂∂+∂∂z z z x F FF F yz x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1−=∂∂⋅∂∂⋅∂∂xz z yy x .解 因为x y F F y x −=∂∂, y z F F zy −=∂∂, z x F F x z−=∂∂,所以 1()()(−=−⋅−⋅−=∂∂⋅∂∂⋅∂∂z x y z x y F F F F F F xz z yy x .7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx −az , cy −bz )=0 所确定的函数z =f (x , y )满足c yz b x z a =∂∂+∂∂.证明 因为v u uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,所以 c b a c b b a c a y z b x z a v u vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z−xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z −xyz , 则F x =−yz , F z =e z −xy , xye yzF F x z z x −=−=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z −−∂∂−−∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y z z z −−−−+=32232)(22xy e e z y z xy ze y z zz −−−=. 9. 设z 3−3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3−3xyz −a 3, 则xy z yz xy z yz F F x z z x −=−−−=−=∂∂22333, xyz xz xy z xz F F y z z y −=−−−=−=∂∂22333, )()(22xyz yzy x z y y x z −∂∂=∂∂∂∂=∂∂∂222)()2())((xy z x y z z yz xy z yz y z −−∂∂−−∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz y z −−−−−⋅−+=322224)()2(xy z y x xyz z z −−−=.10. 求由下列方程组所确定的函数的导数或偏导数:(1)设, 求⎩⎨⎧=+++=203222222z y x y x z dx dy , dx dz; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧−=+−=−xdx dz z dxdy y xdx dz dx dy y 3222.解方程组得)13(2)16(++−=∂∂z y z x x y , 13+=z x dx dz.(2)设, 求⎩⎨⎧=++=++10222z y x z y x dz dx ,dz dy ;解 视x =x (z ), y =y (z ), 方程两边对z 求导得⎪⎩⎪⎨⎧=++=++022201z dz dy y dzdx x dz dy dz dx , 即⎪⎩⎪⎨⎧−=+−=+zdz dy y dz dx x dz dy dz dx 2221.解方程组得y x z y z x −−=∂∂, yx xz z y −−=∂∂. (3)设, 其中f , g 具有一阶连续偏导数, 求⎩⎨⎧−=+=),(),(2y v x u g v y v ux f u x u ∂∂,x v ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅′+−∂∂⋅′=∂∂∂∂⋅′+∂∂+⋅′=∂∂x v yv g x u g x v x v f x u x u f x u 21212)1()( , 即⎪⎩⎪⎨⎧′=∂∂⋅⋅−′+∂∂′′′−=∂∂⋅′+∂∂−′121121)12()1(g x v g yv x u g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ′′−−′−′′′−−′′−=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ′′−−′−′−′+′′=∂∂.(4)设, 求⎩⎨⎧−=+=v u e y v u e x u u cos sin x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得, 即, ⎩⎨⎧+−=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin ⎩⎨⎧=+−=++dy vdv u du v e dxvdv u du v e u u sin )cos (cos )sin (从中解出du , dv 得dy v v e v dxv v e v du u u 1)cos (sin cos 1)cos (sin sin +−−++−=, v v e u e v dx v v e u e v dv u uu u ]1)cos (sin [sin ]1)cos (sin [cos +−+++−−=,从而1)cos (sin sin +−=∂∂v v e v x u u , 1)cos (sin cos +−−=∂∂v v e vy u u ,]1)cos (sin [cos +−−=∂∂v v e u e v x v u , ]1)cos (sin [sin +−+=∂∂v v e u e v y v u.11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂−∂∂⋅∂∂=. 证明 由方程组可确定两个一元隐函数, 方⎩⎨⎧==0),,(),(t y x F t x f y ⎩⎨⎧==)()(x t t x y y 程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dxdt t f x f dx dy ,移项得⎪⎩⎪⎨⎧∂∂−=∂∂+⋅∂∂∂∂=⋅∂∂−x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂−=y F t f t F tF y F t fD 的条件下 yF t f t F x Ft f t F x f t Fx F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂−∂∂⋅∂∂=∂∂∂∂−∂∂−∂∂⋅=1.习题8−61. 求曲线x =t −sin t , y =1−cos t , 2sin 4t z =在点)22 ,1 ,12 (−π处的切线及法平面方程.