同济第五版高数习题答案

合集下载

高数第五版答案(同济)总习题十

高数第五版答案(同济)总习题十

高数第五版答案(同济)总习题十总习题十 1. 填空: (1)第二类曲线积分Γ++Rdz Qdy Pdx 化成第一类曲线积分是____________, 其中α、β、γ为有向曲线弧Γ上点(x , y , z )处的_____________的方向角.解Γ++ds R Q P )cos cos cos (γβα, 切向量.(2)第二类曲面积分Rdxdy Qdzdx Pdydz ++∑化成第一类曲面积分是_______, 其中α、β、γ为有向曲面∑上点(x , y , z )处的________的方向角.解dS R Q P )cos cos cos (γβα++∑, 法向量.2. 选择下述题中给出的四个结论中一个正确的结论: 设曲面∑是上半球面: x 2+y 2+z 2=R 2(z ≥0), 曲面∑1是曲面∑在第一卦限中的部分, 则有________. (A )xdS xdS 14∑∑=; (B )xdS ydS 14∑∑=;(C )xdS zdS 14∑∑=; (D )xyzdS xyzdS 14∑∑=.解 (C ).3. 计算下列曲线积分: (1)+Lds y x 22, 其中L 为圆周x 2+y 2=ax ;解 L 的参数方程为θcos 22a a x +=, θsin 2a y =(0≤θ≤2π), 故θθθθπd y x ax ds ax ds y x LL )()()(222022'+'?==+?θθθθππd ad a=?+=204204|2cos 2|4)cos 1(2422202022)cos cos (|cos |4a tdt tdt a dt t a =-==ππππ(2θ=t 这里令).(2)?Γzds , 其中Γ为曲线x =t cos t , y =t sin t , z =t (0≤t ≤t 0); 解+++-?=Γ00221)cos (sin )sin (cos t dt t t t t t t t zds322)2(232002-+=+=?t dt t t . (3)?+-L xdy dx y a )2(, 其中L 为摆线x =a (t -sin t ), y =a (1-cos t )上对应t 从0到2π的一段弧; 解-+-?+-=+-π20]sin )sin ()cos 1()cos 2[()2(dt t a t t a t a t a a a xdy dx y a L22022sin a tdt t a ππ-==?.(4)?Γ-+-dz x yzdy dx z y 2222)(, 其中Γ是曲线x =t , y =t 2, z =t 3上由听t 1=0到t 2=1的一段弧; 解-??+?-=-+-Γ1223264222]3221)[(2)(dt t t t t t t t dz x yzdy dx z y351)32(164=+-=?dt t t . (5)-+-L x x dy y e dx y y e )2cos ()2sin (, 其中L 为上半圆周(x -a )2 +y 2=a 2, y ≥0, 沿逆时针方向;解这里P =e x sin y -2y , Q =e x cos y -2,22cos cos =+-=??-??y e y e yP x Q x x. 令L 1为x 轴上由原点到(2a , 0)点的有向直线段, D 为L 和L 1所围成的区域, 则由格林公式+-+-1)2cos ()2sin (LL x x dy y e dx y y e dxdy yPx Q D)(-??=?? 22a dxdy Dπ==??,-+--=-+-1)2cos ()2sin ()2cos ()2sin (2L x x L x x dy y e dx y y e a dy y e dx y y e π22020a dx a aππ=-=?.(6)Γxyzdz , 其中Γ是用平面y =z 截球面x 2+y 2+z 2=1所得的截痕, 从z 轴的正向看去,沿逆时针方向.解曲线Γ的一般方程为?==++z y z y x 1222, 其参数方程为tz t y t x sin 22 ,sin 22 ,cos ===, t 从0变到2π.于是tdt t t t xyzdz cos 22cos 22cos 22cos 20=??Γπππ162cos sin 422022==tdt t .4. 计算下列曲面积分: (1)222z y x dS ++∑, 其中∑是界于平面z =0及z =H 之间的圆柱面x 2+y 2=R 2; 解∑=∑1+∑2, 其中221:y R x -=∑, D xy : -R ≤y ≤R , 0≤z ≤H , dydz yR R dS 22-=; 221:y R x --=∑, D xy : -R ≤y ≤R , 0≤z ≤H , dydz yR R dS 22-=, 于是22222222221z y x dS z y x dS z y x dS +++++=++∑∑∑?????? ????+-=-?+=-H R R D dz z R dy y R R dydz y R R z R xt02222222211212RH arctan 2π=. (2)dxdy y x dzdx x z dydz z y )()()(222-+-+-∑, 其中∑为锥面22y x z +=(0≤z ≤h ) 的外侧;解这里P =y 2-z , Q =z 2-x , R =x 2-y ,0=??+??+??zR y Q x P . 设∑1为z =h (x 2+y 2≤h 2)的上侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式0)()()()(2221=??+??+??=-+-+-Ω∑+∑dv zR y Q x P dxdy y x dzdx x z dydz z y ,而dxdy y x dxdy y x dzdx x z dydz z y )()()()(222211-=-+-+-∑∑40222024)sin cos ()(1h d r r d dxdy y x hπθθθθπ=-=-∑, 所以42224)()()(h dxdy y x dzdx x z dydz z y π-=-+-+-∑. (3)zdxdy ydzdx xdydz ++∑, 其中∑为半球面222y x R z --=的上侧;解设∑1为xOy 面上圆域x 2+y 2≤R 2的下侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式得dv zR y Q x P zdxdy ydzdx xdydz )(1+??+??=++Ω∑+∑332)32(33R R dv ππ===Ω,而00011====++∑∑dxdy zdxdy zdxdy ydzdx xdydz xyD ,所以33202R R zdxdy ydzdx xdydz ππ=-=++∑.(4)3222)(z y x zdxdy ydzdx xdydz ++++∑??, 其中∑为曲面9)1(16)2(5122-+-=-y x z (z ≥0)的上侧;解这里3r x P =, 3r y Q =, 3r z R =, 其中222z y x r ++=. 52331r x r x P -=??, 5 2331r y r x Q -=??, 52331r z r x R -=??,033)(3352352223=-=++-=??+??+??rr r r z y x r z R y Q x P . 设∑1为z =0)19)1(16)2((22≤-+-y x 的下侧, Ω是由∑和∑1所围成的空间区域, 则由高斯公式0)()(32221=??+??+??=++++Ω∑+∑dv zR y Q x P z y x zdxdy ydzdx xdydz ,32223222)()(1z y x zdxdyydzdx xdydz z y x zdxdy ydzdx xdydz ++++-=++++∑∑0)(0322=+=dxdy y x xyD .(5)xyzdxdy ∑, 其中∑为球面x 2+y 2+z 2=1(x ≥0, y ≥0)的外侧. 解∑=∑1+∑2, 其中∑1是221y x z --=(x 2+y 2≤1, x ≥0, y ≥0)的上侧; ∑2是221y x z ---=(x 2+y 2≤1, x ≥0, y ≥0)的下侧,xyzdxdy xyzdxdy xyzdxdy 21∑∑∑+=dxdy y x xy dxdy y x xy xyxyD D )1(12222------=-??=--=13220221sin cos 212ρρρθθθπd d dxdy y x xy xyD15212sin 103220=-=?ρρρθθπd d .5. 证明22y x ydyxdx ++在整个xOy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分, 并求出一个这样的二元函数. 解这里22y x x P +=, 22y x y Q +=. 显然, 区域G 是单连通的, P 和Q 在G 内具有一阶连续偏导数, 并且xQ y x xy y P ??=+-=??222)(2, 所以22y x ydyxdx ++在开区域G 内是某个二元函数u (x , y )的全微分.C y x dy y x y dx x y x ydy xdx y x u y x y x ++=++=++=)ln(211),(220221),()0 ,1(22.6. 设在半平面x >0内有力)(3j i y x k F +-=ρ构成力场, 其中k 为常数,22y x +=ρ. 证明在此力场中场力所作的功与所取的路径无关. 解场力沿路径L 所作的功为 dy kydx kx W L33ρρ?--=.令3ρkx P -=, 3ρky Q -=. 因为P 和Q 在单连通区域x >0内具有一阶连续的偏导数, 并且xQ xy k y P ??==??53ρ, 所以上述曲线积分所路径无关, 即力场所作的功与路径无关. 7. 求均匀曲面222y x a z --=的质心的坐标. 解这里∑:222y x a z --=, (x , y )∈D xy ={(x , y )|x 2+y 2≤a 2}. 设曲面∑的面密度为ρ=1, 由曲面的对称性可知, 0==y x . 因为3222221a dxdy a dxdy z z y x a zdS xyxyD y x D π=='+'+?--=∑,222421a a dS ππ=?=∑, 所以 2223a a a z ==ππ.因此该曲面的质心为)2,0 ,0(a .8. 设u (x , y )、v (x , y )在闭区域D 上都具有二阶连续偏导数, 分段光滑的曲线L 为D 的正向边界曲线. 证明: (1)+?-=?L D D ds n u v dxdy v u udxdy v ) (grad grad ;(2)-??=?-?L D ds nu v n v u dxdy u v v u )()(, 其中n u ??、n v ??分别是u 、v 沿L 的外法线向量n 的方向导数, 符号2222yx ??+??=?称为二维拉普拉斯算子.证明设L 上的单位切向量为T =(cos α, sin α), 则n =(sin α, -cos α). (1)+??-=??-??=??L L L ds x uv y u v ds y u x u v ds n u v ]sin cos [)cos sin (ααααdxdy yu v y x u v x D )]()([??-??-=dxdy y u v y u y v x u v x u x v D)(2222??++??+=?? dxdy y u x u v dxdy y u y v x u x v DD )()(2222??+??++= udxdy v udxdy v D D ?+?=grad grad ,所以+?-=?L D D ds nu v dxdy v u udxdy v ) (grad grad . (2)dxdy yu x u v y v x v u ds n u v n v u L L )]cos sin ()cos sin ([)(αααα??-??-??-??=??- dxdy xuv x v u y u v y v u L ]sin )(cos )[(αα??-??+??+??-=?dxdy yu v y v u y x u v x v u x D )]()([??+??-??-??-=dxdy y u v y u y v y v u y v y u x u v x u x v x v u x v x u D)(22222222??--??++??--??+=?? dxdy u v v u dxdy y u x u v y v x v u D D )()]()([22222222?-?=??+??-??+??=. 9. 求向量A =x i +y j +z k 通过闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}的边界曲面流向外侧的通量.解设∑为区域Ω的边界曲面的外侧, 则通量为 dv zR y Q x P zdxdy ydzdx xdydz )(??+??+??=++=ΦΩ∑ 33==Ωdv .10. 求力F =y i +z j +x k 沿有向闭曲线Γ所作的功, 其中Γ为平面x +y +z =1被三个坐标面所截成的三角形的整个边界, 从z 轴正向看去, 沿顺时针方向.解设∑为平面x +y +z =1在第一卦部分的下侧, 则力场沿其边界L (顺时针方向)所作的功为++=L xdz zdy ydx W .曲面∑的的单位法向量为)cos cos ,(cos )1 ,1 ,1(31γβα=-=n , 由斯托克斯公式有dS xz y z y x W =∑γβαcos cos cos233sin )2(2133)111(312=?==----=∑∑πdS dS .。

同济大学《高等数学》第五版上册答案(详解)

同济大学《高等数学》第五版上册答案(详解)