解 x ′(t )=1−cos t , y ′(t )=sin t , 2cos 2)(t t z =′. 因为点)22 ,1 ,12 (−π所对应的参数为2 π=t , 故在点)22 ,1 ,12 (−π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(−π处, 切线方程为22211121−=−=−+z y x π, 法平面方程为0)22(2)1(1)12(1=−+−⋅++−⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=′, 21)(t t y −=′, z ′(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(−=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为21124121−=−−=−z y x , 即8142121−=−−=−z y x ; 法平面方程为0)1(2)2()21(41=−+−−−z y x , 即2x −8y +16z −1=0.3. 求曲线y 2=2mx , z 2=m −x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m −x 的两边 对x 求导, 得m dx dyy22=, 12−=dxdz z , 所以y m dx dy=, z dx dz 21−=.曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m −=T , 所求的切线方程为000211z z z y m y y x x −−=−=−, 法平面方程为0)(21)()(00000=−−−+−z z z y y y m x x . 4. 求曲线在点(1, 1, 1)处的切线及法平面方程.⎩⎨⎧=−+−=−++0453203222z y x x z y x 解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+−=−++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=−+−=+2533222dxdz dx dy x dx dz z dx dy y .解此方程组得z y z x dx dy 61015410−−−−=, z y y x dx dz 610946−−−+=. 因为169)1,1,1(=dx dy, 161)1,1,1(−=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111−−=−=−z y x , 即1191161−−=−=−z y x ; 法平面方程为0)1(161)1(169)1(=−−−+−z y x , 即16x +9y −z −24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4. 解 已知平面的法线向量为n =(1, 2, 1).因为x ′=1, y ′=2t , z ′=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =−1, 31−=t . 于是所求点的坐标为(−1, 1, −1)和)271 ,91 ,31(−−. 6. 求曲面e z −z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z −z +xy −3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z −1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x −2)+2(y −1)+0⋅(z −0)=0, 即x +2y −4=0,法线方程为02112−=−=−z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2−1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x −x 0)+by 0(y −y 0)+cz 0(z −z 0)=0,即 , 202020000cz by ax z cz y by x ax ++=++法线方程为00000cz z z by y y ax x x −=−=−.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x −y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2−1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, −1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =−=, 即z x 21=, z y 41−=, 代入椭球面方程得1)4(2)2(222=+−+z z z , 解得1122±=z , 则1122±=x , 11221∓=y . 所以切点坐标为)1122,11221,112(±±∓. 所求切平面方程为0)1122(2)11221()112(=±+−±z y x ∓, 即 2112±=+−z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2−16, 则点(−1, −2, 3)处的法向量为n 2=(F x , F y , F z )|(−1, −2, 3)=(6x , 2y , 2z )|(−1, −2, 3)=(−6, −4, 6).点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F −++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=−+−+−z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8−71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数 解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故)cos ,(cos 23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy ′=4, 解得yy 2=′. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y ′(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +−=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222−+=b y a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a xF F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22b a b y a x b a −=−=n , 单位内法向量为)cos ,(cos ,(2222βα=+−+−=b a a b a b n e . 又因为a a x x zb a b a 222,2(2)2,2(−=−=∂∂, bb y y z b a b a 222,2(2)2,2(−=−=∂∂, 所以 222222222cos cos b a abb a a b b a b a y z x z n z +=+⋅++⋅=∂∂+∂∂=∂∂βα. 4. 求函数u =xy 2+z 3−xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3 πγ=的方向的方向导数.解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为 1)()2,1,1(2)2,1,1(−=−=∂∂yz y x u, 0)2()2,1,1()2,1,1(=−=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=−=∂∂xy z z u , 所以 5211122021)1(cos cos cos =⋅+⋅+⋅−=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u .5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9−5, 4−1, 14−2)=(4, 3, 12), )1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz x u , 10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u, 所以 139813125133101342cos cos cos =⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导.解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1, 1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l , )143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u, 所以 1412143214221412cos cos cos )1,1,1(=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2−1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 000000111cos cos cos z y x z y x zu y u x u n u ++=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα. 8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x −2y −6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).。
【高等数学同济第五版下册工科期末资料】同济高等数学第五版

【高等数学同济第五版下册工科期末资料】同济高等数学第五版一、填空题(每空3分,共15分)z=(1)函数+20z=arctan的定义域为(2)已知函数y∂z=x,则∂x⎰(3)交换积分次序,dy⎰2yy2f(x,y)dx=(4)已知L是连接(0,1),(1,0)两点的直线段,则⎰(x+y)ds=L(5)已知微分方程y""+2y"-3y=0,则其通解为二、选择题(每空3分,共15分)⎰x+3y+2z+1=0⎰2x-y-10z+3=0,平面π为4x-2y+z-2=0,则()(1)设直线L为⎰A.L平行于πB.L在π上C.L垂直于πD.L与π斜交(2A.xyz=(1,0,-1)处的dz=()22(x+y)dv⎰⎰⎰Ωdx+dyB.dxD.dx在柱面坐标系下化成三次积分为()2224z=25(x+y)及平面z=5所围成的闭区域,将Ω(3)已知是由曲面A.⎰⎰2π02πdθ⎰r3dr⎰dz252r25⎰2π02πdθ⎰r3dr⎰dz45C.dθ⎰r3dr⎰5dz∞⎰D.12dθ⎰rdr⎰dz225(4)已知幂级数nn∑2n=1n,则其收敛半径()x**"""y-3y+2y=3x-2eyy=()(5)微分方程的特解的形式为A.2B.1C.A.B.C.三、计算题(每题8分,共48分)(ax+b)xex(ax+b)+cexD.(ax+b)+cxexx-1y-2z-3x+2y-1z====LL0-1且平行于直线2:211的平面方程求过直线1:1∂z∂zz=f(xy2,x2y),求∂x,∂y已知设D={(x,y)x+y≤4}22,利用极坐标求⎰⎰xdxdyDy2求函数f(x,y)=e2x(x+y2+2y)的极值2⎰x=t-sint⎰(2xy+3sinx)dx+(x-e)dyy=1-cost从点O(0,0)到A(π,2)的一段弧⎰5、计算曲线积分L,其中L为摆线⎰6、求微分方程四.解答题(共22分)1、利用高斯公式计算外侧xy"+y=xex满足yx=1=1的特解22xzdydz+yzdzdx-zdxdy⎰⎰∑z=∑,其中由圆锥面与上半球面z=所围成的立体表面的")(102、(1)判别级数∑(-1)n-1n=1∞n3n-1的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6")(2)在x∈(-1,1)∑∞nxn求幂级数n=1的和函数(6")高等数学(下)模拟试卷二一.填空题(每空3分,共15分)z=(1)函数的定义域为;(2)已知函数z=exy,则在(2,1)处的全微分dz=;⎰e1dxf(x,y)dy(3)交换积分次序,⎰lnx0=;(4)已知L是抛物线y=x2上点O(0,0)与点B(1,1)之间的一段弧,则⎰=;(5)已知微分方程y""-2y"+y=0,则其通解为.二.选择题(每空3分,共15分)⎰⎰x+y+3z=0(1)设直线L为⎰x-y-z=0,平面π为x-y-z+1=0,则L与π的夹角为();πππA.0B.2C.3D.4∂z3=(2)设z=f(x,y)是由方程z-3xyz=a3确定,则∂x();yzyzxzxyA.xy-z22B.z-xyC.xy-z2D.z2-xy2x*(3)微分方程y""-5y"+6y=xe 的特解y的形式为y*=();A.(ax+b)e2xB.(ax+b)xe2xC.(ax+b)+ce2x2xD.