解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y

y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3

高等数学同济五版下册答案

高等数学同济五版下册答案

习题8−11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为{(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为{(x , y )|1≤x 2+y 2≤4},边界为{(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集, 导集为{(x , y )| y ≥x 2}, 边界为{(x , y )| y =x 2}.(4){(x , y )|x 2+(y −1)2≥1}∩{(x , y )|x 2+(y −2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为{(x , y )|x 2+(y −1)2=1}∪{(x , y )|x 2+(y −2)2=4}.2. 已知函数yx xy y x y x f tan ),(22−+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅−+= ),(tan 2222y x f t y x xy y x t =⎟⎠⎞⎜⎝⎛−+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v=F (x , u )+F (x , v )+F (y , u )+F (y , v ).4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x −y , xy ).解 f (x +y , x −y , xy )=(x +y )xy +(xy )(x +y )+(x −y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2−2x +1);解 要使函数有意义, 必须y 2−2x +1>0,故函数的定义域为D ={(x , y )|y 2−2x +1>0}.(2)yx y x z −++=11; 解 要使函数有意义, 必须x +y >0, x −y >0,故函数的定义域为D ={(x , y )|x +y >0, x −y >0}.(3)y x z −=;解 要使函数有意义, 必须y ≥0,0≥−y x 即y x ≥, 于是有x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z −−+−=; 解 要使函数有意义, 必须y −x >0, x ≥0, 1−x 2−y 2>0,故函数的定义域为D ={(x , y )| y −x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u −+++−−−=(R >r >0); 解 要使函数有意义, 必须R 2−x 2−y 2−z 2≥0且x 2+y 2+z 2−r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +−→; 解110011lim 22)1,0(),(=+−=+−→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xy y x 42lim)0,0(),(+−→; 解 xy y x 42lim)0,0(),(+−→)42()42)(42(lim )0,0(),(+++++−=→xy xy xy xy y x 41)42(1lim)0,0(),(−=++−=→xy y x . (4)11lim )0,0(),(−+→xy xy y x ; 解 11lim )0,0(),(−+→xy xy y x )11)(11()11(lim )0,0(),(−+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xy xy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→; 解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xyxy y x . (6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++−→. 解 22221lim )cos(1lim )()cos(1lim )0,0(),(2222)0,0(),(2222)0,0(),(y x y x y x y x y x e y x y x e y x y x →→→⋅++−=++− 01sin lim cos 1lim 00==−=→→t t t t t . 7. 证明下列极限不存在:(1)y x y x y x −+→)0,0(),(lim; 证明 如果动点p (x , y )沿y =0趋向(0, 0),则 1lim lim00)0,0(),(==−+→=→x x y x y x x y y x ; 如果动点p (x , y )沿x =0趋向(0, 0),则 1lim lim00)0,0(),(−=−=−+→=→y y y x y x y x y x . 因此, 极限y x y x y x −+→)0,0(),(lim不存在. (2)22222)0,0(),()(lim y x y x y x y x −+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0),则 1lim )(lim 44022222 )0,0(),(==−+→=→x x y x y x y x x xy y x ; 如果动点p (x , y )沿y =2x 趋向(0, 0),则 044lim )(lim 2440222222 )0,0(),(=+=−+→=→x x x y x y x y x x xy y x . 因此, 极限22222)0,0(),()(lim y x y x y x y x −+→不存在. 8. 函数xy x y z 2222−+=在何处间断? 解 因为当y 2−2x =0时, 函数无意义,所以在y 2−2x =0处, 函数x y x y z 2222−+=间断. 9. 证明0lim 22)0,0(),(=+→yx xy y x .证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+, 所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x yx xy y x y x . 因此 0lim 22)0,0(),(=+→yx xy y x . 证明 因为2||22y x xy +≤, 故22||22222222y x yx y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤−+22|0|2222y x yx xy , 所以0lim 22)0,0(),(=+→yx xy y x . 10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x −x 0|<δ时, 有|f (x )−f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x −x 0|<δ, 从而 |F (x , y )−F (x 0, y 0)|=|f (x )−f (x 0)|<ε,所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8−21. 求下列函数的偏导数:(1) z =x 3y −y 3x ;解 323y y x xz −=∂∂, 233xy x y z −=∂∂. (2)uvv u s 22+=; 解 21)(u v v u v v u u u s −=+∂∂=∂∂, 21)(v u u u v v u v v s −=+∂∂=∂∂. (3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理)ln(21xy y y z =∂∂. (4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅−⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y −= 根据对称性可知)]2sin()[cos(xy xy x yz −=∂∂. (5)yx z tan ln =; 解 y x y y y x yxx z 2csc 21sec tan 12=⋅⋅=∂∂, y x y x y x y x yx y z 2csc 2sec tan 1222−=−⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(−−+=⋅+=∂∂y y xy y y xy y xz , ]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xy xy xy y ++++=. (7)z yx u =;解 )1(−=∂∂z y x zy x u , x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂, x x zy z y x x z u z y z y ln )(ln 22⋅−=−=∂∂. (8) u =arctan(x −y )z ;解 z z y x y x z x u 21)(1)(−+−=∂∂−, z z y x y x z y u 21)(1)(−+−−=∂∂−, z z y x y x y x z u 2)(1)ln()(−+−−=∂∂. 2. 设gl T π2=, 试证0=∂∂+∂∂g T g l T l . 解 因为l g l T ⋅⋅=∂∂1π, g g g l gT 121(223⋅−=⋅−⋅=∂∂−ππ, 所以 0=⋅−⋅=∂∂+∂∂gl g l g T g l T l ππ. 3. 设)11(y x e z +−=, 求证z yz y x z x 222=∂∂+∂∂. 解 因为211(1xe x z y x ⋅=∂∂+−, 2)11(1y e y z y x ⋅=∂∂+−, 所以 z e e y z y x z x y x y x 2)11()11(22=+=∂∂+∂∂+−+− 4. 设yx y x y x f arcsin )1(),(−+=, 求. )1 ,(x f x解 因为x x x x f =−+=1arcsin )11()1 ,(, 所以1)1 ,()1 ,(==x f dxd x f x . 5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 242x x x z ==∂∂, αtan 1)5,4,2(==∂∂xz , 故4πα=. 6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4−4x 2y 2;解 2384xy x x z −=∂∂, 2222812y x xz −=∂∂; y x y y z 2384−=∂∂, 2222812x y yz −=∂∂; xy y x y yy x z 16)84(232−=−∂∂=∂∂∂. (2)x y z arctan=; 解 22222)(11y x y x y xy x z +−=−⋅+=∂∂, 22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy y z +=⋅+=∂∂, 22222)(2y x xy y z +−=∂∂; 22222222222222)()(2)()(y x x y y x y y x y x y y y x z +−=+−+−=+−∂∂=∂∂∂. (3) z =y x .解 y y x z x ln =∂∂, y y xzx 222ln =∂∂; 1−=∂∂x xy y z , 222)1(−−=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂−−y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, −1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x ,f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0,所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2,f yz (0, −1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyy x xy x z , x xy y x z 122==∂∂, 023∂∂∂yx z , y xy x y x z 12==∂∂∂, 2231y y x z −=∂∂∂. 9. 验证:(1)满足nx e y tkn sin 2−=22xy k t y ∂∂=∂∂; 证明 因为nx e kn kn nx e ty t kn t kn sin )(sin 2222⋅−=−⋅⋅=∂∂−−, nx ne x y t kn cos 2−=∂∂, nx e n xy t kn sin 2222−−=∂∂, nx e kn xy k t kn sin 222−−=∂∂, 所以22x y k t y ∂∂=∂∂. (2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂.证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r x r −=∂∂−=∂∂, 由对称性知32222ry r y r −=∂∂, 32222r z r z r −=∂∂, 因此 322322322222222rz r r y r r x r z r y r x r −+−+−=∂∂+∂∂+∂∂ r r r r r z y x r 23)(332232222=−=++−=.习题8−31. 求下列函数的全微分:(1)yx xy z +=; 解 dy y z dx x z dz ∂∂+∂∂=dy yxx dx y y )()1(2−++=. (2)x ye z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+−=∂∂+∂∂=. (3) 22yx y z +=; 解 因为2/3222322)()(21y x xy y x y x z +−=+−=∂∂−, 2/3222222222)(y x x y x y x y y y x z +=++⋅−+=∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++−=)()(2/322xdy ydx y x x −+−=. (4)u =x yz .解 因为1−⋅=∂∂yz x yz x u , x zx y u yz ln =∂∂, x yx zu yz ln =∂∂, 所以xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=− 2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分.解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x x z, 3221=∂∂==y x y z,所以 dy dx dz y x 323121⋅+===. 3. 求函数xy z =当x =2, y =1, Δx =0.1, Δy =−0.2时的全增量和全微分. 解 因为x y x x y y z −Δ+Δ+=Δ, y x x xy dz Δ+Δ−=12, 所以, 当x =2, y =1, Δx =0.1, Δy =−0.2时,119.0211.02)2.0(1−=−+−+=Δz , 125.0)2.0(211.041−=−+×−=dz . 4. 求函数z =e xy 当x =1, y =1, Δx =0.15, Δy =0.1时的全微分.解 因为y xe x ye y yz x x z dz xy xy Δ+Δ=Δ∂∂+Δ∂∂= 所以, 当x =1, y =1, Δx =0.15, Δy =0.1时,e e e dz 25.01.015.0=⋅+⋅=*5. 计算33)97.1()102(+的近似值.解 设33y x z +=, 由于y y z x x z y x y y x x Δ∂∂+Δ∂∂++≈Δ++Δ+3333)()(332233233y x y y x x y x +Δ+Δ++=, 所以取x =1, y =2, Δx =0.02, Δy =−0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+−⋅⋅+⋅++≈+.*6. 计算(1.97)1.05的近似值(ln2=0.693).解 设z =x y , 由于y yz x x z x x x y y y Δ∂∂+Δ∂∂+≈Δ+Δ+)(y x x x yx x y y y Δ+Δ+=−ln 1, 所以取x =2, y =1, Δx =−0.03, Δy =0.05可得(1.97)1.05≈2−0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cn 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z Δ+Δ+=Δ+Δ=≈Δ, 当x =6, y =8, Δx =0.05, Δy =−0.1时,05.0)1.0805.0686122−=⋅−⋅+≈Δz . 这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h ,ΔV ≈dV =2πRh ΔR +πR 2Δh ,当R =4, h =20, ΔR =Δh =0.1时,ΔV ≈2×3.14×4×20×0.1+3.14×42×0.1≈55.3(cm 3)这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差.解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z Δ⋅∂∂+Δ⋅∂∂≤≈Δ|)|||(122y y x x yx Δ+Δ+=. 令x =7, y =24, |Δx |≤0.1, |Δy |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm . *10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60°±1°, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=. zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈Δ. 令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则 55.2718021278631.0232631.023278=×××+××+××≈πδs , 82.21273sin 786321=⋅⋅⋅=πS , %29.182.212755.27==S s δ, 所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55 m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和. 证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u Δ+Δ≤Δ+Δ=Δ∂∂+Δ∂∂=≈Δ. 所以两数之和的绝对误差|Δu |等于它们各自的绝对误差|Δx |与|Δy |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和.证明 设u =xy , yx v =, 则Δu ≈du =ydx +xdy , 2y xdy ydx dv v −=≈Δ, 由此可得相对误差;ydy x dx xy xdy ydx u du u u +=+=≈Δy y x x y dy x dx Δ+Δ=+≤; y dy x dx yx y xdy ydx v dv v v −=⋅−==Δ2y y x x y dy x dx Δ+Δ=+≤.习题8−41. 设z =u 2−v 2, 而u =x +y , v =x −y , 求x z ∂∂, yz ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x , yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(−1)=2(u −v )=4y . 2. 设z =u 2ln v , 而yx u =, v =3x −2y , 求x z ∂∂, y z ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2yy x x y x y x −+−=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ )2()(ln 222−+−⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x −−−−=. 3. 设z =e x −2y , 而x =sin t , y =t 3, 求dtdz . 解 dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅−⋅+=−− .)6(cos )6(cos 22sin 223t t e t t e t t y x −=−=−− 4. 设z =arcsin(x − y ), 而x +3t , y =4t 3, 求dtdz . 解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x −−−+⋅−−= 232)43(1)41(3t t t −−−=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz . 解 dx dy y z x z dx dz ⋅∂∂+∂∂=xx x e x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+−=a z y e u ax , 而y =a sin x , z =cos x , 求dx du . 解 dxdz dz u dx dy y u x u dx du ⋅∂+⋅∂∂+∂∂= )sin (1cos 11)(222x a e x a a e a z y ae ax ax ax −⋅+−⋅+++−= )sin cos cos sin (122x x a x a x a a e ax ++−+=x e ax sin =. 7. 设y x z arctan =, 而x =u +v , y =u −v , 验证22v u v uv z u z +−=∂∂+∂∂. 证明 )()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂ )()(111)(11222y x y x y y x −⋅++⋅+=)1()()(111)(11222−⋅−⋅++⋅++y x yx y y x 22222v u v u y x y +−=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数):(1) u =f (x 2−y 2, e xy );解 将两个中间变量按顺序编为1, 2号,2122212)()(f ye f x xe f x y x f x u xy xy ′+′=∂∂⋅′+∂−∂⋅′=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy ′+′−=∂∂⋅′+∂−∂⋅′=∂∂. (2) ,(zy y x f u =; 解 1211)()(f yz y x f y x x f x u ′=∂∂⋅′+∂∂⋅′=∂∂, )()(21z y y f y x y f y u ∂∂⋅′+∂∂′=∂∂2121f z f yx′+′−=,)()(21z y z f z x z f z u ∂∂⋅′+∂∂′=∂∂22f z y ′−=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅′+⋅′+⋅′=∂∂3211321f yz f y f ′+′+′=, 3232f xz f x xz f x f yu ′+′=⋅′+⋅′=∂∂, 33f xy xy f zu ′=⋅′=∂∂. 9. 设z =xy +xF (u ), 而xy u =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅)([])()([yu u F x x y x u u F x u F y x ∂∂′+⋅+∂∂′++= )]([)]()([u F x y u F xy u F y x ′+⋅+′−+= =xy +xF (u )+xy =z +xy .10. 设)(22y x f y z −=, 其中f (u )为可导函数, 验证211y zy z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222′−=⋅′⋅−=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()(′−+=−⋅′⋅−=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+′+′−=∂∂⋅+∂∂⋅211y z zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22xz ∂∂, y x z ∂∂∂2, 22y z ∂∂. 解 令u =x 2+y 2, 则z =f (u ),f x xu u f x z ′=∂∂′=∂∂2)(, f y y u u f y z ′=∂∂′=∂∂2)(, f x f x u f x f xz ′′+′=∂∂⋅′′+′=∂∂2224222,f xy yu f x y x z ′′=∂∂⋅′′=∂∂∂422, f y f y u f y f y z ′′+′=∂∂⋅′′+′=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).u f y vf y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0, vf u f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数.)()()(22u f x y uf y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂ 222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=, )(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yv v u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u f y uf xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(, )()()()(22v f y u f y x vf u f x y y z y y z ∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ yv v f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vf x u v f v u f x u f x2222222v f v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =; 解 令u =x , yx v =, 则z =f (u , v ). v f y u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1, vf y xdy dv v f y z ∂∂⋅−=⋅∂∂=∂∂2. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xv v f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂= 22222212v f y v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=, 1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= yv v f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅−∂∂⋅∂∂∂=22211 221v f y x v f y v u f y x ∂∂⋅−∂∂⋅−∂∂∂⋅−= ()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅−∂∂⋅−∂∂=∂∂∂∂=∂∂22423222322vf y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅−∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1′⋅y 2+f 2′⋅2xy =y 2f 1′+2xyf 2′,z y =f 1′⋅2xy +f 2′⋅x 2=2xyf 1′+x 2f 2′;z xx =y 2[f 11′′⋅y 2+f 12′′⋅2xy ]+2yf 2′′+2xy [f 21′′⋅y 2+f 22′′⋅2xy ] =y 4f 11′′+2xy 3f 12′′+2yf 2′′+2xy 3f 21′′+4x 2y 2 f 22′′=y 4f 11′′+4xy 3f 12′′+2yf 2′′+4x 2y 2 f 22′′,z xy =2y f 1′+y 2[f 11′′⋅2xy +f 12′′⋅x 2]+2xf 2′+2xy [f 21′′⋅2xy +f 22′′⋅x 2] =2y f 1′+2xy 3f 11′′+x 2y 2 f 12′′+2xf 2′+4x 2y 2f 21′′+2x 3yf 22′′ =2y f 1′+2xy 3f 11′′+5x 2y 2 f 12′′+2xf 2′+2x 3yf 22′′,z yy =2xf 1′+2xy [f 11′′⋅2xy +f 12′′⋅x 2]+x 2[f 21′′⋅2xy +f 22′′⋅x 2] =2xf 1′+4x 2y 2f 11′′+2x 3y f 12′′+2x 3yf 21′′+x 4f 22′′=2xf 1′+4x 2y 2f 11′′+4x 3y f 12′′+x 4f 22′′.(4) z =f (sin x , cos y , e x +y ).解 z x =f 1′⋅cos x + f 3′⋅e x +y =cos x f 1′+e x +y f 3′,z y =f 2′⋅(−sin y )+ f 3′⋅e x +y =−sin y f 2′+e x +y f 3′,z xx =−sin x f 1′+cos x ⋅(f 11′′⋅cos x + f 13′′⋅e x +y )+e x +y f 3′+e x +y (f 31′′⋅cos x + f 33′′⋅e x +y ) =−sin x f 1′+cos 2x f 11′′+e x +y cos x f 13′′+e x +y f 3′+e x +y cos x f 31′′+e 2(x +y ) f 33′′ =−sin x f 1′+cos 2x f 11′′+2e x +y cos x f 13′′+e x +y f 3′+e 2(x +y ) f 33′′, z xy =cos x [f 12′′⋅(−sin y )+ f 13′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−sin y cos x f 12′′+e x +y cos x f 13′+e x +y f 3′−e x +y sin y f 32′+e 2(x +y )f 33′ =−sin y cos x f 12′′+e x +y cos x f 13′′+e x +y f 3′−e x +y sin y f 32′′+e 2(x +y )f 33′′, z yy =−cos y f 2′−sin y [f 22′′⋅(−sin y )+ f 23′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−cos y f 2′+sin 2y f 22′′−e x +y sin y f 23′′+e x +y f 3′−e x +y sin y f 32′′+ f 33′′⋅e 2(x +y ) =−cos y f 2′+sin 2y f 22′′−2e x +y sin y f 23′′+e x +y f 3′+f 33′′⋅e 2(x +y ).13. 设u =f (x , y )的所有二阶偏导数连续, 而3t s x −=, 3t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321y u x u t yy u t x x u t u ∂∂⋅+∂∂⋅−=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂−+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(2yu x u s s u s s u ∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ (23)(212222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= 2321(23)2321(212222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(2yu x u t t u t t u∂∂⋅+∂∂⋅−∂∂=∂∂∂∂=∂∂ )(21)(232222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂−= )2123(21)2123(232222y u x y u y x u x u ∂∂⋅+∂∂∂⋅−+∂∂∂⋅+∂∂⋅−−=22222412343y uy x u x u ∂∂⋅+∂∂∂⋅−∂∂⋅=,所以 22222222y u x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8−51. 设sin y +e x −xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x −xy 2, 则F x =e x −y 2, F y =cos y −2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222−−=−−−=−=.2. 设x y y x arctan ln 22=+, 求dxdy. 解 令xyy x y x F arctan ln ),(22−+=, 则22222222)()(11221y x y x xy x y y x x y x F x ++=−⋅+−+⋅+=,22222221)(11221yx x y x xy y x y y x F y +−=⋅+−+⋅+=,yx y x F F dx dyy x −+=−=. 3. 设022=−++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(−++=, 则 xyz yz F x −=1, xyzxz F y −=2, xyz xyF z −=1,xy xyz xyz yz F F x z z x −−=−=∂∂, xy xyz xyz xz F F y zz y −−=−=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及yz ∂∂, 解 令yz z x z y x F ln ),,(−=, 则z F x 1=, y yzyz F y 1)(12=−⋅−=, 2211z z x y y z z x F z +−=⋅−−=,所以 z x z F F x z z x +=−=∂∂, )(2z x y z F F y z z y +=−=∂∂.5. 设2sin(x +2y −3z )=x +2y −3z , 证明1=∂∂+∂∂yz x z证明 设F (x , y , z )=2sin(x +2y −3z )−x −2y +3z , 则 F x =2cos(x +2y −3z )−1,F y =2cos(x +2y −3z )⋅2−2=2F x , F z =2cos(x +2y −3z )⋅(−3)+3=−3F x ,313=−−=−=∂∂x x z x F F F F x z , 3232=−−=−=∂∂x x z y F F F F y z ,于是 13231=+=−−=∂∂+∂∂z z z x F FF F yz x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1−=∂∂⋅∂∂⋅∂∂xz z yy x .解 因为x y F F y x −=∂∂, y z F F zy −=∂∂, z x F F x z−=∂∂,所以 1()()(−=−⋅−⋅−=∂∂⋅∂∂⋅∂∂z x y z x y F F F F F F xz z yy x .7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx −az , cy −bz )=0 所确定的函数z =f (x , y )满足c yz b x z a =∂∂+∂∂.证明 因为v u uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,所以 c b a c b b a c a y z b x z a v u vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z−xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z −xyz , 则F x =−yz , F z =e z −xy , xye yzF F x z z x −=−=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z −−∂∂−−∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y z z z −−−−+=32232)(22xy e e z y z xy ze y z zz −−−=. 9. 设z 3−3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3−3xyz −a 3, 则xy z yz xy z yz F F x z z x −=−−−=−=∂∂22333, xyz xz xy z xz F F y z z y −=−−−=−=∂∂22333, )()(22xyz yzy x z y y x z −∂∂=∂∂∂∂=∂∂∂222)()2())((xy z x y z z yz xy z yz y z −−∂∂−−∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz y z −−−−−⋅−+=322224)()2(xy z y x xyz z z −−−=.10. 求由下列方程组所确定的函数的导数或偏导数:(1)设, 求⎩⎨⎧=+++=203222222z y x y x z dx dy , dx dz; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧−=+−=−xdx dz z dxdy y xdx dz dx dy y 3222.解方程组得)13(2)16(++−=∂∂z y z x x y , 13+=z x dx dz.(2)设, 求⎩⎨⎧=++=++10222z y x z y x dz dx ,dz dy ;解 视x =x (z ), y =y (z ), 方程两边对z 求导得⎪⎩⎪⎨⎧=++=++022201z dz dy y dzdx x dz dy dz dx , 即⎪⎩⎪⎨⎧−=+−=+zdz dy y dz dx x dz dy dz dx 2221.解方程组得y x z y z x −−=∂∂, yx xz z y −−=∂∂. (3)设, 其中f , g 具有一阶连续偏导数, 求⎩⎨⎧−=+=),(),(2y v x u g v y v ux f u x u ∂∂,x v ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅′+−∂∂⋅′=∂∂∂∂⋅′+∂∂+⋅′=∂∂x v yv g x u g x v x v f x u x u f x u 21212)1()( , 即⎪⎩⎪⎨⎧′=∂∂⋅⋅−′+∂∂′′′−=∂∂⋅′+∂∂−′121121)12()1(g x v g yv x u g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ′′−−′−′′′−−′′−=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ′′−−′−′−′+′′=∂∂.(4)设, 求⎩⎨⎧−=+=v u e y v u e x u u cos sin x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得, 即, ⎩⎨⎧+−=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin ⎩⎨⎧=+−=++dy vdv u du v e dxvdv u du v e u u sin )cos (cos )sin (从中解出du , dv 得dy v v e v dxv v e v du u u 1)cos (sin cos 1)cos (sin sin +−−++−=, v v e u e v dx v v e u e v dv u uu u ]1)cos (sin [sin ]1)cos (sin [cos +−+++−−=,从而1)cos (sin sin +−=∂∂v v e v x u u , 1)cos (sin cos +−−=∂∂v v e vy u u ,]1)cos (sin [cos +−−=∂∂v v e u e v x v u , ]1)cos (sin [sin +−+=∂∂v v e u e v y v u.11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂−∂∂⋅∂∂=. 证明 由方程组可确定两个一元隐函数, 方⎩⎨⎧==0),,(),(t y x F t x f y ⎩⎨⎧==)()(x t t x y y 程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dxdt t f x f dx dy ,移项得⎪⎩⎪⎨⎧∂∂−=∂∂+⋅∂∂∂∂=⋅∂∂−x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂−=y F t f t F tF y F t fD 的条件下 yF t f t F x Ft f t F x f t Fx F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂−∂∂⋅∂∂=∂∂∂∂−∂∂−∂∂⋅=1.习题8−61. 求曲线x =t −sin t , y =1−cos t , 2sin 4t z =在点)22 ,1 ,12 (−π处的切线及法平面方程.解 x ′(t )=1−cos t , y ′(t )=sin t , 2cos 2)(t t z =′. 因为点)22 ,1 ,12 (−π所对应的参数为2 π=t , 故在点)22 ,1 ,12 (−π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(−π处, 切线方程为22211121−=−=−+z y x π, 法平面方程为0)22(2)1(1)12(1=−+−⋅++−⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=′, 21)(t t y −=′, z ′(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(−=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为21124121−=−−=−z y x , 即8142121−=−−=−z y x ; 法平面方程为0)1(2)2()21(41=−+−−−z y x , 即2x −8y +16z −1=0.3. 求曲线y 2=2mx , z 2=m −x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m −x 的两边 对x 求导, 得m dx dyy22=, 12−=dxdz z , 所以y m dx dy=, z dx dz 21−=.曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m −=T , 所求的切线方程为000211z z z y m y y x x −−=−=−, 法平面方程为0)(21)()(00000=−−−+−z z z y y y m x x . 4. 求曲线在点(1, 1, 1)处的切线及法平面方程.⎩⎨⎧=−+−=−++0453203222z y x x z y x 解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+−=−++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=−+−=+2533222dxdz dx dy x dx dz z dx dy y .解此方程组得z y z x dx dy 61015410−−−−=, z y y x dx dz 610946−−−+=. 因为169)1,1,1(=dx dy, 161)1,1,1(−=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111−−=−=−z y x , 即1191161−−=−=−z y x ; 法平面方程为0)1(161)1(169)1(=−−−+−z y x , 即16x +9y −z −24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4. 解 已知平面的法线向量为n =(1, 2, 1).因为x ′=1, y ′=2t , z ′=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =−1, 31−=t . 于是所求点的坐标为(−1, 1, −1)和)271 ,91 ,31(−−. 6. 求曲面e z −z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z −z +xy −3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z −1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x −2)+2(y −1)+0⋅(z −0)=0, 即x +2y −4=0,法线方程为02112−=−=−z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2−1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x −x 0)+by 0(y −y 0)+cz 0(z −z 0)=0,即 , 202020000cz by ax z cz y by x ax ++=++法线方程为00000cz z z by y y ax x x −=−=−.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x −y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2−1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, −1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =−=, 即z x 21=, z y 41−=, 代入椭球面方程得1)4(2)2(222=+−+z z z , 解得1122±=z , 则1122±=x , 11221∓=y . 所以切点坐标为)1122,11221,112(±±∓. 所求切平面方程为0)1122(2)11221()112(=±+−±z y x ∓, 即 2112±=+−z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2−16, 则点(−1, −2, 3)处的法向量为n 2=(F x , F y , F z )|(−1, −2, 3)=(6x , 2y , 2z )|(−1, −2, 3)=(−6, −4, 6).点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F −++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=−+−+−z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8−71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数 解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故)cos ,(cos 23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy ′=4, 解得yy 2=′. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y ′(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +−=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222−+=b y a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a xF F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22b a b y a x b a −=−=n , 单位内法向量为)cos ,(cos ,(2222βα=+−+−=b a a b a b n e . 又因为a a x x zb a b a 222,2(2)2,2(−=−=∂∂, bb y y z b a b a 222,2(2)2,2(−=−=∂∂, 所以 222222222cos cos b a abb a a b b a b a y z x z n z +=+⋅++⋅=∂∂+∂∂=∂∂βα. 4. 求函数u =xy 2+z 3−xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3 πγ=的方向的方向导数.解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为 1)()2,1,1(2)2,1,1(−=−=∂∂yz y x u, 0)2()2,1,1()2,1,1(=−=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=−=∂∂xy z z u , 所以 5211122021)1(cos cos cos =⋅+⋅+⋅−=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u .5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9−5, 4−1, 14−2)=(4, 3, 12), )1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz x u , 10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u, 所以 139813125133101342cos cos cos =⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导.解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1, 1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l , )143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u, 所以 1412143214221412cos cos cos )1,1,1(=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2−1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 000000111cos cos cos z y x z y x zu y u x u n u ++=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα. 8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x −2y −6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).。

同济第五版高数下册答案

同济第五版高数下册答案

高等数学同步练习第八章 多元函数微分法及其应用第一节 多元函数的基本概念1. 求定义域(1){(x,y ) 1xy e e≤≤};(2)},122),{(22N k k y x k y x ∈+≤+≤; (3){(x,y,z )22219x y z <++≤}.2.求极限(1)001)2x y →→=;(2)0 ;(3)22222002sin2lim 0()xyx y x y x y e →→+=+; (4)20sin cos lim.2x y xy xyx xy →→=.3.判断下列极限是否存在,若存在,求出极限值(1)沿直线y=kx 趋于点(0,0)时,2222222201lim 1x x k x k x k x k→--=++,不存在; (2)沿直线y =0,极限为1;沿曲线y,极限为0,不存在 ;(3)222222221100x y x y x y x y x y x y x y x y+≤≤+≤+=+→+++.极限为0 .4.因当220x y +≠时,2222220.x y x y y x y x y ≤=≤++, 所以0lim (,)0(0,0)x y f x y f →→==,故连续.1. 求下列函数的偏导数(1)2(1).2(1)xy y y xy +=+; 2x (1+xy ); (2)yz cos(xyz )+2xy ; xz cos(xyz )+2x ; (3)22()1()x y x y -+- , 22()1()x y x y --+-. 2.6π.3.11(11xy y =+-==. 4.1222222222222222222222222222221ln()ln(),212.,2()2,()()()z x y x y z x x x x y x y z x y x x y x x y x y z y x y x y -=+=-+∂=-=-∂++∂+--=-=∂++∂-=∂+5.22002202010sin,lim (,)0(0,0),1sin00lim 10sin 00(0,0)lim 0x y x y x x x yf x y f x f x x xf y y y→→∆→∆→≤≤+==∆-∂∆+=∂∆-∂+∆==∂∆g 因为所以连续.(0,0),不存在,.1. 求下列函数的全微分 解:(1)21z z dz dx dy x y x ∂∂=+∂∂-=+=.(2)1ln ln yz yz yz u u u du dx dy dz x y zyzx dx zx xdy yx xdz -∂∂∂=++∂∂∂=++.2.解:33222222220033332222(0,0)0033322322200,(,)(0,0)lim (,)0(0,0),000000(0,0)lim 1,lim 11x y x y x y x y x y x y x y x y x y x y x y f x y f y x yx f f x y x y x x y x y y x y z x y →→∆→∆→+≤=+≤+→→+++==+∆∆+--+∆∆+====∆∆∆+∆∆+∆∆+∆∆+∆-∆∆∆==∆+∆.所以连续.两个偏导数都存在,为222222211(0,0)0,.x y x y x yx y x y x y y x ρρ→→-∆∆∆∆+∆∆=∆+∆-∆+∆∆+∆=→==≠g g 当沿时,故不可微第四节 1.解:322235221''(1)22323(21)(5456)1(2)1(3)()ln()v vdzuv w u v w x u v x x x xdxdzdx xdz z du z duvu f x u u g xdx u dx v dx-=⋅+⋅+⋅=++-===+∂∂=⋅+⋅=⋅+⋅∂∂...2.解:(1)222221121(arctan ln21()uxy xy vz z x z y u uvye xe e u vuu x u y u u v u v vv∂∂∂∂∂=+=⋅⋅+⋅=+∂∂∂∂∂+++.221(arctanuvz z x z y ue u vv x v y v u v v∂∂∂∂∂=+=-∂∂∂∂∂+.(2)'''()(1)()()()uf x xy xyz y yzxuf x xy xyz x xzyuf x xy xyz xyz∂=++++∂∂=+++∂∂=++⋅∂3. 解:''''1212.z z zf a f b f ft x yz z za bt x y∂∂∂=⋅+⋅==∂∂∂∂∂∂=+∂∂∂,,,所以,4. 解:'222'222''2222''22''22()22(()2())2()24()zf x y xxzf x y x f x yxzx f x y y xyf x yx y∂=+⋅∂∂=+++∂∂=⋅+⋅=+∂∂第五节1.解:令(,,)sin()01cos()1cos()1cos()1cos()x z y z F x y z x y z xyz F z yz xyz x F xy xyz F z xz xyz y F xy xyz =++-=∂-=-=-∂-∂-=-=-∂- 2. .解:令22222222(0,0,1)2(,,)10()|1x z F x y z x y z F z x x F z z xz x z x zx z x z zzx=++-=∂=-=-∂∂-⋅--∂∂=-=-∂∂=-∂ 3.证明:''11''''1212'1''12()().x z c c zx a b a b c z y a b z zab C x yφφφφφφφφφφφ⋅⋅∂=-=-=∂-+-+⋅∂=∂+∂∂+=∂∂所以6.(1)解:方程两边对y 求导,得:222460222642146212622242(62)(62)2(61)(61)22(61)61dz dxx ydy dy dx dz x y z dydy dx dz x y dy dy dx dz x z y dy dyy y z x x zx yx ydx y z y z dyx z x z dz y dy x z z =+++=-=-+=-------⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩-++===-++-==++(3)''12''12()(1)2u u v f u x f x x x v u vg g vy x xx ∂∂∂=⋅++⋅∂∂∂∂∂∂=⋅-+⋅⋅∂∂∂⎧⎨⎩'''121'''121''12'''''''1212121''''''''21212112''12''11''11'''''212121(1)(21)212221121122u v xf f uf x x u v g vyg g x xuf f g vyg uvyf g uf f g u x vyg vxyf g xf f g xf f g vyg xf uf g g uy vyg vxyf g xf f g ∂∂-⋅-=∂∂∂∂+-=∂∂---+∂==∂-++-----∂=∂-++'''''11111'''''''2121211221g xf g uf g vyg vxyf g xf f g --=--++-7.证明:x t dy f dx f dt =+ →x tdy dtf f dx dx=+ ① 0x y t dF F dx F dy F dt =++= → x y tF dx F dydt F +=-→y x t t F F dtdy dx F F dx=--⋅ ② ②代入①,得:()(1)y x x t t t t y t x x t tt t y x t t xt t x t t x t t yF F dydy f f dx F F dx f F f Fdy f F dx F F f F f F f F dy F dx F f F f F dy dx F f F =+--⋅+=-+-⋅=-∴=+第六节 多元函数微分学的几何应用1.解:切向量),cos ,sin (=b t a t a T 。

高等数学同济第五版第5章答案.

高等数学同济第五版第5章答案.