(ax+b)+cxedv(4)已知Ω是由球面x2+y2+z2=a2所围成的闭区域,将⎰⎰⎰Ω在球面坐标系下化成三次积分为();π⎰2πdθ⎰2ϕdϕ⎰ar22ππa2ππa2ππAsin0drdϕB⎰0dθ⎰20dϕ⎰0rdrC⎰0dθ⎰0dϕ⎰0rdrdθD.⎰⎰sinϕ⎰ar2dr∑∞2n-1n(5)已知幂级数n=12nx,则其收敛半径).1A.2B.1C.2D.三.计算题(每题8分,共48分)求过A(0,2,4)且与两平面π1:x+2z=1和π2:y-3z=2平行的直线方程.∂z∂z已知z=f(sinxcosy,ex+y),求∂x,∂y.设D={(x,y)x2+y2≤1,0≤y≤x},利用极坐标计算⎰⎰arctanyDxdxdy.1..求函数f(x,y)=x2+5y2-6x+10y+6的极值. 1、利用格林公式计算⎰L(exsiny-2y)dx+(excosy-2)dy,其中L为沿上半圆周(x-a)2+y2=a2,y≥0、从A(2a,0)到O(0,0)的弧段. y"-y36、求微分方程+1=(x+1)2x的通解.四.解答题(共22分)∑∞(-1)n-12nsinπ1、(1)(6")判别级数n=13n的敛散性,若收敛,判别是绝对收敛还是条件收敛;∞x(2)(4")在区间(-1,1)内求幂级数∑nn=1n的和函数.2xdydz+ydzdx+zdxdy222、(12")利用高斯公式计算⎰⎰∑,∑为抛物面z=x+y(0≤z≤1)的下侧高等数学(下)模拟试卷一参考答案一、填空题:(每空3分,共15分)1、{(x,y)|x+y>0,x-y>0}-y2、x2+y23⎰40dx⎰1xf(x,y)dy2x-3x45、y=C1e+C2e二、选择题:(每空3分,共15分)1.C2.D3.C4A5.D三、计算题(每题8分,共48分)1、解:A(1,2,3)s→→1={1,0,-1}s2={2,1,1}2"→→i→→→→jkn=s1⨯s2=10-1=→i-3→j+→2116"∴平面方程为x-3y+z+2=08"2、解:令u=xy2v=x2y2"∂z=∂z∂f21"⋅y+f2"⋅2xy∂x∂u⋅u∂x+∂z∂v∂v⋅∂x=∂z∂z∂u∂z∂6"∂y=∂u⋅∂y+∂v⋅v∂y=f1"⋅2xy+f2"⋅x23、解:D:0≤θ≤2π0≤r≤28",3"∴⎰⎰x2dxdy=3cos2θdrdθ=2π2⎰2D⎰⎰rD⎰0cosθdθ0r3dr=4π8"⎰⎰⎰f(x,y)=e2x(2x+2y2x+4y+1)=04.解:⎰⎰f(x,y)=e2x(2y+2)=01y(,-1)得驻点24"A=fxx(x,y)=e2x(4x+4y2+8y+4),B=fxy(x,y)=e2x(4y+4),C=fyy(x ,y)=2e2x16"A=2e>0,AC-B2=4e2>0∴f(,-1)=-1e极小值为228"∂P∂Q5.解:P=2xy+3sinx,Q=x2-ey=2x=∂x,∴,有∂y曲线积分与路径无关2"积分路线选择:L1:y=0,x从0→π,L2:x=π,y从0→24"x2-ey)dy=⎰L(2xy+3sinx)dx+(⎰LPdx+Qdy+1⎰LPdx+Qdy2=π22-ey)dy=2π2-e2+7⎰03sinxdx+⎰0(π8"y"+1xy=ex⇒P=1x,Q=ex6.解:2"P(x)dx11[⎰Q(x)e⎰P(x)dxdx+C]=e-∴⎰x dx[⎰exe⎰xdx通解为y=e-⎰dx+C]4"=1[x⎰ex⋅xdx+C]=1x[(x-1)ex+C]6"y=1[(x-1)x代入y=1e+1]x=1,得C=1,∴特解为x8"四、解答题⎰⎰2xzdydz+yzdzdx-z2dxdy=⎰⎰⎰(2z+z-2z)dv=⎰⎰⎰zdv1、解:∑ΩΩ4"=⎰⎰⎰r3cosϕsinϕdrdθdϕΩπ6"dθ方法一:原式=⎰2π0⎰4cosϕsinϕd0ϕ⎰3dr=π210"2π1方法二:原式=⎰dθ⎰0rdr⎰r=2π⎰r(1-r2π)dr=210"n-1∞un-1nn=(-1)limun+1=n+131n2、解:(1)令3n-1n→∞ulimnn→∞3n⋅n=3∴∑(-1)n-1nn=13n-1绝对收敛。
高等数学同济大学第五版

高等数学同济大学第五版引言高等数学是大学理工科专业中的一门重要课程,它是现代科学和工程技术的基础。
同济大学出版社出版的《高等数学同济大学第五版》是一本经典的教材,被广大理工科学生所使用。
本文将介绍《高等数学同济大学第五版》这本教材的特点、内容和学习方法,旨在帮助读者更好地理解和应用高等数学知识。
特点《高等数学同济大学第五版》教材具有以下特点:1.经典而全面:本书继承了同济大学出版社编写的经典高等数学教材的风格,包含了高等数学的各个分支,如极限、导数、微分方程、级数等,能够满足大部分高等数学课程的需要。
2.知识结构清晰:教材按照逐步展开的方式编写,每一章节都有明确的目标和逻辑结构。
例题和习题设置合理,能够帮助读者逐步深入理解和掌握知识。
3.提供大量习题:教材提供了大量的习题,包括必做题和选做题,能够帮助读者巩固所学知识并提高解题能力。
同时,教材还附带了习题的详细解答,读者可以通过对照解析来查漏补缺。
4.前沿应用案例:教材还融入了一些前沿的应用案例,例如在工程学、经济学和自然科学等领域的应用,能够帮助读者理解高等数学知识在实际问题中的应用价值。
内容《高等数学同济大学第五版》主要分为以下几个部分:第一部分:极限与连续本部分介绍了极限概念及其性质、无穷大与无穷小、函数连续性等内容。
主要涉及极限的定义、极限存在准则、函数连续性与间断点等知识点。
第二部分:导数与微分本部分介绍了函数的导数及其应用、高阶导数与高阶微分、隐函数与参数方程、微分中值定理等内容。
主要涉及导数的定义、导数的应用、中值定理及其应用等知识点。
第三部分:定积分本部分介绍了定积分的概念与性质、定积分的计算方法、定积分的应用等内容。
主要涉及定积分的定义、定积分的计算、曲线下面积与定积分的应用等知识点。
第四部分:不定积分与微分方程本部分介绍了不定积分与不定积分的应用、微分方程的概念、一阶微分方程、高阶线性微分方程等内容。
主要涉及不定积分的定义、不定积分的计算、一阶微分方程与高阶线性微分方程等知识点。
高等数学同济五版123齐次方程

对于方程 $frac{dy}{dx} = frac{y}{x}$,通过引入参数 $lambda = frac{y}{x}$,我们 可以得到参数方程 $xlambda' = y'$,进一步求解得到 $x^2 = lambda y$。
幂级数法
总结词
通过将齐次方程转化为幂级数形式,求解齐次方程。
详细描述
幂级数法是将齐次方程转化为幂级数形式,然后通过求解幂级 数得到原方程的解。这种方法适用于某些难以直接求解的齐次
方程。
举例
对于方程 $frac{dy}{dx} = frac{y}{x}$,通过幂级数法,我 们可以得到 $y = x^n$,其中 $n$ 是待求的幂级数系数。
03
齐次方程的应用
在物理中的应用
投资组合优化