习题5-11. 利用定积分定义计算由抛物线y=x2+1, 两直线x=a、x=b(b>a及横轴所围成的图形的面积.解第一步: 在区间[a, b]内插入n-1个分点(i=1, 2, , n-1, 把区间[a, b]分成n个长度相等的小区间, 各个小区间的长度为: (i=1, 2, , n.第二步: 在第i个小区间[x i-1, x i] (i=1, 2, , n上取右端点, 作和.第三步: 令⎣=max{x1, x2, , x n}, 取极限得所求面积.2. 利用定积分定义计算下列积分:(1(a<b;(2.解 (1取分点为(i=1, 2, , n-1, 则(i=1, 2, , n. 在第i个小区间上取右端点 (i=1, 2, , n. 于是.(2取分点为(i=1, 2, , n-1, 则(i=1, 2, , n. 在第i个小区间上取右端点(i=1, 2, , n. 于是.3. 利用定积分的几何意义说明下列等式:(1;(2;(3;(4.解 (1表示由直线y=2x、x轴及直线x=1所围成的面积, 显然面积为1.(2表示由曲线、x轴及y轴所围成的四分之一圆的面积, 即圆x2y2=1的面积的:.(3由于y=sin x为奇函数, 在关于原点的对称区间[- , ]上与x轴所夹的面积的代数和为零, 即.(4 表示由曲线y=cos x与x轴上一段所围成的图形的面积. 因为cos x为偶函数, 所以此图形关于y轴对称. 因此图形面积的一半为, 即.4. 水利工程中要计算拦水闸门所受的水压力, 已知闸门上水的压强p(单位面积上的压力大小是水深h的函数, 且有p=98h (kN/m2. 若闸门高H=3m, 宽L=2m, 求水面与闸门顶相齐时闸门所受的水压力P.解建立坐标系如图. 用分点(i=1, 2, , n-1将区间[0, H]分为n分个小区间, 各小区间的长为(i=1, 2, , n.在第i个小区间[xi-1, xi]上, 闸门相应部分所受的水压力近似为Pi=9.8x i lx i .闸门所受的水压力为.将L=2, H=3代入上式得P=88.2(千牛.5. 证明定积分性质:(1;(2.证明 (1.(2.6. 估计下列各积分的值:(1;(2;(3;(4.解 (1因为当1x4时, 2x2117, 所以,即.(2因为当时, 11sin2x2, 所以,即.(3先求函数f(x x arctan x在区间上的最大值M与最小值m.. 因为当时, f (x0, 所以函数f(x=x arctan x在区间上单调增加. 于是, .因此,即.(4先求函数在区间[0, 2]上的最大值M与最小值m., 驻点为.比较f(0=1, f(2=e 2, ,得, M=e 2. 于是,即.7. 设f(x及g(x在[a, b]上连续, 证明:(1若在[a, b]上, f(x0, 且, 则在[a, b]上f(x0;(2若在[a, b]上, f(x0, 且f(x≢0, 则;(3若在[a, b]上, f(xg(x, 且, 则在[a b]上f(xg(x.证明 (1假如f(x≢0, 则必有f(x0. 根据f(x在[a, b]上的连续性, 在[a, b]上存在一点x0, 使f(x00, 且f(x0为f(x在[a, b]上的最大值.再由连续性, 存在[c, d][a, b], 且x0[c, d], 使当x[c, d]时, . 于是.这与条件相矛盾. 因此在[a, b]上f(x0.(2证法一因为f(x在[a, b]上连续, 所以在[a, b]上存在一点x0, 使f(x00, 且f(x0为f(x在[a, b]上的最大值.再由连续性, 存在[c, d][a, b], 且x0[c, d], 使当x[c, d]时, . 于是.证法二因为f(x0, 所以. 假如不成立. 则只有,根据结论(1, f(x0, 矛盾. 因此.(3令F(x=g(x-f(x, 则在[a, b]上F(x0且,由结论(1, 在[a, b]上F(x0, 即f(xg(x.4. 根据定积分的性质及第7题的结论, 说明下列积分哪一个的值较大:(1还是?(2还是?(3还是?(4还是?(5还是?解 (1因为当0x1时, x2x3, 所以.又当0x1时, x2x3, 所以.(2因为当1x2时, x2x3, 所以.又因为当1x2时, x2x3, 所以.(3因为当1x2时, 0ln x1, ln x(ln x2, 所以.又因为当1x2时, 0ln x1, ln x(ln x2, 所以.(4因为当0x1时, x ln(1x, 所以.又因为当0x1时, x ln(1x, 所以.(5设f(x=e x-1-x, 则当0x1时f (x =e x-10, f(x=e x-1-x是单调增加的. 因此当0x1时,f(xf(0=0, 即e x1x, 所以.又因为当0x1时, e x1x, 所以.习题5-21. 试求函数当x=0及时的导数.解, 当x=0时, y=sin0=0; 当时, .2. 求由参数表示式, 所给定的函数y对x的导数.解x(t sin t , y(t cos t , .3. 求由所决定的隐函数y对x的导数.解方程两对x求导得e y y cos x 0,于是.4. 当x为何值时, 函数有极值?解, 令I (x=0, 得x=0. 因为当x0时, I (x0; 当x0时, I (x0, 所以x=0是函数I(x的极小值点.5. 计算下列各导数:(1;(2;(3.解 (1.(2.(3=-cos( sin 2x(sin x cos( cos 2x( cos x=-cos x cos( sin 2x-sin x cos( cos 2x=-cos x cos( sin2x- sin x cos( - sin2x=-cos x cos( sin2x sin x cos( sin2x=(sin x-cos x cos( sin2x.6. 计算下列各定积分:(1;解.(2;解.(3;解. (4;解.(5;解.(6;解.(7;解.(8;解. (9;解.(10;解.(11;解 cos x|cos x|cos cos0cos2cos4. (12, 其中.解.7. 设k为正整数. 试证下列各题:(1;(2;(3;(4.证明 (1.(2.(3.(4.8. 设k及l为正整数, 且kl . 试证下列各题:(1;(2;(3.证明 (1.(2.(3..9. 求下列极限:(1;(2.解 (1.(2.10. 设. 求在[0, 2]上的表达式, 并讨论∏(x在(0, 2内的连续性.解当0x1时, ;当1x2时, .因此.因为, , ,所以∏(x在x=1处连续, 从而在(0, 2内连续.11. 设. 求在(-, 内的表达式.解当x0时, ;当0x 时, ;当x 时, .因此.12. 设f(x在[a, b]上连续, 在(a, b内可导且f (x0,.证明在(a, b内有F (x0.证明根据积分中值定理, 存在⎩[a, x], 使. 于是有.由f (x0可知f(x在[a, b]上是单调减少的, 而a⎩x, 所以f(x-f(⎩0. 又在(a, b内, x-a0, 所以在(a, b内.习题5-31. 计算下列定积分:(1;解.(2;解.(3;解. (4;解.(5;解.(6;解.(7;解.(8;解. (9;解.(10;解.(11;解.(12 ;解. (13;解. (14;解. (15;解.(16;解.(17;解. (18;解.(19;解(20.解.2. 利用函数的奇偶性计算下列积分:(1;解因为x 4sin x在区间[- , ]上是奇函数, 所以. (2;解.(3;解.(4.解因为函数是奇函数, 所以.3. 证明: , 其中∏(u为连续函数.证明因为被积函数∏(x2是x的偶函数, 且积分区间[-a, a]关于原点对称, 所以有.4. 设f(x在[-b, b]上连续, 证明.证明令x=-t, 则dx=-dt, 当x=-b时t=b, 当x=b时t=-b, 于是,而,所以.5. 设f(x在[a, b]上连续., 证明.证明令x=ab-t, 则dx=d t, 当x=a时t=b, 当x=b时t=a, 于是,而,所以.6. 证明: .证明令, 则, 当x=x时, 当x=1时t=1, 于是,而,所以.7. 证明: .证明令1xt , 则, 即.8. 证明: .证明,而,所以.9. 设f(x是以l为周期的连续函数, 证明的值与a无关.证明已知f(xl f(x.,而,所以.因此的值与a无关.10. 若f(t是连续函数且为奇函数, 证明是偶函数; 若f(t是连续函数且为偶函数, 证明是奇函数.证明设.若f(t是连续函数且为奇函数, 则f(-t=-f(t, 从而,即是偶函数.若f(t是连续函数且为偶函数, 则f(-t=f(t, 从而,即是奇函数.11. 计算下列定积分:(1;解.(2;解.(3(⎤为常数;解.(4;解.(5;解. (6;解.(7;解所以,于是(8;解.(9;解. (10;解法一.因为,所以.因此.解法二,故.(11;解.(12(m为自然数;解.根据递推公式,.(13(m为自然数.解因为,所以(用第8题结果. 根据递推公式,.习题5 71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1;解因为,所以反常积分收敛, 且.(2;解因为, 所以反常积分发散. (3(a>0;解因为,所以反常积分收敛, 且.(4(p>1;解因为, 所以反常积分收敛, 且.(5(p0, ω0;解,所以.(6;解.(7;解这是无界函数的反常积分, x=1是被积函数的瑕点..(8;解这是无界函数的反常积分, x=1是被积函数的瑕点. 因为,而,所以反常积分发散.(9;解这是无界函数的反常积分, x=1是被积函数的瑕点..(10.解这是无界函数的反常积分, x=e是被积函数的瑕点..2. 当k为何值时, 反常积分收敛? 当k为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解当k1时, ;当k=1时, ;当k1时, .因此当k1时, 反常积分收敛; 当k 1时, 反常积分发散.当k1时, 令, 则.令f (k=0得唯一驻点.因为当时f (k0, 当时f (k0, 所以为极小值点, 同时也是最小值点, 即当时, 这反常积分取得最小值3. 利用递推公式计算反常积分.解因为,所以I n= n(n-1(n-2 2I1.又因为,所以I n= n(n-1(n-2 2I1=n!.总习题五1. 填空:(1函数f(x在[a, b]上(常义有界是f(x在[a, b]上可积的______条件, 而f(x在[a, b]上连续是f(x在[a, b]上可积______的条件;解函数f(x在[a, b]上(常义有界是f(x在[a, b]上可积的___必要___条件, 而f(x在[a, b]上连续是f(x在[a, b]上可积___充分___的条件;(2对[a, +上非负、连续的函数f(x, 它的变上限积分在[a, +上有界是反常积分收敛的______条件;解对[a, +上非负、连续的函数f(x, 它的变上限积分在[a, +上有界是反常积分收敛的___充分___条件;(3绝对收敛的反常积分一定______;解绝对收敛的反常积分一定___收敛___;(4函数f(x在[a, b]上有定义且|f(x|在[a, b]上可积, 此时积分______存在.解函数f(x在[a, b]上有定义且|f(x|在[a, b]上可积, 此时积分___不一定___存在.2. 计算下列极限:(1;解.(2(p>0;解.(3;解.(4, 其中f(x连续;解法一(用的是积分中值定理.解法二(用的是洛必达法则.(5.解.3. 下列计算是否正确, 试说明理由:(1;解计算不正确, 因为在[-1, 1]上不连续.(2因为, 所以.解计算不正确, 因为在[-1, 1]上不连续.(3.解不正确, 因为.4. 设p>0, 证明.证明. 因为,而, ,所以.5. 设f (x、g (x在区间[a, b]上均连续, 证明:(1;证明因为[f(x-⎣g(x]20, 所以⎣2g 2(x-2⎣f(xg(xf 2(x0, 从而.上式的左端可视为关于⎣的二次三项式, 因为此二次三项式大于等于0, 所以其判别式小于等于0, 即,亦即.(2,证明,又,所以.6. 设f (x在区间[a, b]上连续, 且f (x>0. 证明.证明已知有不等式, 在此不等式中, 取,, 则有,即.7. 计算下列积分:(1;解.(2;解.令则,所以.(3;解令x a sin t, 则.又令, 则,所以.(4;解.(5.解.8. 设f(x为连续函数, 证明.证明.9. 设f(x在区间[a, b]上连续, 且f(x>0, , x[a, b]. 证明:(1F (x2;(2方程F(x=0在区间(a, b内有且仅有一个根.证明 (1.(2因为f(x0, ab, 所以, ,由介值定理知F(x=0在(a, b内有根. 又F(x2, 所以在(a, b内仅有一个根.10. 设 , 求.解.11. 设f(x在区间[a, b]上连续, g(x在区间[a, b]上连续且不变号. 证明至少存在一点x[a, b], 使下式成立(积分第值定理 .证明若g(x=0, 则结论题然成立.若g(x0, 因为g(x不变号, 不妨设g(x>0.因f(x在[a, b]上连续, 所以f(x在[a, b]上有最大值M和最小值m即mf(xM,因此有m g(xf(xg(xM g(x.根据定积分的性质, 有,或.因为f(x在[a, b]上连续, 根据介值定理, 至少存在一点x(a, b, 使,即.*12.(1证明:证明=(2证明。

同济第五版高数习题答案

同济第五版高数习题答案

习题7-11. 设u =a −b +2c , v =−a +3b −c . 试用a 、b 、c 表示2u −3v .解 2u −3v =2(a −b +2c )−3(−a +3b −c )=2a −2b +4c +3a −9b +3c =5a −11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形.证明 ; ,而, ,所以.这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把ΔABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以、表示向量、、A3、A 4.解 ,,,.4. 已知两点M 1(0, 1, 2)和M 2(1, −1, 0). 试用坐标表示式表示向量及.解 , .5. 求平行于向量a =(6, 7, −6)的单位向量.解,平行于向量a =(6, 7, −6)的单位向量为 或 . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限? A (1, −2, 3); B (2, 3, −4); C (2, −3, −4); D (−2, −3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, −1, 0).解 在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a , b , c ); 点(a , b , c )关于zOx 面的对称点为(a , −b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , −b , −c ); 点(a , b , c )关于y 轴的对称点为(−a , b , −c ); 点(a , b , c )关于z 轴的对称点为(−a , −b , c ).(3)点(a , b , c )关于坐标原点的对称点为(−a , −b , −c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0).在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上,点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标. 解 因为底面的对角线的长为 , 所以立方体各顶点的坐标分别为,,,,, , , . 12. 求点M (4, −3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, −3, 5)与点(4, 0, 0)之间的距离, 即.点M 到y 轴的距离就是点(4, −3, 5)与点(0, −3, 0)之间的距离, 即.点M 到z 轴的距离就是点(4, −3, 5)与点(0, 0, 5)之间的距离, 即.13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, −2, −2)和C (0, 5, 1)等距离的点. 解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则,,.由题意,有,即解之得y=1, z=−2, 故所求点为(0, 1, −2).14. 试证明以三点A(4, 1, 9)、B(10, −1, 6)、C(2, 4, 3)为顶点的三角形是等腰三角直角三角形.解因为,,,所以, .因此ΔABC是等腰直角三角形.15. 设已知两点和M(3, 0, 2). 计算向量的模、方向余弦和方向角.2解;;, , ;, , .16. 设向量的方向余弦分别满足(1)cosα=0; (2)cosβ=1; (3)cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?解(1)当cosα=0时,向量垂直于x轴,或者说是平行于yOz面.(2)当cosβ=1时,向量的方向与y轴的正向一致,垂直于zOx面.(3)当cosα=cosβ=0时,向量垂直于x轴和y轴,平行于z轴,垂直于xOy面.17. 设向量r的模是4, 它与轴u的夹角是60°, 求r在轴u上的投影.解.18. 一向量的终点在点B(2, −1, 7), 它在x轴、y轴和z轴上的投影依次为4, −4, 7. 求这向量的起点A的坐标.解设点A的坐标为(x, y, z). 由已知得,解得x =−2, y =3, z =0. 点A 的坐标为A (−2, 3, 0).19. 设m =3i +5j +8k , n =2i −4j −7k 和p =5i +j −4k . 求向量a =4m +3n −p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n −p =4(3i +5j +8k )+3(2i −4j −7k )−(5i +j −4k )=13i +7j +15k , 所以a =4m +3n −p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题7−21. 设a =3i −j −2k , b =i +2j −k , 求(1)a ⋅b 及a ×b ; (2)(−2a )⋅3b 及a ×2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3×1+(−1)×2+(−2)×(−1)=3,. (2)(−2a )⋅3b =−6a ⋅b = −6×3=−18, a ×2b =2(a ×b )=2(5i +j +7k )=10i +2j +14k .(3) .2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a . 解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是.3. 已知M 1(1, −1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与、同时垂直的单位向量.解 , .,,为所求向量.4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, −100×9. 8)=(0, 0, −980), .W =F ⋅S =(0, 0, −980)⋅(−2, 3, −6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ1的力F 1作用着;在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为 x 1|F 1|⋅sin θ1−x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影.解 . 7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ), λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0, 即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直. 8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则, .因为,所以, ∠C =90°.9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c ); (3)(a ×b )⋅c . 解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k . (2)a +b =3i −4j +4k , b +c =2i −3j +3k ,.(3) , (a ×b )⋅c =−8×1+(−5)×(−2)+1×0=2.10. 已知, , 求ΔOAB 的面积.解 根据向量积的几何意义, 表示以和为邻边的平行四边形的面积, 于是ΔOAB 的面积为因为, ,所以三角形ΔOAB 的面积为. 12. 试用向量证明不等式:,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有,于是,其中当=1时, 即a 与b 平行是等号成立.习题7−31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程. 解 设动点为M (x , y , z ), 依题意有(x −2)2+(y −3)2+(z −1)2=(x −4)2+(y −5)2+(z −6)2, 即 4x +4y +10z −63=0.2. 建立以点(1, 3, −2)为球心, 且通过坐标原点的球面方程. 解 球的半径 ,球面方程为(x −1)2+(y −3)2+(z +2)2=14, 即 x 2+y 2+z 2−2x −6y +4z =0.3. 方程x 2+y 2+z 2−2x +4y +2z =0表示什么曲面? 解 由已知方程得(x 2−2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即,所以此方程表示以(1, −2, −1)为球心, 以 为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有,化简整理得,它表示以为球心, 以为半径的球面.5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2−9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为 4x 2−9y 2−9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为 4x 2+4z 2−9y 2=36.8. 画出下列方程所表示的曲面: (1) ;(2) ;(3) ;(4)y 2−z =0;(1)x =2; 解在平面解张平行于yOz 面的平面. (2)y =x +1; 解 在平面解间解析几何中,y =x +1表示一张平行于z 轴的平面. (3)x 2+y 2=4; 解 在平面解析x 2+y 2=4表示母线平行于z 轴, 准线为x 2+y 2=4的圆柱面. (4)x 2−y 2=1. 解 在平面解析于z 轴的双曲面. 10. 说明下列 (1)1222=++zyx ;19422=+zx 绕x 轴旋转一周而形122=+−zy ;解线142=+−zy 绕y 轴旋转一周而形 z 1 面上的双曲线x 2−y 2=1x 2−z 2=1绕x 轴旋转一周(4)(z −a )2=x 2+y 2. 解 这是zOx 面上的曲线(z − (z −a )2=y 2绕z 轴旋转一周 11. 画出下列方程所表示的曲面: (1)4x 2+y 2−z 2=4;习题7−41. 画出下列曲线在第一卦限内的图形:(1)⎧+=15xy ; ⎩⎧22yx22x2x解 由x +z =1得z =1−x 代入x 2+y 2+z 2=9得方程2x 2−2x +y 2=8, 这是母线平球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎧=+−82222yxx .5. 将下解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即 .令 , 则z =3sin t . 故所求参数方程为,, z =3sin t .(2).解 将z =0代入(x −1)2+y 2+(z +1)2=4得(x −1)2+y 2=3. 令 , 则于是所求参数方程为,, z =0.6. 求螺旋线在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为.由第三个方程得代入第一个方程得, 即 ,于是螺旋线在zOx 面上的投影曲线的直角坐标方程为.由第三个方程得代入第二个方程得即 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为.7. 求上半球 与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax .为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax −x 2, 代入半球面方程 , 得(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4.令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题7−51. 求过点(3, 0, −1)且与平面3x −7y +5z −12=0平行的平面方程. 解 所求平面的法线向量为n =(3, −7, 5), 所求平面的方程为 3(x −3)−7(y −0)+5(z +1)=0, 即3x −7y +5z −4=0.2. 求过点M 0(2, 9, −6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程.解 所求平面的法线向量为n =(2, 9, −6), 所求平面的方程为 2(x −2)+9(y −9)−6(z −6)=0, 即2x +9y −6z −121=0.3. 求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解 n 1=(1, −1, 2)−(1, 1, −1)=(0, −2, 3), n 1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为, 所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点 . (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2. (4);解 是通过z 轴的平面, 它在xOy 面上的投影的斜率为 . (5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x −2z =0;解 x −2z =0是通过y 轴的平面. (7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.5. 求平面2x −2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, −2, 1). 此平面与yOz 面的夹角的余弦为;此平面与zOx面的夹角的余弦为;此平面与xOy面的夹角的余弦为.6. 一平面过点(1, 0, −1)且平行于向量a=(2, 1, 1)和b=(1, −1, 0), 试求这平面方程.解所求平面的法线向量可取为,所求平面的方程为(x−1)+(y−0)−3(z+1)=0, 即x+y−3z−4=0.7. 求三平面x+3y+z=1, 2x−y−z=0, −x+2y+2z=3的交点.解解线性方程组得x=1, y=−1, z=3. 三个平面的交点的坐标为(1, −1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx面且经过点(2, −5, 3);解所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为0⋅(x−2)−5(y+5)+0⋅(z−3)=0, 即y=−5.(2)通过z轴和点(−3, 1, −2);解所求平面可设为Ax+By=0.因为点(−3, 1, −2)在此平面上,所以−3A+B=0,将B=3A代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于x轴且经过两点(4, 0, −2)和(5, 1, 7).解所求平面的法线向量可设为n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,所以向量n1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的,即b+9c=0, b=−9c ,于是n=(0, −9c, c)=−c(0, 9, −1).所求平面的方程为9(y−0)−(z+2)=0, 即9y−z−2=0.9. 求点(1, 2, 1)到平面x+2y+2z−10=0的距离.解点(1, 2, 1)到平面x+2y+2z−10=0的距离为.习题7−61. 求过点(4, −1, 3)且平行于直线 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为.2. 求过两点M 1(3, −2, 1)和M 2(−1, 0, 2)的直线方程.解 所求直线的方向向量为s =(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为.3. 用对称式方程及参数方程表示直线.解 平面x −y +z =1和2x +y +z =4的法线向量为n 1=(1, −1, 1), n 2=(2, 1, 1), 所求直线的方向向量为.在方程组中, 令y =0, 得, 解得x =3, z =−2. 于是点(3, 0, −2)为所求直线上的点.所求直线的对称式方程为; 参数方程为x =3−2t , y =t , z =−2+3t .4. 求过点(2, 0, −3)且与直线垂直的平面方程.解 所求平面的法线向量n 可取为直线的方向向量, 即. 所平面的方程为−16(x −2)+14(y −0)+11(z +3)=0, 即16x −14y −11z −65=0.5. 求直线与直线的夹角的余弦.解 直线与的方向向量分别为, .两直线之间的夹角的余弦为.6. 证明直线与直线平行.解 直线与的方向向量分别为,.因为s 2=−3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y −3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, −3)不平行, 所以两平面相交于一直线,此直线的方向向量可作为所求直线的方向向量s , 即.所求直线的方程为.8. 求过点(3, 1, −2)且通过直线 的平面方程.解 所求平面的法线向量与直线的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1,−2)和(4, −3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, −3, 0)−(3, 1, −2)=(1, −4, 2)也是垂直的. 因此所求平面的法线向量可取为. 所求平面的方程为8(x −3)−9(y −1)−22(z +2)=0, 即8x −9y −22z −59=0.9. 求直线与平面x −y −z +1=0的夹角.解直线的方向向量为,平面x−y−z+1=0的法线向量为n=(1, −1, −1).因为s⋅n=2×1+4×(−1)+(−2)×(−1)=0,所以s⊥n, 从而直线与平面x−y−z+1=0的夹角为0.10. 试确定下列各组中的直线和平面间的关系:(1)和4x−2y−2z=3;解所给直线的方向向量为s=(−2, −7, 3), 所给平面的法线向量为n=(4, −2, −2).因为s⋅n=(−2)×4+(−7)×(−2)+3×(−2)=0, 所以s⊥n, 从而所给直线与所给平面平行.又因为直线上的点(−3, −4, 0)不满足平面方程4x−2y−2z=3, 所以所给直线不在所给平面上.(2)和3x−2y+7z=8;解所给直线的方向向量为s=(3, −2, 7), 所给平面的法线向量为n=(3, −2, 7).因为s=n, 所以所给直线与所给平面是垂直的.(3)和x+y+z=3.解所给直线的方向向量为s=(3, 1, −4), 所给平面的法线向量为n=(1, 1, 1).因为s⋅n=3×1+1×1+(−4)×1=0, 所以s⊥n, 从而所给直线与所给平面平行.又因为直线上的点(2, −2, 3)满足平面方程x+y+z=3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线和平行的平面的方程.解直线的方向向量为,直线的方向向量为.所求平面的法线向量可取为, 所求平面的方程为−(x −1)+(y −2)−(z −1)=0, 即x −y +z =0.12. 求点(−1, 2, 0)在平面x +2y −z +1=0上的投影.解 平面的法线向量为n =(1, 2, −1). 过点(−1, 2, 0)并且垂直于已知平面的直线方程为.将此方程化为参数方程x =−1+t , y =2+2t , z =−t , 代入平面方程x +2y −z +1=0中, 得 (−1+t )+2(2+2t )−(−t )+1=0,解得. 再将代入直线的参数方程, 得,,. 于是点(−1, 2, 0)在平面x +2y −z +1=0上的投影为点.13. 求点P (3, −1, 2)到直线的距离.解 直线的方向向量为. 过点P 且与已知直线垂直的平面的方程为 −3(y +1)−3(z −2)=0, 即y +z −1=0. 解线性方程组,得x =1,,.点P (3, −1, 2)到直线的距离就是点P (3, −1, 2)与点 间的距离, 即.14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离.解 设点M 0到直线L 的距离为d , L 的方向向量, 根据向量积的几何意义, 以和为邻边的平行四边形的面积为,又以和为邻边的平行四边形的面积为.因此, .15. 求直线在平面4x−y+z=1上的投影直线的方程.解过直线的平面束方程为(2+3λ)x+(−4−λ)y+(1−2λ)z−9λ=0.为在平面束中找出与已知平面垂直的平面,令(4 −1, 1)⋅(2+3λ, −4−λ, 1−2λ)=0, 即4⋅(2+3λ)+(−1)⋅(−4−λ)+1⋅(1−2λ)=0.解之得 .将代入平面束方程中,得17x+31y−37z−117=0.故投影直线的方程为.16. 画出下列各曲面所围成的立体图形:(1)x=0, y=0, z=0, x=2, y=1, 3x+4y+2z−12=0;总习题七 1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ]坐标系中, 点M 的坐标为___________, 向量的坐标为___________.解 M (x −x 0, y −y 0, z −z 0), .提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变. (2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的.解 共面.(3)设a =(2, 1, 2), b =(4, −1, 10), c =b −λa , 且a ⊥c , 则λ=____________. 解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b −λa ⋅a =2×4+1×(−1)+2×10−λ(22+12+22)=27−9λ, 所以λ=3. (4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________.解 .提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ×b +b ×c +c ×a |=____________. 解36.提示: c =−(a +b ), a ×b +b ×c +c ×a =a ×b −b ×(a +b )−(a +b )×a =a ×b −b ×a −b ×a =3a ×b , |a ×b +b ×c +c ×a |=3|a ×b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, −3, 7)和点B (5, 7, −5)等距离的点. 解 设所求点为M (0, y , 0), 则有 12+(y +3)2+72=52+(y −7)2+(−5)2,即 (y +3)2=(y −7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知ΔABC 的顶点为A (3,2,−1)、B (5,−4,7)和C (−1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为 . 所求中线的长度为.4. 设ΔABC 的三边、、, 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示、、, 并证明.解 ,,.5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有,所以从而DE //BC , 且 .6. 设|a +b |=|a −b |, a =(3, −5, 8), b =(−1, 1, z ), 求z .解a +b =(2, −4, 8+z ), a −b =(4, −6, 8−z ). 因为|a +b |=|a −b |, 所以,解得z =1.7. 设, |b |=1,, 求向量a +b 与a −b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^b ) ,|a −b |2=(a −b )⋅(a −b )=|a |2+|b |2−2a ⋅b =|a |2+|b |2−2|a |⋅|b |cos(a ,^b ) .设向量a +b 与a −b 的夹角为θ, 则,.8. 设a +3b ⊥7a −5b , a −4b ⊥7a −2b , 求 . 解 因为a +3b ⊥7a −5b , a −4b ⊥7a −2b , 所以 (a +3b )⋅(7a −5b )=0, (a −4b )⋅(7a −2b )=0, 即 7|a |2+16a ⋅b −15|b |2=0, 7|a |2−30a ⋅b +8|b |2=0, 又以上两式可得,于是,.9. 设a =(2, −1, −2), b =(1, 1, z ), 问z 为何值时最小?并求出此最小值.解 .因为当 时, 为单调减函数. 求的最小值也就是求的最大值. 令 , 得z =−4.当z =−4时, , 所以.10. 设|a |=4, |b |=3, , 求以a +2b 和a −3b 为边的平行四边形的面积. 解 (a +2b )×(a −3b )=−3a ×b +2b ×a =5b ×a . 以a +2b 和a −3b 为边的平行四边形的面积为.11. 设a =(2, −3, 1), b =(1, −2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj cr =14, 求r .解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即 2x −3y +z =0, x −2y +3z =0. 又因为Prj cr =14, 所以 , 即2x +y +2z =42. 解线性方程组,得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与 平行, 故可设r =λ(7, 5, 1).又因为Prj cr =14, 所以, r ⋅c =42, 即λ(7×2+5×1+1×2)=42, λ=2, 所以r =(14, 10, 2).12. 设a =(−1, 3, 2), b =(2, −3, −4), c =(−3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c . 证明 向量a 、b 、c 共面的充要条件是(a ×b )⋅c =0. 因为, (a ×b )⋅c =(−6)×(−3)+0×12+(−3)×6=0, 所以向量a 、b 、c 共面. 设c =λa +μb , 则有(−λ+2μ, 3λ−3μ, 2λ−4μ)=(−3, 12, 6), 即有方程组,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, −1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有,或 z 2=(x −1)2+(y +1)2+(z −2)2, 化简得(x −1)2+(y +1)2=4(z −1), 这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴: (1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴. (2);解 旋转曲面的一条母线为xOy 面上的曲线, 旋转轴为y 轴.(3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线 , 旋转轴为z 轴.(4).解 旋转曲面的一条母线为xOy 面上的曲线 , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成 角的平面的方程.解 设所求平面的法线向量为n =(a , b , c )., xOy 面的法线向量为k =(0, 0, 1).按要求有,,即 ,解之得c =3a , . 于是所求的平面的方程为,即 , 或 .16. 设一平面垂直于平面z =0, 并通过从点(1, −1, 1)到直线的垂线, 求此平面方程.解 直线的方向向量为s =(0, 1, −1)×(1, 0, 0)=(0, −1, −1).设点(1, −1, 1)到直线的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(−1, y 0+1, y 0).显然有s ⋅s 1=0, 即−y 0−1−y 0=0,.从而 . 所求平面的法线向量可取为,所求平面的方程为, 即x+2y+1=017. 求过点(−1, 0, 4), 且平行于平面3x−4y+z−10=0, 又与直线相交的直线的方程.解过点(−1, 0, 4), 且平行于平面3x−4y+z−10=0的平面的方程为3(x+1)−4(y−0)+(z−4)=0, 即3x−4y+z−1=0.将直线化为参数方程x=−1+t, y=3+t, z=2t, 代入平面方程3x−4y+z−1=0, 得3(−1+t)−4(3+t)+2t−1=0,解得t=16. 于是平面3x−4y+z−1=0与直线的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s=(15, 19, 32)−(−1, 0, 4)=(16, 19, 28),所求直线的方程为.18. 已知点A(1, 0, 0)及点B(0, 2, 1), 试在z轴上求一点C, 使ΔABC的面积最小.解设所求的点为C(0, 0, z), 则, .因为,所以ΔABC的面积为.令 ,得 ,所求点为 .19. 求曲线在三个坐标面上的投影曲线的方程.解在xOy面上的投影曲线方程为, 即.在zOx面上的投影曲线方程为, 即.在yOz面上的投影曲线方程为, 即.20. 求锥面 与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为, 即,所以, 立体在xOy 面上的投影为.锥面与柱面交线在yOz 面上的投影为, 即 ,所以, 立体在yOz 面上的投影为 .锥面与柱面z 2=2x 与平面y =0的交线为和 , 所以, 立体在zOx 面上的投影为.21. 画出下列各曲面所围立体的图形:(2)抛物柱面x 2=1−z , 平面y =0, z =(3)圆锥yx +=2−x −y。