在投资组合优化问题中,投资者需要选择一组资产进行投资 ,以实现收益的最大化和风险的最小化。在这个问题中,可 以通过建立齐次方程来描述资产之间的相关性,从而帮助投 资者进行投资决策。
在工程中的应用
机械振动
在研究机械振动问题时,常常需要用到 齐次方程来描述振动的规律。例如,在 研究桥梁、建筑物的振动问题时,可以 通过建立齐次方程来描述振动的频率和 振幅。
齐次方程的特点
齐次方程的每一项都是$y$的整数次幂之和,且每一项的次数都相 同。
齐次方程的性质
齐次方程的解的性质
如果$(y_{1}, y_{2}, ldots, y_{m})$是齐次方程的一个解,那么$k(y_{1}, y_{2}, ldots, y_{m})$也是该方程的解,其 中$k$为任意非零常数。
齐次方程的分类
按照指数分类
根据指数的不同,可以将齐次方程分 为线性齐次方程、二次齐次方程、三 次齐次方程等。
高等数学同济教材第五版

高等数学同济教材第五版高等数学是大学数学的重要组成部分,在培养学生的数学思维和分析解决实际问题的能力方面起着重要的作用。
同济大学出版社出版的高等数学同济教材第五版是国内一本经典的高等数学教材,具有权威性和实用性。
本文将对该教材的特点、内容和使用方法进行介绍。
一、教材特点高等数学同济教材第五版作为同济大学数学系编写的教材,具有以下特点:1.权威性:同济大学数学系作为国内一流的数学学科,编写的教材具备了权威性。
该教材的内容全面、准确,能够满足高等数学各个章节的学习需求。
2.严谨性:高等数学同济教材第五版在内容的讲解和定理的证明方面非常严谨。
编写者注重逻辑推理和数学证明的完整性,有助于学生形成严密的思维习惯。
3.实用性:教材内容既有理论知识,也有实际应用。
对于工科和理科学生来说,教材中的例题和习题涵盖了众多实际问题的分析和解决方法,具有实用性。
二、教材内容高等数学同济教材第五版包含了以下主要内容:1.数列与级数:介绍了各种常见数列和级数的性质、求和方法以及数列极限和级数敛散性的判定方法。
2.函数与极限:重点讲解了函数的概念、连续性、可导性以及函数的极限与无穷小的关系等内容。
3.微分学:包括函数的导数、高阶导数和微分、中值定理、泰勒公式以及函数的极值和最值等内容。
4.积分学:介绍了不定积分和定积分的概念、性质和计算方法,以及变限积分、曲线长度、曲面面积和体积的计算方法等。
5.微分方程:包括一阶常微分方程和二阶线性常微分方程的基本方法与应用。
6.多元函数微分学:讲述了多元函数的偏导数、全微分、方向导数和梯度,以及多元函数的极值和条件极值等内容。
7.多元函数积分学:介绍了二重积分和三重积分的概念、性质和计算方法,以及对坐标变换下的积分和曲线、曲面、空间区域的面积和体积等内容。
三、使用方法在使用高等数学同济教材第五版时,可以采用以下方法:1.理论学习:阅读教材中的理论部分,了解概念和性质的定义和证明过程,理解数学思想和方法。
XXX第五版高数习题答案

XXX第五版高数习题答案1.设 $u=a-b+2c,v=-a+3b-c$,则 $2u-3v=2(a-b+2c)-3(-a+3b-c)=5a-11b+7c$。
2.假设平面四边形 $ABCD$ 的对角线 $AC$ 和 $BD$ 互相平分,设 $M$ 为 $AC$ 和 $BD$ 的交点,则$\overrightarrow{AM}=\frac{1}{2}(\overrightarrow{AB}+\overri ghtarrow{AC})$,$\overrightarrow{BM}=\frac{1}{2}(\overrightarrow{BD}+\overri ghtarrow{BA})$。
由此可得$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{A M}$,$\overrightarrow{BD}+\overrightarrow{BA}=2\overrightarrow{B M}$。
将两式相加得$\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{B D}+\overrightarrow{BA}=2(\overrightarrow{AM}+\overrightarro w{BM})$,即$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD }+\overrightarrow{DA}=0$。
因此,四边形 $ABCD$ 是平行四边形。
3.设 $D_1,D_2,D_3,D_4$ 分别为 $\triangle ABC$ 的边$BC$ 上的五等分点,则$\overrightarrow{AD_1}=\frac{1}{5}\overrightarrow{AB}+\frac{ 4}{5}\overrightarrow{AC}$,$\overrightarrow{AD_2}=\frac{2}{5}\overrightarrow{AB}+\frac{ 3}{5}\overrightarrow{AC}$,$\overrightarrow{AD_3}=\frac{3}{5}\overrightarrow{AB}+\frac{ 2}{5}\overrightarrow{AC}$,$\overrightarrow{AD_4}=\frac{4}{5}\overrightarrow{AB}+\frac{ 1}{5}\overrightarrow{AC}$。
工程数学线性代数(同济大学第五版)课后习题答案【精品共223页

56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民ห้องสมุดไป่ตู้幸福是至高无个的法。— —西塞 罗
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
高等数学同济第五版第11章答案

高等数学同济第五版第11章答案习题11?11.写出以下系列的前五个术语?(1)? 1.N21? nn?11? n1?11? 21? 31? 41?5.2222221? 11? 21? 31? 41? 5n?11? n1?n3456?1.251026371? nn?11? 3.(2n?1)2?4.2n解决方案解决方案(2)n?1解?n?1?1?3(2n?1)2?42n1?3(2n?1)2?42n?11?31?3?51?3?5?71?3?5?7?9?? .22?42?4?62?4?6?82?4?6?8?101315105945??.28483843840解?n?1??(3)?n?1?(?1)n?15n(?1)n?15n?解决方案N1.11111? 2.3.4.5.55555? 解决方案N1.(?1)n?15n?11111. 5251256253125(4)? N嗯?1n!1.2.3.4.5.1.2.3.4.5.nn12345n?1.解决方案解决方案N12624120. n14272563125nn?12? 写出以下系列的一般术语?(1)113151 7.解决方案的一般术语是un?1.2n?1(2)? 213456 2345解决方案的一般术语是un?(?1)n?1n?1.Nxxxx2(3)22?42?4?62?4?6?8解一般项为un?(4)nx22n!。