高等数学同济第五版第10章答案

高等数学同济第五版第10章答案

习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为 ⎰⎰==L L ydsy x ds y x x MM x ),(),(μμ, ⎰⎰==L L x dsy x ds y x y MM y ),(),(μμ.2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 11111),(lim),(lim),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+Ln ds y x )(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .x d x L ⎰x d x x d x L L⎰⎰+=21⎰⎰'++'+=121022)(1])[(1dx x x dx x x⎰⎰++=1102241x d x dx x x )12655(121-+=.(4)dsey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axaaxdx e dt t a t a edx e220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧; 解 dt dtdz dt dy dtdx ds 222)()()(++= dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223s i n c o s 11dt e e t e t e ds z y x t tt t⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故y z d sx y z d s x y z d s x y z d s xCDBCAB2222⎰⎰⎰⎰++=Γ 901020030222301=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=Ldt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023c o s 1)c o s 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdy dtdx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (a t d tt t t a t t t a ds y xL ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a t d t t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==Lx x d s aMM x ϕ21⎰-⋅=ϕϕθθϕa d a ac o s 21ϕϕs i n a =,所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=.(2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=,ds z y x x M x L)(1222⎰++=⎰++=π2022222)(c o s 1dt k a t k a t a M2222436k a ak ππ+=,ds z y x y My L)(1222⎰++=⎰++=π2022222)(s i n 1dt k a t k a t a M2222436k a ak ππ+-=,ds z y x z Mz L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3ka k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())(,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtdat a P dx y x P .2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lba dx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baLb adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-Ldx x x dx y x 242221556)()(. (2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L Lx y d xx y d x x y d x ⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π302232)s i n s i ns i n (a t td tdt a πππ-=+-=⎰⎰. (3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202c o s πt d t R .(4)⎰+--+Ly x dyy x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+Ly x dyy x dx y x 22)()(⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a⎰-=-=ππ202221dt a a.(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=10)]1211(3)21(2)1[(dtt t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1, 故y d z dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=111)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-Ldy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x1514)4(2142-=-=⎰dx x x4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y .(2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1);解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰ ⎰+=Ld s y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()c o s ,(c o s 22xx x++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰++=Lds xy x xQ y x P 241),(2),(.(3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2xx x --=τ,单位切向量为)1 ,2()c o s ,(c o s 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧, 把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)c o s ,c o s ,(c o s 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=Lds yx yR xQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx xxy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=1012243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(101245235=++--++=⎰⎰dy y y y dx x x x , 而 d x d y x d x d y yPx Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界. 解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x)2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰⎰⎰⎰⎰+-+-+=20200222222)8()4(dy y dx x x dy y y dx x848202=-+=⎰⎰y d y x d x ,而d x d y xy y dxdy yPx Q DD)32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(2=-=⎰dx x ,所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.2. 利用曲线积分, 求下列曲线所围成的图形的面积: (1)星形线x =a cos 3t , y =a sin 3t ; 解 ⎰⎰-⋅⋅-=-=Ldt t t a t a ydx A π2023)sin (cos 3sin⎰==ππ20224283c o s s i n 3a t d t t a.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2=144的参数方程为 x =4cos θ, y =3sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d .(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)c o s 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-Ly x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方向为逆时针方向. 解 )(222y x y P +=, )(222y x xQ +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周 l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+d x d y yPx Q Q d y P d x D l L ε, 即⎰⎰⎰+=+-=+-lL ldy Pdx Qdy Pdx QdyPdx .因此⎰⎰+-=+-l L y x x d yy d x y x x d yy d x )(2)(22222⎰--=πθεθεθε20222222c o s s i n d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值: (1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQy P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x⎰=+=2125)1(dx x .(2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且2312y xy xQy P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx yxy⎰⎰=++-=12135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yPx Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(d x d y yPx Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰d x d y D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2c o s s i n 2()2c o s s i n 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yPx Q , 由格林公式⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰d x d y yPx Q D. (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧;解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)c o s 26()6c o s 2(22=--+-=∂∂-∂∂x y xy xy x y yPx Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-d x d y yPx Q Q d y P d x DOBOA L , 其中L 、OA 、OB 、及D 如图所示. 故⎰⎰++=+AB OA L QdyPdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--Ldy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧. 解 P =x 2-y , Q =-x -sin 2y , 0)1(1=---=∂∂-∂∂yPx Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++d x d y yPx Q Q d y P d x DBO AB L , 其中L 、AB 、BO 及D 如图所示. 故⎰⎰++--=+--L OBBA dy y x dx y x dy y x dx y x)sin ()()sin ()(22222s i n 4167)s i n 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数 u (x , y )的全微分, 并求这样的一个u (x , y ): (1)(x +2y )dx +(2x +y )dy ; 证明 因为yPx Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分. ⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222.(2)2xydx +x 2dy ; 解 因为yPx x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分. ⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C x y d x dy 0220.(3)4sin x sin3y cos xdx –3cos3y cos2xdy 解 因为yPx y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+-=),()0,0(2c o s 3c o s 3c o s 3s i n s i n 4),(y x C x d y y x d x y x y x uC y x C x d y y dx x y+-=+-+=⎰⎰3sin 2cos 2cos 3cos 300.(4)dy ye y x x dx xy y x y )128()83(2322++++ 解 因为yPxy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分.⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x uC dx xy y x dy ye y xy +++=⎰⎰022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++ 解 因为yPy x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分⎰⎰+-+=xyC dy y x x y xdx y x u 02)sin sin 2(2),(C y x x y ++=c o s s i n 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2.由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS , 对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅ ⋅ ⋅, ∆S m ; 划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅ ⋅ ⋅, ∆S m +n , 则∆S 1, ⋅ ⋅ ⋅, ∆S m , ∆S m +1, ⋅ ⋅ ⋅, ∆S m +n 为∑的一个划分, 并且 i i i i nm m i i i i i mi i i i i nm i S f S f S f ∆+∆=∆++==+=∑∑∑),,(),,(),,(111ζηξζηξζηξ.令}{max 11i mi S ∆=≤≤λ, }{max12i nm i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当λ→0时, 有dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dS z y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,d x d y d x d yz z dS y x =++=221, 故d x d y z y x f dS z y x f D ),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下: (1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d y y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ313])41(121[2202/32=+=r .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d yy x y xdS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ30149412222=+=⎰rdr r r .(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此dS z y x f ),,(∑⎰⎰d x d y y x y x xyD 2222441)](2[3+++-=⎰⎰ ⎰⎰+-=πθ2022241)2(3r d r r r d ππ1011141)2(6222=+-=⎰rdr r r .5. 计算dS y x )(22+∑⎰⎰, 其中∑是:(1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中 ∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x 2122=++=.dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ d x d y y x d x d y y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ20132dr r dπππ221222+=+=.提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,d x d y d x d yz z dS y x 2122=++=, 因而πθπ922)()(32202222==+=+⎰⎰⎰⎰⎰⎰∑r d r r d d x d y y x dS y x xyD .提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z yx 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤,d x d y z z dS y x 221++=d x d y 361=,61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdydxdy dS y x z xyxyD D .(2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,d x d y d x d yz z dS y x 3122=++=,dS z x xxy )22(2+--∑⎰⎰d x d yy x x xxy xyD 3)22622(2--+--=⎰⎰ ⎰⎰--+--=xdy y xy x x dx 30230)22236(3427)9103(3323-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分; 解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a ay x a y x dS z y x xyD 222222)()(----++=++⎰⎰⎰⎰∑)(||22h a a D a a d x d y xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y yx a x dS 22222222)()(1+--++--+=dxdyyx a a 222--=,(4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax 所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax , dxdy dxdy z z dS y x 2122=++=,d x d yy x y x xy dSzx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑⎰⎰++=-θππθθθθc o s202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a)c o s s i n c o s c o s (s i n 24422554⎰-++=421564a =.提示: dxdy yx y y x x dS 2222221++++=.7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 222211++=++=. 故 d x d yy x y x z d S M xyD 22221)(21+++==⎰⎰⎰⎰∑⎰⎰+=πθ20222121r d r r r d )136(152+=π.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a a y x dS y x I z 22222022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=πθμ202230adr ya r d a 4034a πμ=.提示: dxdy yx a y yx a x dS 22222222)()(1---+---+=dxdyyx a a 222--=,习题10-51. 按对坐标的曲面积分的定义证明公式:d y d z z y x P z y x P )],,(),,([21±∑⎰⎰d y d z z y x P d y d zz y x P )],,(),,(21∑∑⎰⎰⎰⎰±=. 解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点,λ是各小块曲面的直径的最大值, 则d y d z z y x P z y x P )],,(),,([21±∑⎰⎰yz i i i i i i i ni S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i ni S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλdydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系? 解 因为∑: z =0, (x , y )∈D xy , 故d x d y z y x R d x d yz y x R xyD ),,(),,(⎰⎰⎰⎰±=∑, 当∑取的是上侧时为正号, ∑取的是下侧时为负号. 3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是z d x d yy x22∑⎰⎰d x d yy x R y xxyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ2022222s i n c o s r d r r R r r d R⎰⎰-=πθθ20052222s i n 41Rdr r r R d 71052R π=.(2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧; 解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑30112221311dy y dy y dz dydz y xdyz yzD∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故d z d x x y d z d x zxD 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=301122131dx x dx x dz .因此 y d z d x x d y d z z d x d y ++∑⎰⎰)13(212dx x ⎰-=ππ2346=⨯=.解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为 )0 , ,(1)c o s ,c o s ,(c o s 22y x yx +=γβα,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy)cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示:dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中 f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31,31 ,31()c o s ,c o s ,(c o s -=γβα, 由两类曲面积分之间的联系可得d x d y z z y x f d z d x y z y x f d y d zx z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰ dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑d x d ydS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧. 解 ∑=∑1+∑2+∑3+∑4, 其中 ∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z , ∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x , ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x , 于是⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdyx z d x d y4000∑⎰⎰+++= d x d y y x x xyD )1(--=⎰⎰⎰⎰-=--=110241)1(xdy y x xdx. 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz .因此 ⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x . 显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdxxydydz xzdxdyy z d z d x x y d y d z x z d x d y ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD .4. 把对坐标的曲面积分d x d y z y x R d z d x z y x Q d y d zz y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧; 解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为: )32 ,2 ,3(),,(==z y x F F F n , 单位法向量为)32 ,2 ,3(51)c o s ,c o s ,(c o s =γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧. 解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量 n =(F x , F y , F z )=(2x , 2y , 1), 单位法向量为)1 ,2 ,2(4411)c o s ,c o s ,(c o s 22y x yx ++=γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dSR yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaaaa dz dy xdx xdv 040366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ204s i n 3adr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧; 解 由高斯公式 原式dv y x z d zRy Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ202022s i n adr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧; 解 由高斯公式 原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv zRy Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧. 解 由高斯公式原式dv y y z dv zRy Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=1010123)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量:(1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy , ⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv zxy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰d v . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a , 的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2, ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv zr y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=aaaa a dz xz x dy dx 02320)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z , ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv zRy Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度: (1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ; 解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222d i vz y x z y x zRy Q x P ++=++=∂∂+∂∂+∂∂=A .(2)A =e xy i +cos(xy )j +cos(xz 2)k ; 解 P =e xy , Q =cos(xy ), R =cos(xz 2),)s i n (2s i n d i v2xz xz xy x ye zRy Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ; 解 P =y 2, Q =xy , R =xz , x x x zRy Q x P 20d i v =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, nu ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向的方向导数. 证明dS nu v n v udxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知d x d y d z zvy v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d z zv z u y v y u x v x u dS n v u)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, d x d y d zzuy u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d zzvz u y v y u x v x u dS n u v)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得d x d y d zuy u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰⎰⎰∑∂∂-∂∂=dS nu v n v u)(.。

高等数学下(同济大学第五版)课后习题答案1(精品文档)

高等数学下(同济大学第五版)课后习题答案1(精品文档)

第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。

习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xyxy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x xy x y →→→→→→==⋅=++ 解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f yf y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论 1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题12−11. 试说出下列各微分方程的阶数: (1)x (y ′)2−2yy ′+x =0; 解 一阶. (2)x 2y ′−xy ′+y =0; 解 一阶.(3)xy ′′′+2y ′+x 2y =0; 解 三阶.(4)(7x −6y )dx +(x +y )dy =0; 解 一阶. (5);解 二阶.(6) . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解: (1)xy ′=2y , y =5x 2; 解 y ′=10x .因为xy ′=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解. (2)y ′+y =0, y =3sin x −4cos x ; 解 y ′=3cos x +4sin x .因为y ′+y =3cos x +4sin x +3sin x −4cos x =7sin x −cos x ≠0, 所以y =3sin x −4cos x 不是所给微分方程的解. (3)y ′′−2y ′+y =0, y =x 2e x;解 y ′=2xe x+x 2e x, y ′′=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x. 因为y ′′−2y ′+y =2e x +4xe x+x 2e x−2(2xe x+x 2e x)+x 2e x=2e x≠0, 所以y =x 2e x不是所给微分方程的解.(4)y ′′−(λ1+λ2)y ′+λ1λ2y =0, .解 , .因为=0,所以是所给微分方程的解.3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x −2y )y ′=2x −y , x 2−xy +y 2=C ; 解 将x 2−xy +y 2=C 的两边对x 求导得 2x −y −xy ′+2y y ′=0, 即 (x −2y )y ′=2x −y ,所以由x 2−xy +y 2=C 所确定的函数是所给微分方程的解. (2)(xy −x )y ′′+xy ′2+yy ′−2y ′=0, y =ln(xy ). 解 将y =ln(xy )的两边对x 求导得, 即.再次求导得. 注意到由 可得, 所以,从而 (xy −x )y ′′+xy ′2+yy ′−2y ′=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件: (1)x 2−y 2=C , y |x =0=5;解 由y |x =0=0得02−52=C , C =−25, 故x 2−y 2=−25. (2)y =(C 1+C 2x )e 2x, y |x =0=0, y ′|x =0=1; 解 y ′=C 2e 2x+2(C 1+C 2x )e 2x. 由y |x =0=0, y ′|x =0=1得 ,解之得C 1=0, C 2=1, 故y =xe 2x.(3)y =C 1sin(x −C 2), y |x =π=1, y ′|x =π=0. 解 y ′=C 1cos(x −C 2). 由y |x =π=1, y ′|x =π=0得, 即,解之得C 1=1,, 故, 即y =−cos x .5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方; 解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ′, 由条件y ′=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分.解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为 , 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(−x , 0), 从而有, 即yy ′+2x =0.6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解 , 其中k 为比例系数.习题12−111. 试用幂级数求下列各微分方程的解: (1)y ′−xy −x =1;解 设方程的解为, 代入方程得,即 .可见 a 1−1=0, 2a 2−a 0−1=0, (n +2)a n +2−a n =0(n =1, 2, ⋅ ⋅ ⋅),于是 , , ,, ⋅ ⋅ ⋅ ,,, ⋅ ⋅ ⋅.所以,即原方程的通解为 .(2)y′′+xy′+y=0;解设方程的解为,代入方程得,即,于是,, ⋅⋅⋅,,, ⋅⋅⋅.所以,即原方程的通解为.(3)xy′′−(x+m)y′+my=0(m为自然数);解设方程的解为,代入方程得,即 .可见 (a 0−a 1)m =0, (n −m )[(n +1)a n +1−a n ]=0 (n ≠m ), 于是 a 0=a 1, ,.所以, 即原方程的通解为(其中C 1, C 2为任意常数).(4)(1−x )y ′=x 2−y ;解 设方程的解为, 代入方程得,即.可见 a 1+a 0=0, 2a 2=0, 3a 3−a 2−1=0, (n +1)a n +1−(n −1)a n =0(n ≥3), 于是 a 1=−a 0, a 2=0, , (n ≥4).因此原方程的通解为(C =a 0为任意常数). .(5)(x +1)y ′=x 2−2x +y .解 设方程的解为, 代入方程得,即.于是 a 1=a 0,a 2=−1,,.因此原方程的通解为(C =a 0为任意常数).2. 试用幂级数求下列方程满足所给初始条件的解:(1)y ′=y 2+x 3,;解 根据初始条件, 可设方程的解为 , 代入方程得,即.比较两边同次幂的系数得, 2a 2=a 1, 3a 3=a 2+a 12, 4a 4=a 3+2a 1a 2+1, ⋅ ⋅ ⋅,于是 , ,,, ⋅ ⋅ ⋅.因此所求特解为.(2)(1−x )y ′+y =1+x , y |x =0=0;解 根据初始条件, 可设方程的解为, 代入方程得,即 .比较系数得,,.因此所求特解为.因为 的和函数为(1−x )ln(1−x )+x , 所以特解还可以写成y =2x +(1−x )ln(1−x )+x .(3), x |t =0=a ,.解 根据初始条件, 可设方程的解为.将, 和代入方程得.将级数展开、整理合并同次项, 并比较系数得, ,, ,,,, ,, ⋅ ⋅ ⋅.故所求特解为.习题12−21. 求下列微分方程的通解:(1)xy′−y ln y=0;解分离变量得,两边积分得,即ln(ln y)=ln x+ln C,故通解为y=e Cx .(2)3x2+5x−5y′=0;解分离变量得5dy=(3x2+5x)dx,两边积分得,即,故通解为 ,其中为任意常数.(3);解分离变量得,两边积分得即arcsin y=arcsin x+C,故通解为y=sin(arcsin x+C).(4)y′−xy′=a(y2+y′);解方程变形为(1−x−a)y′=ay2,分离变量得,两边积分得,即,为任意常数.故通解为 ,其中C=aC1(5)sec2x tan ydx+sec2y tan xdy=0;解分离变量得,两边积分得,即ln(tan y)=−ln(tan x)+ln C,故通解为tan x tan y=C .(6);解分离变量得10−y dy=10x dx,两边积分得,即,或10−y=10x+C,故通解为y=−lg(C−10x).(7)(e x+y−e x)dx+(e x+y+e y)dy=0;解方程变形为e y(e x+1)dy=e x(1−e y)dx,分离变量得,两边积分得,即−ln(e y)=ln(e x+1)−ln C,故通解为(e x+1)(e y−1)=C .(8)cos x sin ydx+sin x cos ydy=0;解分离变量得,两边积分得,即ln(sin y)=−ln(sin x)+ln C,故通解为sin x sin y=C .(9);解分离变量得(y+1)2dy=−x3dx,两边积分得,即,故通解为4(y+1)3+3x4=C (C=12C).1(10)ydx+(x2−4x)dy=0.解分离变量得,两边积分得,即ln y4=ln x−ln(4−x)+ln C ,故通解为y4(4−x)=Cx .2. 求下列微分方程满足所给初始条件的特解:=0;(1)y′=e2x−y, y|x=0解分离变量得e y dy=e2x dx,两边积分得,即,或.=0得 ,,由y|x=0所以特解 .(2)cos x sin ydy=cos y sin xdx, ;解分离变量得tan y dy=tan x dx,两边积分得,即−ln(cos y)=−ln(cos x)−ln C,或cos y=C cos x .由得 ,, 所以特解为 .(3)y′sin x=y ln y, ;解分离变量得,两边积分得,即,或.由得 ,C=1,所以特解为 .(4)cos ydx+(1+e−x)sin ydy=0, ;解分离变量得,两边积分得,即ln|cos y|=ln(e x+1)+ln |C|,或cos y=C(e x+1).由得 ,,所以特解为 .=1.(5)xdy+2ydx=0, y|x=2解分离变量得,两边积分得,即ln y=−2ln x+ln C,或y=Cx−2.=1得C⋅2−2=1, C=4,由y|x=2所以特解为 .3. 有一盛满了水的圆锥形漏漏斗,高为10cm, 顶角为60°, 漏斗下面有面积为0. 5cm2的孔,求水面高度变化的规律及流完所需的时间.解设t时该已流出的水的体积为V, 高度为x, 则由水力学有, 即.又因为 ,故,从而,即,因此.又因为当t=0时,x=10, 所以 ,故水从小孔流出的规律为.令x=0, 得水流完所需时间约为10s.4. 质量为1g(克)的质点受外力作用作直线运动,这外力和时间成正比,和质点运动的速度成反比.在t=10s时,速度等于50cm/s, 外力为4g cm/s2, 问从运动开始经过了一分钟后的速度是多少?解已知 ,并且法t=10s时,v=50cm/s, F=4g cm/s2, 故,从而k=20, 因此 .又由牛顿定律,F=ma, 即 ,故v dv=20t d t. 这就是速度与时间应满足的微分方程.解之得, 即 .由初始条件有 ,C=250. 因此.当t=60s时,.5. 镭的衰变有如下的规律:镭的衰变速度与它的现存量R成正比.由经验材料得知,镭经过1600年后,只余原始量R的一半.试求镭的量R与时间t的函数关系.解由题设知,, 即 ,两边积分得ln R=−λt+C1,从而.因为当t=0时,R=R0, 故R=Ce0=C, 即R=Re−λt.又由于当t=1600时,, 故 ,从而.因此.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分,求这曲线方程.解设切点为P(x, y), 则切线在x轴,y轴的截距分别为2x, 2y, 切线斜率为,故曲线满足微分方程:, 即 ,从而ln y+ln x=ln C, xy=C .因为曲线经过点(2, 3), 所以C=2×3=6, 曲线方程为xy=6.7. 小船从河边点O处出发驶向对岸(两岸为平行直线). 设船速为a, 船行方向始终与河岸垂直,又设河宽为h, 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k). 求小船的航行路线.解建立坐标系如图.设t时刻船的位置为(x, y), 此时水速为,故dx=ky(h−y)dt .又由已知,y=at, 代入上式得dx=kat(h−at)dt ,积分得.=0, 得C=0, 故 .由初始条件x|t=0因此船运动路线的函数方程为,从而一般方程为 .习题12−31. 求下列齐次方程的通解:(1);解原方程变为 .令 ,则原方程化为, 即 ,两边积分得, 即 ,将代入上式得原方程的通解, 即 .(2);解原方程变为 .令 ,则原方程化为, 即 ,两边积分得ln(ln u−1)=ln x+ln C, 即u=e Cx+1,将代入上式得原方程的通解y=xe Cx+1.(3)(x2+y2)dx−xydy=0;解这是齐次方程.令 ,即y=xu, 则原方程化为(x2+x2u2)dx−x2u(udx+xdu)=0, 即 ,两边积分得u2=ln x2+C,将代入上式得原方程的通解y2=x2(ln x2+C).(4)(x3+y3)dx−3xy2dy=0;解这是齐次方程.令 ,即y=xu, 则原方程化为(x3+x3u3)dx−3x3u2(udx+xdu)=0, 即 ,两边积分得, 即 ,将代入上式得原方程的通解x3−2y3=Cx .(5);解原方程变为 .令 ,则原方程化为, 即 ,两边积分得3ln(sh u)=2ln x+ln C, 即sh3u=Cx2,将代入上式得原方程的通解.(6).解原方程变为 .令 ,则原方程化为, 即 ,分离变量得,两边积分得ln(u+2e u)=−ln y+ln C, 即y(u+2e u)=C,将代入上式得原方程的通解, 即 .2. 求下列齐次方程满足所给初始条件的特解:(1)(y2−3x2)dy+2xydx=0, y|=1;x=0解这是齐次方程.令 ,即y=xu, 则原方程化为(x2u2−3x2)(udx+xdu)+2x2udx=0,即, 或两边积分得−3ln |u|+ln|u+1|+ln|u−1|=ln|x|+ln|C|, 即u2−1=Cxu3,将代入上式得原方程的通解y2−x2=Cy3.由y|=1得C=1, 故所求特解为y2−x2=y3.x=0=2;(2), y|x=1解令 ,则原方程化为, 即 ,两边积分得,将代入上式得原方程的通解y2=2x2(ln x+C).=2得C=2, 故所求特解为y2=2x2(ln x+2).由y|x=1=1.(3)(x2+2xy−y2)dx+(y2+2xy−x2)dy=0, y|x=1解这是齐次方程.令 ,即y=xu, 则原方程化为(x2+2x2u−x2u2)dx+(x2u2+2x2u−x2)(udx+xdu)=0,即,或,两边积分得ln|u+1|−ln(u2+1)=ln|x|+ln|C|, 即u+1=Cx(u2+1),将代入上式得原方程的通解x+y=C(x2+y2).由y|=1得C=1, 故所求特解为x+y=(x2+y2).x=13. 设有连结点O(0, 0)和A(1, 1)的一段向上凸的曲线弧 ,对于上任一点P(x, y), 曲线弧与直线段所围图形的面积为x2, 求曲线弧的方程.解设曲线弧的方程为y=y(x). 由题意得,两边求导得,即.令 ,则有, 即 ,两边积分得u=−4ln x+C .将代入上式得方程的通解y=−4x ln x+Cx.由于A(1, 1)在曲线上,即y(1)=1, 因而C=1, 从则所求方程为y=−4x ln x+x.习题12−41. 求下列微分方程的通解:(1);解.(2)xy′+y=x2+3x+2;解原方程变为 ..(3)y′+y cos x=e−sin x;解.(4)y′+y tan x=sin 2x;解=cos x(−2cos x+C)=C cos x−2cos2x .(5)(x2−1)y′+2xy−cos x=0;解原方程变形为 ..(6);解.(7);解.(8)y ln ydx+(x−ln y)dy=0;解原方程变形为 ..(9);解原方程变形为 .=(x−2)[(x−2)2+C]=(x−2)3+C(x−2).(10).解原方程变形为 ..2. 求下列微分方程满足所给初始条件的特解:=0;(1), y|x=0解.由y|=0, 得C=0, 故所求特解为y=x sec x .x=0=1;(2), y|x=π解.=1, 得C=π−1, 故所求特解为 .由y|x=π(3), ;解.由 ,得C=1, 故所求特解为 .=2;(4), y|x=0解.由y|=2, 得 ,故所求特解为 .x=0(5), y|=0.x=1解.=0, 得 ,故所求特解为 .由y|x=13. 求一曲线的方程,这曲线通过原点,并且它在点(x, y)处的切线斜率等于2x+y .=0.解由题意知y′=2x+y, 并且y|x=0由通解公式得=e x(−2xe−x−2e−x+C)=Ce x−2x−2.=0, 得C=2, 故所求曲线的方程为y=2(e x−x−1).由y|x=04. 设有一质量为m的质点作直线运动,从速度等于零的时刻起,有一个与运动方向一至、大小与时间成正比(比例系数为k)的力作用1)的阻力作用.求质点于它,此外还受一与速度成正比(比例系数为k2运动的速度与时间的函数关系.解由牛顿定律F=ma, 得 ,即 .由通解公式得.由题意,当t=0时v=0, 于是得 .因此即.5. 设有一个由电阻R=10Ω、电感L=2h(亨)和电源电压E=20sin5t V(伏)串联组成的电路.开关K合上后,电路中有电源通过.求电流i 与时间t的函数关系.解由回路电压定律知, 即 .由通解公式得.因为当t=0时i=0, 所以C=1. 因此(A).6. 设曲在右半平面(x>0)内与路径无关,其中f(x)可导,且f(1)=1,求f(x).解因为当x>0时,所给积分与路径无关,所以,即f(x)=2f(x)+2xf′(x)−2x,或.因此.由f(1)=1可得 ,故 .7. 求下列伯努利方程的通解:(1);解原方程可变形为, 即 .,原方程的通解为 .(2);解原方程可变形为, 即 .,原方程的通解为 .(3);解原方程可变形为, 即 .,原方程的通解为 .(4);解原方程可变形为, 即 .,原方程的通解为 .(5)xdy−[y+xy3(1+ln x)]dx=0.解原方程可变形为, 即 .,原方程的通解为 .8. 验证形如yf(xy)dx+xg(xy)dy=0的微分方程,可经变量代换v=xy 化为可分离变量的方程,并求其通解.解原方程可变形为.在代换v=xy下原方程化为,即,积分得,对上式求出积分后,将v=xy代回,即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程,然后求出通解:(1);解令u=x+y, 则原方程化为, 即 .两边积分得x=arctan u+C.将u=x+y代入上式得原方程的通解x=arctan(x+y)+C, 即y=−x+tan(x−C).(2);解令u=x−y, 则原方程化为, 即dx=−udu.两边积分得.将u=x+y代入上式得原方程的通解, 即(x−y)2=−2x+C(C=2C).1(3)xy′+y=y(ln x+ln y);解令u=xy, 则原方程化为, 即 .两边积分得ln x+ln C=lnln u, 即u=e Cx.将u=xy代入上式得原方程的通解xy=e Cx, 即 .(4)y′=y2+2(sin x−1)y+sin2x−2sin x−cos x+1;解原方程变形为y′=(y+sin x−1)2−cos x.令u=y+sin x−1, 则原方程化为, 即 .两边积分得.将u=y+sin x−1代入上式得原方程的通解, 即 .(5)y(xy+1)dx+x(1+xy+x2y2)dy=0 .解原方程变形为.令u=xy, 则原方程化为, 即 .分离变量得.两边积分得.将u=xy代入上式得原方程的通解,).即2x2y2ln y−2xy−1=Cx2y2(C=2C1习题12−51. 判别下列方程中哪些是全微分方程,并求全微分方程的通解:(1)(3x2+6xy2)dx+(6x2y+4y2)dy=0;解这里P=3x2+6xy2, Q=6x2y+4y2. 因为,所以此方程是全微分方程,其通解为,即.(2)(a2−2xy−y2)dx−(x+y)2dy=0;解这里P=a2−2xy−y2, Q=−(x+y)2. 因为,所以此方程是全微分方程,其通解为,即a2x−x2y−xy2=C.(3)e y dx+(xe y−2y)dy=0;解这里P=e y, Q=xe y−2y. 因为,所以此方程是全微分方程,其通解为,即xe y−y2=C.(4)(x cos y+cos x)y′−y sin x+sin y=0;解原方程变形为(x cos y+cos x)dy−(y sin x+sin y)dx=0.