a2a3a4a53579n?1解一般项为un?(?1)an?1.2n?13?根据级数收敛与发散的定义判定下列级数的收敛性?(1) (n?1?n)?n?1解因为sn?(2?1)? (3?2)? (4?3) (n?1?n)?(n?1?1)??(n??)?那么级数散度呢?(2)11111?33?55?7(2n?1)(2n?1)1111???????1?33?55?7(2n?1)(2n?1)111111111 111(?)?(?)?(?)(?)21323525722n?12n?1111111111(?)21335572n?12n?11 11(1?)?(n??)?22n?122?3?n??sinsin?666解因为sn所以级数收敛?(3)sin?6?sin解sn?sin?12sin?6?sin(2sin2?3?n??sinsin666?12?12sin?6?2sin?12sin2??n??2si nsin)6126?12sin?12[(cos?12?cos3?3?5?2n?12n?1)?(cos?cos)(cos??cos?)]121212 1212?12sin?12(cos?12?cos2n?1?).12因为limcosn??2n?1?不存在?所以limsn不存在?因而该级数发散?N12n8283n8(?1); 23n9994?确定下列序列的收敛性?(1)?? 这是等比级数吗?常见的比率是q??(2)? 13111; 693n88?那么| Q |??1.那么这个系列会聚了吗?99.这个系列有分歧吗?这是因为这样的级数收敛吗?那么阶段的数量是??11111? 3() n3693nn?1.还有收敛?矛盾(3)? 1313? 3131n3;1n?1n解决方案因为通用术语UN?3.3.1.0(n?所以由级数收敛的必要条件可知?此级数发散?332333n(4)?2.3.N2222解这是一个等比级数?公比q?(5)(?)?(?3?1?所以此级数发散?21213111111?)?(?)(?)????.223223332n3n?11解因为?n和?n都是收敛的等比级数?所以级数N12n?13?? (n?11111111?n)?(?)? (2?2)? (3?3) (n?n)N3232323是否收敛?习题11?21.用比较收敛法或极限形式比较收敛法确定下列级数的收敛性?(1)113151?????(2n?1)1?112n?1.因为Lim??还有连续剧?发散那么给定的序列会出现分歧?12n??N1nn(2)1?1.21? 31? N1.221? 321? 氮气?1.n1?N11解决方案,因为UN??那么级数发散度呢n1?n2n?n2nn?1.因此,给定的序列发散?(3)1112?53?6(n?1)(n?4)1?(n?1)(n?4)n21?lim2?1?而级数?2收敛?解因为lim1n??n??n?5n?4n?1n2n故所给级数收敛?(4)sin?2?sin?22?sin?23sin?2n罪2n??画罪因为LiMn??12n12n序列收敛了吗??N2n?1n2?那么给定的级数收敛了吗?(5)? 1(a?0)?n1?一1.解决原因00a11n1an1alimlimla1n12nn1aan1a111.什么时候开始?1小时系列?N收敛?什么时候?A.1小时系列?N散度?n?1an?1a1当a?1时收敛?当0?a?1时发散?nn?11?a所以级数?2?用比值审敛法判定下列级数的收敛性?332333n(1)1?22?223?23n?2n解级数的一般项为un?limn??3n?因为nn?2un?1un?lim3n?1n?2n3n3??lim1?n?1n2n?12n??(n?1)?2n??3所以级数发散?n2(2)?Nn?13un?1un(n?1)23n1n?121?lim??lim?()??1?n?123n3n??3n??n?解因为limn??所以级数收敛?2n?N(3)? Nn?1nun?1un2n?1?(n?1)!(n?1)n?1nnnn2?2lim()??1?nn?1en??2?n!?解因为limnlimn所以级数收敛?(3) 恩坦恩?1.2n?1.解因为limn??un?1un(n?1)tan?limn??2n?2?limn?1?2n?2?1?1?2n??丹恩?122n?那么级数收敛呢?3?用根值审敛法判定下列级数的收敛性?(1) (n?1nn)?2n?1n溶液,因为limn??联合国?画n1??1.那么级数收敛呢?2n?12(2)? 1.n[ln(n?1)]n?1n?因为limn??联合国?lim1?0 1? 那么级数收敛呢?n??ln(n?1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数第五版答案(同济)12-9习题12-91. 求下列各微分方程的通解:(1)2y ''+y '-y =2e x ;解微分方程的特征方程为2r 2+r -1=0, 其根为211=r , r 2=-1, 故对应的齐次方程的通解为 x x e C e C Y -+=2211. 因为f (x )=2e x , λ=1不是特征方程的根,故原方程的特解设为y *=Ae x ,代入原方程得2Ae x +Ae x -Ae x =2e x ,解得A =1, 从而y *=e x .因此, 原方程的通解为x x x e e C e C y ++=-2211.(2)y ''+a 2y =e x ;解微分方程的特征方程为r 2+a 2=0,其根为r =±ai , 故对应的齐次方程的通解为Y =C 1cos ax +C 2sin ax .因为f (x )=e x , λ=1不是特征方程的根,故原方程的特解设为y *=Ae x ,代入原方程得Ae x +a 2Ae x =e x , 解得211a A +=, 从而21*a e y x +=. 因此, 原方程的通解为2211sin cos a e ax C ax C y x +++=.(3)2y ''+5y '=5x 2-2x -1;解微分方程的特征方程为2r 2+5r =0,其根为r 1=0, 252-=r , 故对应的齐次方程的通解为x e C C Y 2521-+=.因为f (x )=5x 2-2x -1, λ=0是特征方程的单根,故原方程的特解设为y *=x (Ax 2+Bx +C ),代入原方程并整理得15Ax 2+(12A +10B )x +(4B +5C )=5x 2-2x -1, 比较系数得31=A , 53-=B , 257=C , 从而x x x y 2575331*23+-=. 因此, 原方程的通解为 x x x e C C y x 257533123521+-++=-. (4)y ''+3y '+2y =3xe -x ;解微分方程的特征方程为r 2+3r +2=0,其根为r 1=-1, r 2=-2, 故对应的齐次方程的通解为Y =C 1e -x +C 2e -2x .因为f (x )=3xe -x , λ=-1是特征方程的单根,故原方程的特解设为y *=x (Ax +B )e -x ,代入原方程并整理得2Ax +(2A +B )=3x , 比较系数得23=A , B =-3, 从而)323(*2x x e y x -=-. 因此, 原方程的通解为 )323(2221x x e e C e C y x x x -++=---.(5)y ''-2y '+5y =e x sin2x ;解微分方程的特征方程为r 2-2r +5=0,其根为r 1, 2=1±2i , 故对应的齐次方程的通解为Y =e x (C 1cos2x +C 2sin2x ).因为f (x )=e x sin2x , λ+i ω=1+2i 是特征方程的根,故原方程的特解设为y *=xe x (A cos2x +B sin2x ),代入原方程得e x [4B cos2x -4A sin2x ]=e x sin2x , 比较系数得41-=A , B =0, 从而x xe y x 2cos 41*-=.因此, 原方程的通解为x xe x C x C e y x x 2cos 41)2sin 2cos (21-+=.(6)y ''-6y '+9y =(x +1)e 3x ;解微分方程的特征方程为r 2-6r +9=0,其根为r 1=r 2=3, 故对应的齐次方程的通解为Y =e 3x (C 1+C 2x ).因为f (x )=(x +1)e 3x , λ=3是特征方程的重根,故原方程的特解设为y *=x 2e 3x (Ax +B ),代入原方程得e 3x (6Ax +2B )=e 3x (x +1), 比较系数得61=A , 21=B , 从而)2161(*233x x e y x +=. 因此, 原方程的通解为 )2161()(233213x x e x C C e y x x +++=.(7)y ''+5y '+4y =3-2x ;解微分方程的特征方程为r 2+5r +4=0,其根为r 1=-1, r 2=-4, 故对应的齐次方程的通解为Y =C 1e -x +C 2e -4x .因为f (x )=3-2x =(3-2x )e 0x , λ=0不是特征方程的根,故原方程的特解设为y *=Ax +B ,代入原方程得4Ax +(5A +4B )=-2x +3, 比较系数得21-=A , 811=B , 从而81121*+-=x y . 因此, 原方程的通解为 81121421+-+=--x e C e C y x x . (8)y ''+4y =x cos x ;解微分方程的特征方程为r 2+4=0,其根为r =±2i , 故对应的齐次方程的通解为Y =C 1cos2x +C 2sin2x .因为f (x )= x cos x =e 0x (x ?cos x +0?sin x ), λ+i ω=i 不是特征方程的根,故原方程的特解设为y *=(Ax +B )cos x +(Cx +D )sin x ,代入原方程得(3Ax +3B +2C )cos x +(3Cx -2A +3D )sin x =x cos x , 比较系数得31=A , B =0, C =0,92=D , 从而x x x y sin 92cos 31*+=. 因此, 原方程的通解为 x x x x C x C y sin 92cos 31sin 2cos 21+++=.(9)y ''+y =e x +cos x ;解微分方程的特征方程为r 2+1=0,其根为r =±i , 故对应的齐次方程的通解为Y =C 1cos x +C 2sin x .因为f (x )=f 1(x )+f 2(x ), 其中f 1(x )=e x , f 2(x )=cos x , 而方程y ''+y =e x 具有Ae x 形式的特解;方程y ''+y =cos x 具有x (B cos x +C sin x )形式的特解,故原方程的特解设为y *=Ae x +x (B cos x +C sin x ),代入原方程得2Ae x +2C cos x -2B sin x =e x +cos x , 比较系数得21=A , B =0,21=C , 从而x x e y x sin 221*+=. 因此, 原方程的通解为 x x e x C x C y x sin 221sin cos 21+++=.(10)y ''-y =sin 2x .解微分方程的特征方程为r 2-1=0,其根为r 1=-1, r 2=1, 故对应的齐次方程的通解为Y =C 1e -x +C 2e x .因为x x x f 2cos 2121sin )(2-==, 而方程21=-''y y 的特解为常数A ;方程x y y 2cos 21-=-''具有B cos2x +C sin2x 形式的特解,故原方程的特解设为y *=A +B cos2x +C sin2x ,代入原方程得x x C x B A 2cos 21212sin 52cos 5-=---, 比较系数得21-=A ,101=B , C =0, 从而x y 2cos 10121*+-=. 因此, 原方程的通解为 212cos 10121-++=-x e C e C y x x . 2. 求下列各微分方程满足已给初始条件的特解:(1)y ''+y +sin x =0, y |x =π=1, y '|x =π=1;解微分方程的特征方程为r 2+1=0,其根为r =±i , 故对应的齐次方程的通解为Y =C 1cos x +C 2sin x .因为f (x )=-sin2x =e 0x (0?cos2x -sin2x ), λ+i ω=i 是特征方程的根,故原方程的特解设为y *=A cos2x +B sin2x ,代入原方程得-3A cos 2x -3B sin2x =-sin2x ,解得A =0, 31=B , 从而x y 2sin 31*=. 因此, 原方程的通解为 x x C x C y 2sin 31sin cos 21++=.由y |x =π=1, y '|x =π=1得C 1=-1, 312-=C ,故满足初始条件的特解为x x x y 2sin 31sin 31cos +-+-=.(2)y ''-3y '+2y =5, y |x =0=1, y '|x =0=2;解微分方程的特征方程为r 2-3r +2=0,其根为r 1=1, r 2=2, 故对应的齐次方程的通解为Y =C 1e x +C 2e 2x .容易看出25*=y 为非齐次方程的一个特解, 故原方程的通解为 25221++=x x e C e C y .由y |x =0=1, y '|x =0=2得=+=++221252121C C C C , 解之得C 1=-5, 272=C . 因此满足初始条件的特解为 2527521++-=x x e e y . (3)y ''-10y '+9y =e 2x , 76|0==x y , 7 33|0='=x y ; 解微分方程的特征方程为r 2-10r +9=0,其根为r 1=1, r 2=9, 故对应的齐次方程的通解为Y =C 1e x +C 2e 9x .