这里P=−(y sin x+sin y), Q=x cos y+cos x. 因为,所以此方程是全微分方程,其通解为,即x sin y+y cos x=C.解(5)(x2−y)dx−xdy=0;解这里P=x2−y, Q=−x . 因为,所以此方程是全微分方程,其通解为,即.(6)y(x−2y)dx−x2dy=0;解这里P=y(x−2y), Q=−x2. 因为, ,所以此方程不是全微分方程.(7)(1+e2θ)dρ+2ρe2θdθ=0;解这里P=1+e2θ, Q=2ρe2θ. 因为,所以此方程是全微分方程,其通解为,即ρ(e 2θ+1)=C.(8)(x2+y2)dx+xydy=0.解这里P=x2+y2, Q=xy. 因为, ,所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子,并求其通解:(1)(x+y)(dx−dy)=dx+dy;解方程两边同时乘以得, 即d(x−y)=d ln(x+y),所以为原方程的一个积分因子,并且原方程的通解为x−y=ln(x+y)+C.(2)ydx−xdy+y2xdx=0;解方程两边同时乘以得, 即 ,所以为原方程的一个积分因子,并且原方程的通解为.(3)y2(x−3y)dx+(1−3y2x)dy=0;解原方程变形为xy2dx−3y3dx+dy−3x2dy=0,两边同时乘以并整理得, 即 ,所以为原方程的一个积分因子,并且原方程的通解为.(4)xdx+ydy=(x2+y2)dx;解方程两边同时乘以得, 即 ,所以为原方程的一个积分因子,并且原方程的通解为x2+y2=Ce2x.(5)(x−y2)dx+2xydy=0;解原方程变形为xdx−y2dx+2xydy=0,两边同时乘以得, 即 ,所以为原方程的一个积分因子,并且原方程的通解为, 即x ln x+y2=Cx.(6)2ydx−3xy2dx−xdy=0.解方程两边同时乘以x得2xydx−x2dy−3x2y2dx=0, 即yd(x2)−x2dy−3x2y2dx=0,再除以y2得, 即所以为原方程的一个积分因子,并且原方程的通解为.3. 验证是微分方程yf(xy)dx+xg(xy)dy=0的积分因子,并求下列方程的通解:解方程两边乘以得,这里 ,.因为 ,所以是原方程的一个积分因子.(1)y(x2y2+2)dx+x(2−2x2y2)dy=0;解这里f(xy)=x2y2+2, g(xy)=2−2x2y2 , 所以是方程的一个积分因子.方程两边同乘以得全微分方程,其通解为,即, 或 .(2)y(2xy+1)dx+x(1+2xy−x3y3)dy=0.解这里f(x y)=2x y+1, g(x y)=1+2x y−x3y3 , 所以是方程的一个积分因子.方程两边同乘以得全微分方程,其通解为,即.4. 用积分因子法解下列一阶线性方程:(1)xy′+2y=4ln x;解原方程变为 ,其积分因子为,在方程的两边乘以x2得x2y′+2xy=4x ln x, 即(x2y)′=4x ln x,两边积分得,原方程的通解为 .(2)y′−tan x⋅y=x.解积分因子为,在方程的两边乘以cos x得cos x⋅y′−sin x⋅y =x cos x, 即(cos x⋅y)′=x cos x,两边积分得,方程的通解为 .习题12−61. 求下列各微分方程的通解:(1)y′′=x+sin x;解,, 原方程的通解为.(2)y′′′=xe x;解,,,原方程的通解为.(3);解,原方程的通解为.(4)y′′=1+y′2;解令p=y′, 则原方程化为p′=1+p2, 即 ,两边积分得arctan p=x+C1, 即y′=p=tan(x+C1),,原方程的通解为.(5)y′′=y′+x;解令p=y′, 则原方程化为p′−p=x,由一阶线性非齐次方程的通解公式得,即 y ′=C 1e x−x −1, 于是,原方程的通解为. (6)xy ′′+y ′=0;解 令p =y ′, 则原方程化为 x p ′+p =0, 即 , 由一阶线性齐次方程的通解公式得,即,于是,原方程的通解为y =C 1ln x +C 2 . (7)yy ′′+′=y ′2; 解 令p =y ′, 则 , 原方程化为, 即,两边积分得, 即.当|y ′|=|p |>1时, 方程变为, 即 ,两边积分得arcsh(C 1y )=±C 1x +C 2, 即原方程的通解为.当|y ′|=|p |<1时, 方程变为, 即 ,两边积分得arcsin(C 1y )=±C 1x +C 2, 即原方程的通解为.(8)y 3y ′′−1=0; 解 令p =y ′, 则 , 原方程化为, 即pdp =y −3dy ,两边积分得, 即p 2=−y −2+C 1,故, 即,两边积分得,即原方程的通解为C 1y 2=(C 1x +C 2)2. (9);解 令p =y ′, 则, 原方程化为, 即 ,两边积分得, 即 ,故 , 即 ,两边积分得原方程的通.(10)y ′′=y ′3+y ′. 解 令p =y ′, 则, 原方程化为, 即 . 由p =0得y =C , 这是原方程的一个解. 由 得arctan p =y −C 1, 即y ′=p =tan(y −C 1), 从而,故原方程的通解为.2. 求下列各微分方程满足所给初始条件的特解: (1)y 3y ′′+1=0, y |x =1=1, y ′|x =1=0; 解 令p =y ′, 则 , 原方程化为, 即,两边积分得, 即 .由y |x =1=1, y ′|x =1=0得C 1=−1, 从而 ,分离变量得, 两边积分得, 即.由y |x =1=1得C 2=−1, , 从而原方程的通解为.(2)y ′′−ay ′2=0, y |x =0=0, y ′|x =0=−1; 解 令p =y ′, 则原方程化为, 即,两边积分得, 即 .由y ′|x =0=−1得C 1=1, , 两边积分得.由y |x =0=0得C 2=0, 故所求特解为 .(3)y ′′′=e ax, y |x =1=y ′|x =1=y ′′|x =1=0; 解 . 由y ′′|x =1=0得 ..由y ′|x =1=0得 ..由y |x =1=0得 , 故所求特解为.(4)y ′′=e 2y, y |x =0=y ′|x =0=0; 解 令p =y ′, 则, 原方程化为, 即pdp =e 2ydy ,积分得p 2=e 2y+C 1, 即.由y |x =0=y ′|x =0=0得C 1=−1, 故 , 从而,积分得−arcsin e −y=±x +C 2. 由y |x =0=0得, 故,从而所求特解为y =−lncos x . (5), y |x =0=1, y ′|x =0=2;解 令p =y ′, 则 , 原方程化为, 即,两边积分得, 即.由y |x =0=1, y ′|x =0=2得C 1=0, , 从而,两边积分得, 即.由y |x =0=1得C 2=4, 故原方程的特解为 .(6)y ′′+y ′2=1, y |x =0=0, y ′|x =0=0. 解 令p =y ′, 则, 原方程化为, 即 ,于是 ,即.由y |x =0=0, y ′|x =0=0得C 1=−1, .故,两边积分得.由y |x =0=0得C 2=0,,从而得原方程的特解y =lnch x .3. 试求y ′′=x 的经过点M (0, 1)且在此点与直线 相切的积分曲线.解 ,.由题意得y |x =0=1, .由得, 再由y |x =0=1得C 2=1, 因此所求曲线为.4. 设有一质量为m 的物体, 在空中由静止开始下落, 如果空气阻力为R =c 2v 2(其中c 为常数, v 为物体运动的速度), 试求物体下落的距离s 与时间t 的函数关系.解 以t =0对应的物体位置为原点, 垂直向下的直线为s 正轴, 建立坐标系. 由题设得. 将方程分离变量得,两边积分得(其中)由v |t =0=0得C 1=0, , 即.因为mg >c 2v 2, 故 , 即,或,分离变量并积分得.由s |t =0=0得C 2=0, 故所求函数关系为, 即 .习题12−71. 下列函数组在其定义区间内哪些是线性无关的? (1)x , x 2; 解 因为 不恒为常数, 所以x , x 2是线性无关的.(2)x , 2x ; 解 因为 , 所以x , 2x 是线性相关的.(3)e 2x, 3e 2x ; 解 因为 , 所以e 2x , 3e 2x是线性相关的.(4)e −x; e x ; 解 因为不恒为常数, 所以e −x; e x是线性无关的.(5)cos2x , sin2x ; 解 因为 不恒为常数, 所以cos2x , sin2x 是线性无关的.(6) , ;解 因为不恒为常数, 所以, 是线性无关的.(7)sin2x , cos x ⋅sin x ; 解 因为, 所以sin2x , cos x ⋅sin x 是线性相关的.(8)e xcos2x , e xsin2x ; 解 因为 不恒为常数, 所以e x cos2x , e xsin2x 是线性无关的.(9)ln x , x ln x ; 解 因为不恒为常数, 所以ln x , x ln x 是线性无关的.(10)e ax, e bx(a ≠b ). 解 因为 不恒为常数, 所以e ax , e bx是线性无关的.2. 验证y 1=cos ωx 及y 2=sin ωx 都是方程y ′′+ω2y =0的解, 并写出该方程的通解. 解 因为y 1′′+ω2y 1=−ω2cos ωx +ω2cos ωx =0, y 2′′+ω2y 2=−ω2sin ωx +ω2sin ωx =0, 并且 不恒为常数, 所以y 1=cos ωx 与y 2=sin ωx 是方程的线性无关解, 从而方程的通解为y =C 1cos ωx +C 2sin ωx .提示: y 1′=−ω sin ωx , y 1′′=−ω2cos ωx ; y 2′=ω cos ωx , y 1′′=−ω2sin ωx .3. 验证及都是方程y ′′−4xy ′+(4x 2−2)y =0的解,并写出该方程的通解. 解 因为 ,,并且 不恒为常数, 所以与是方程的线性无关解,从而方程的通解为.提示: , ;, .4. 验证: (1)(C 1、C 2是任意常数)是方程y ′′−3y ′+2y =e 5x的通解;解 令y 1=e x, y 2=e 2x,. 因为y 1′′−3y 1′+2y 1′=e x−3e x+2e x=0, y 2′′−3y 2′+2y 2′=4e 2x−3(2e 2x+2e 2x=0, 且不恒为常数, 所以y 1与y 2是齐次方程y ′′−3y ′+2y =0的线性无关解, 从而Y =C 1e x+C 2e 2x是齐次方程的通解. 又因为,所以y *是方程y ′′−3y ′+2y =e 5x的特解. 因此 是方程y ′′−3y ′+2y =e 5x的通解.(2)(C 1、C 2是任意常数)是方程y ′′+9y =x cos x 的通解;解 令y 1=cos3x , y 2=sin3x , . 因为y 1′′+9y 1=−9cos3x +9cos3x =0,y 2′′+9y 2=−9sin3x +9sin3x =0, 且不恒为常数, 所以y 1与y 2是齐次方程y ′′+9y =0的线性无关解, 从而Y =C 1e x+C 2e 2x是齐次方程的通解. 又因为,所以y *是方程y ′′+9y =x cos x 的特解.因此 是方程y ′′+9y =x cos x 的通解.(3)y =C 1x 2+C 2x 2ln x (C 1、C 2是任意常数)是方程x 2y ′′−3xy ′+4y =0 的通解;解 令y 1=x 2, y 2=x 2ln x . 因为x 2y 1′′−3xy 1′+4y 1=x 2⋅2−3x ⋅2x +4⋅x 2=0,x 2y 2′′−3xy 2′+4y 2=x 2⋅(2ln x +3)−3x ⋅(2x ln x +x )+4⋅x 2ln x =0, 且不恒为常数, 所以y 1与y 2是方程x 2y ′′−3xy ′+4y =0的线性无关解, 从而y =C 1x 2+C 2x 2ln x 是方程的通解. (4)(C 1、C 2是任意常数)是方程x 2y ′′−3xy ′−5y =x 2ln x 的通解;解 令y 1=x 5,,. 因为x 2y 1′′−3xy 1′−5y 1=x 2⋅20x 3−3x ⋅5x 4−5⋅x 5=0, ,且不恒为常数, 所以y 1与y 2是齐次方程x 2y ′′−3xy ′−5y =0的线性无关解, 从而 是齐次方程的通解.又因为,所以y *是方程x 2y ′′−3xy ′−5y =x 2ln x 的特解. 因此 是方程x 2y ′′−3xy ′−5y =x 2ln x 的通解. (5)(C 1、C 2是任意常数)是方程xy ′′+2y ′−xy =e x的通解;解 令 ,,. 因为,,且不恒为常数, 所以y 1与y 2是齐次方程xy ′′+2y ′−xy =0的线性无关解, 从而 是齐次方程的通解.又因为,所以y *是方程xy ′′+2y ′−xy =e x的特解. 因此是方程xy ′′+2y ′−xy =e x的通解.(6)y =C 1e x+C 2e −x+C 3cos x +C 4sin x −x 2(C 1、C 2、C 3、C 4是任意常 数)是方程y (4)−y =x 2的通解.解 令y 1=e x, y 2=e −x, y 3=cos x , y 4=sin x , y *=−x 2. 因为 y 1(4)−y 1=e x−e x=0,y 2(4)−y 2=e −x −e −x=0, y 3(4)−y 3=cos x −cos x =0, y 4(4)−y 4=sin x −sin x =0, 并且,所以y 1=e x , y 2=e −x, y 3=cos x , y 4=sin x 是方程y (4)−y =0的线性无关解, 从而Y =C 1e x+C 2e −x+C 3cos x +C 4sin x 是方程的通解. 又因为y *(4)−y *=0−(−x 2)=x 2, 所以y *=−x 2是方程y (4)−y =x 2的特解.因此y =C 1e x+C 2e −x+C 3cos x +C 4sin x −x 2是方程y (4)−y =x 2的通解.提示:令k 1e x+k 2e −x +k 3cos x +k 4sin x =0, 则 k 1e x−k 2e −x−k 3sin x +k 4cos x =0, k 1e x+k 2e −x−k 3cos x −k 4sin x =0, k 1e x+k 2e −x+k 3sin x −k 4cos x =0.上术等式构成的齐次线性方程组的系数行列式为,所以方程组只有零解, 即y 1=e x , y 2=e −x, y 3=cos x , y 4=sin x 线性无关.习题12−81. 求下列微分方程的通解: (1)y ′′+y ′−2y =0;解 微分方程的特征方程为 r 2+r −2=0, 即(r +2)(r −1)=0,其根为r 1=1, r 2=−2, 故微分方程的通解为y=C1e x+C2e−2x.(2)y′′−4y′=0;解微分方程的特征方程为r2−4r=0, 即r(r−4)=0,其根为r1=0, r2=4, 故微分方程的通解为y=C1+C2e4x.(3)y′′+y=0;解微分方程的特征方程为r2+1=0,其根为r1=i, r2=−i, 故微分方程的通解为y=C1cos x+C2sin x.(4)y′′+6y′+13y=0;解微分方程的特征方程为r2+6r+13=0,其根为r1=−3−2i, r2=−3+2i, 故微分方程的通解为y=e−3x(C1cos2x+C2sin2x).(5);解微分方程的特征方程为4r2−20r+25=0, 即(2x−5)2=0,其根为 ,故微分方程的通解为, 即 .(6)y′′−4y′+5y=0;解微分方程的特征方程为r2−4r+5=0,其根为r1=2−i, r2=2+i, 故微分方程的通解为y=e2x(C1cos x+C2sin x).(7)y(4)−y=0;解微分方程的特征方程为r4−1=0, 即(r−1)(r+1)(r2+1)=0其根为r1=1, r2=−1, r1=−i, r2=i, 故微分方程的通解为y=C1e x+C2e−x+C3cos x+C4sin x.(8)y(4)+2y′′+y=0;解微分方程的特征方程为r4+r2+1=0, 即(r2+1)2=0,其根为r1=r2=−i, r3=r4=i, 故微分方程的通解为y=(C1+C2x)cos x+(C3+C4x)sin x.(9)y(4)−2y′′′+y′′=0;解微分方程的特征方程为r4−2r3+r2=0, 即r2(r−1)2=0,其根为r1=r2=0, r3=r4=1, 故微分方程的通解为y=C1+C2x+C3e x+C4xe x.(10)y(4)+5y′′−36=0.解微分方程的特征方程为r4+5r2−36=0,其根为r1=2, r2=−2, r3=3i, r4=−3i, 故微分方程的通解为y=C1e2x+C2e−2x+ C3cos3x+C4sin3x.2. 求下列微分方程满足所给初始条件的特解:(1)y′′−4y′+3y=0, y|x=0=6, y′|x=0=10;解微分方程的特征方程为r2−4r+3=0, 即(r−1)(r−3)=0,其根为r1=1, r2=3, 故微分方程的通解为y=C1e x+C2e3x.由y|x=0=6, y′|x=0=10, 得,解之得C1=4, C2=2. 因此所求特解为y=4e x+2e3x.(2)4y′′+4y′+y=0, y|x=0=2, y′|x=0=0;解微分方程的特征方程为4r 2+4r +1=0, 即(2r +1)2=0,其根为, 故微分方程的通解为. 由y |x =0=2, y ′|x =0=0, 得,解之得C 1=2, C 2=1. 因此所求特解为 .(3)y ′′−3y ′−4y =0, y |x =0=0, y ′|x =0=−5; 解 微分方程的特征方程为 r 2−3r −4=0, 即(r −4)(r +1)=0, 其根为r 1=−1, r 2=4, 故微分方程的通解为 y =C 1e −x+C 2e 4x. 由y |x =0=0, y ′|x =0=−5, 得,解之得C 1=1, C 2=−1. 因此所求特解为 y =e −x−e 4x .(4)y ′′+4y ′+29y =0, y |x =0=0, y ′|x =0=15; 解 微分方程的特征方程为 r 2+4r +29=0, 其根为r 1, 2=−2±5i , 故微分方程的通解为 y =e −2x (C 1cos5x +C 2sin5x ).由y |x =0=0, 得C 1=0, y =C 2e−2xsin5x .由y ′|x =0=15, 得C 2=3.因此所求特解为y =3e −2xsin5x . (5)y ′′+25y =0, y |x =0=2, y ′|x =0=5; 解 微分方程的特征方程为r2+25=0,其根为r1, 2=±5i, 故微分方程的通解为y=C1cos5x+C2sin5x.由y|x=0=2, 得C1=2, y=2cos5x+C2sin5x.由y′|x=0=5, 得C2=1.因此所求特解为y=2cos5x+sin5x.(6)y′′−4y′+13y=0, y|x=0=0, y′|x=0=3.解微分方程的特征方程为r2−4r+13=0,其根为r1, 2=2±3i, 故微分方程的通解为y=e2x(C1cos3x+C2sin3x).由y|x=0=0, 得C1=0, y=C2e2x sin3x.由y′|x=0=3, 得C2=1.因此所求特解为y=e2x sin3x.3. 一个单位质量的质点在数轴上运动,开始时质点在原点O处且速度为v, 在运动过程中,它受到一个力的作用,这个力的大小与质点到原点的距离成正比(比例系数k1>0)而方向与初速一至.又介质的阻力与速度成正比(比例系数k2>0). 求反映这质点的运动规律的函数.解设数轴为x轴,v方向为正轴方向.由题意得微分方程x′′=k1x−k2x′, 即x′′+k2x′−k1x=0,其初始条件为x|t=0=0, x′|t=0=v.微分方程的特征方程为r2+k2r−k1=0,其根为 , ,故微分方程的通解为由x |t =0=0, x ′|t =0=v 0, 得, 解之得因此质点的运动规律为4. 在如图所示的电路中先将开关K 拨向A , 达到稳定状态后再将开关K 拨向B , 求电压u c (t )及电流i (t ). 已知E =20V, C =0.5×10−6F(法), L =0.1H(亨), R =2000Ω. 解 由回路电压定律得.由于q =Cu c , 故 , , 所以, 即 .已知,, 故. 微分方程的特征方程为,其根为r 1=−1.9×104, r 2=−103, 故微分方程的通解为 .由初始条件t =0时, u c =20, u c ′=0可得,。

相关文档
最新文档