因为f (x )=e 2x , λ=2不是特征方程的根,故原方程的特解设为y *=Ae 2x ,代入原方程得(4A -20A +9A )e 2x =e 2x , 解得71-=A , 从而x e y 271*-=.因此, 原方程的通解为 x x x e e C e C y 292171-+=.由76|0==x y , 733|0='=x y 得2121==C C . 因此满足初始条件的特解为x x x e e e y 29712121-+=.(4)y ''-y =4xe x , y |x =0=0, y '|x =0=1;解微分方程的特征方程为r 2-1=0,其根为r 1=-1, r 2=1, 故对应的齐次方程的通解为Y =C 1e -x +C 2e x .因为f (x )=4xe x , λ=1是特征方程的单根,故原方程的特解设为y *=xe x (Ax +B ),代入原方程得(4Ax +2A +2B )e x =4xe x ,比较系数得A =1, B =-1, 从而y *=xe x (x -1).因此, 原方程的通解为y *=C 1e -x +C 2e x +xe x (x -1).由y |x =0=0, y '|x =0=1得=--=+1102121C C C C , 解之得C 1=1, C 2=-1. 因此满足初始条件的特解为y =e -x -e x +xe x (x -1).(5)y ''-4y '=5, y |x =0=1, y '|x =0=0.解微分方程的特征方程为r 2-4r =0,其根为r 1=0, r 2=4, 故对应的齐次方程的通解为Y =C 1+C 2e 4x .因为f (x )=5=5e 0?x , λ=0是特征方程的单根,故原方程的特解设为y *=Ax ,代入原方程得-4A =5, 45-=A , 从而x y 45*-=.因此, 原方程的通解为x e C C y x 45421-+=.由y |x =0=1, y '|x =0=0得16111=C , 1652=C . 因此满足初始条件的特解为x e y x 4516516114-+=. 3. 大炮以仰角α、初速度v 0发射炮弹, 若不计空气阻力, 求弹道曲线.解取炮口为原点, 炮弹前进的水平方向为x 轴, 铅直向上为y 轴, 弹道运动的微分方程为=-=02dtdx g dt y d , 且满足初始条件='=='=====ααcos | ,0|sin | ,0|000000v x x v y y t t t t . 易得满足方程和初始条件的解(弹道曲线)为-?=?=20021sin cos gt t v y tv x αα. 4. 在R 、L 、C 含源串联电路中, 电动势为E 的电源对电容器C 充电. 已知E =20V , C =0.2μF(微法), L =0.1H(亨), R =1000Ω, 试求合上开关K 后电流i (t )及电压u c (t ). 解 (1)列方程. 由回路定律可知E u u C R u C L c c c=+'??+''??, 即 LCE u LC u L R u c c c =+'+''1, 且当t =0时, u c =0, u c '=0.已知R =1000Ω, L =0.1H , C =0.2μF , 故4101.01000==L R , 76105102.01.011?=??=-LC , 9771020105105=??=?=E LC E . 因此微分方程为9741010510=?+'+''c c cu u u . (2)解方程. 微分方程的特征方程为r 2+104r +5?107=0, 其根为r 1, 2=-5?103±5?103i . 因此对应的齐次方程的通解为])105sin()105cos([32311053t C t C e u t c ?+?=?-.由观察法易知y *=20为非齐次方程的一个特解.因此非齐次方程的通解为20])105sin()105cos([32311053+?+?=?-t C t C e u t c .由t =0时, u c =0, u c '=0, 得C 1=-20, C 2=-20. 因此])105sin()105[cos(2020331053t t e u t c ?+?-=?-(V),)]105sin(104102.0)(3105263t e u u C t i t c c='?='=?---(A).5. 一链条悬挂在一钉子上, 起动时一端离开钉子8m 另一端离开钉子12m , 分别在以下两种情况下求链条滑下来所需的时间:(1)若不计钉子对链条所产生的摩擦力;解设在时刻t 时, 链条上较长的一段垂下x m , 且设链条的密度为ρ, 则向下拉链条下滑的作用力F =x ρg -(20-x )ρg =2ρg (x -10).由牛顿第二定律, 有20ρx ''=2ρg (x -10), 即g x g x -=-''10. 微分方程的特征方程为 0102=-g r , 其根为101g r -=,102g r =, 故对应的齐次方程的通解为 t g t g e C e C x 102101+=-.由观察法易知x *=10为非齐次方程的一个特解, 故通解为10102101++=-t g t g e C e C x .由x (0)=12及x '(0)=0得C 1=C 2=1. 因此特解为101010++=-t g t g e e x .当x =20, 即链条完全滑下来时有101010=+-t g t g e e, 解之得所需时间)625ln(10+=gt s. (2)若摩擦力为1m 长的链条的重量.解此时向下拉链条的作用力变为F =x ρg -(20-x )ρg -1ρg =2ρgx -21ρg由牛顿第二定律, 有20ρx ''=2ρgx -21ρg , 即g x g x 05.110-=-''. 微分方程的通解为5.10102101++=-t g t g e C e C x . 由x (0)=12及x '(0)=0得4321==C C . 因此特解为 5.10)(431010++=-t g t g e e x .当x =20, 即链条完全滑下来时有5.9)(431010=+-t g t g e e ,解之得所需时间)3224319ln(10+=g t s. 6. 设函数?(x )连续, 且满足 ??-+=x x xdt t x dt t t e x 00)()()(, 求?(x ).解等式两边对x 求导得-='xx dt t e x 0)()(??, 再求导得微分方程''(x )=e x -?(x ), 即?''(x )+?(x )=e x . 微分方程的特征方程为r 2+1=0,其根为r 1, 2=±i , 故对应的齐次方程的通解为?=C 1cos x +C 2sin x .易知x e 21*=?是非齐次方程的一个特解, 故非齐次方程的通解为x e x C x C 21sin cos 21++=?. 由所给等式知?(0)=1, ?'(0)=1, 由此得2121= =C C . 因此)sin (cos 21x e x x ++=?.。