圆的高考题汇编汇编

合集下载

高考物理生活中的圆周运动真题汇编(含答案)含解析

高考物理生活中的圆周运动真题汇编(含答案)含解析

高考物理生活中的圆周运动真题汇编(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球到达A 点时动量的大小; (3)小球从C 点落至水平轨道所用的时间. 【答案】(15gR(223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有tan F mgα=① 2220()F mg F =+②设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③由①②③式和题给数据得034F mg =④5gRv =(2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为 1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得355R t g=点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0v =(3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.如图所示,一根长为0.1 m 的细线,一端系着一个质量是0.18kg 的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N .求: (1)线断裂的瞬间,线的拉力; (2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m ,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2ω=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t 220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x=vt=5×0.4=2m.4.如图所示,水平传送带AB长L=4m,以v0=3m/s的速度顺时针转动,半径为R=0.5m的光滑半圆轨道BCD与传动带平滑相接于B点,将质量为m=1kg的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D 5; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s5.如图甲所示,粗糙水平面与竖直的光滑半圆环在N 点相切,M 为圈环的最高点,圆环半径为R =0.1m ,现有一质量m =1kg 的物体以v 0=4m/s 的初速度从水平面的某点向右运动并冲上竖直光滑半圆环,取g =10m/s 2,求:(1)物体能从M 点飞出,落到水平面时落点到N 点的距离的最小值X m(2)设出发点到N 点的距离为S ,物体从M 点飞出后,落到水平面时落点到N 点的距离为X ,作出X 2随S 变化的关系如图乙所示,求物体与水平面间的动摩擦因数μ(3)要使物体从某点出发后的运动过程中不会在N 到M 点的中间离开半固轨道,求出发点到N 点的距离S 应满足的条件【答案】(1)0.2m ;(2)0.2;(3)0≤x ≤2.75m 或3.5m ≤x <4m . 【解析】 【分析】(1)由牛顿第二定律求得在M 点的速度范围,然后由平抛运动规律求得水平位移,即可得到最小值;(2)根据动能定理得到M 点速度和x 的关系,然后由平抛运动规律得到y 和M 点速度的关系,即可得到y 和x 的关系,结合图象求解;(3)根据物体不脱离轨道得到运动过程,然后由动能定理求解. 【详解】(1)物体能从M 点飞出,那么对物体在M 点应用牛顿第二定律可得:mg ≤2M mv R,所以,v M gR 1m /s ;物体能从M 点飞出做平抛运动,故有:2R =12gt 2,落到水平面时落点到N 点的距离x =v M t 2RgR g2R =0.2m ; 故落到水平面时落点到N 点的距离的最小值为0.2m ;(2)物体从出发点到M 的运动过程作用摩擦力、重力做功,故由动能定理可得:−μmgx −2mgR =12mv M 2−12mv 02; 物体从M 点落回水平面做平抛运动,故有:2R =12gt 2,22044(24)0.480.8M M R Ry v t v v gx gR x g gμμ⋅=--⋅=-== 由图可得:y 2=0.48-0.16x ,所以,μ=0.160.8=0.2;(3)要使物体从某点出发后的运动过程中不会在N到M点的中间离开半圆轨道,那么物体能到达的最大高度0<h≤R或物体能通过M点;物体能到达的最大高度0<h≤R时,由动能定理可得:−μmgx−mgh=0−12mv02,所以,22122mv mgh v hxmg gμμμ--==,所以,3.5m≤x<4m;物体能通过M点时,由(1)可知v M≥gR=1m/s,由动能定理可得:−μmgx−2mgR=12mv M2−12mv02;所以22221124222MMmv mv mgR v v gRxmg gμμ----==,所以,0≤x≤2.75m;【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.6.如图所示,用绝缘细绳系带正电小球在竖直平面内运动,已知绳长为L,重力加速度g,小球半径不计,质量为m,电荷q.不加电场时,小球在最低点绳的拉力是球重的9倍。

【备战2013年】历届高考数学真题汇编专题9_直线和圆_理(2000-2006)

【备战2013年】历届高考数学真题汇编专题9_直线和圆_理(2000-2006)

【2006高考试题】一、选择题(共17题)1.(安徽卷)如果实数x y 、满足条件⎪⎩⎪⎨⎧≤++≥+≥+-01,01,01y x y y x 那么2x y -的最大值为A .2B .1C .2-D .3- 解:当直线2x y t -=过点(0,-1)时,t 最大,故选B 。

2.(安徽卷)直线1x y +=与圆2220(0)x y ay a +-=>没有公共点,则a 的取值范围是A.1) B.11) C.(11) D.1) 解:由圆2220(0)x y ay a +-=>的圆心(0,)a 到直线1x y +=大于a ,且0a >,选A 。

4.(广东卷)在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35x ≤≤时,目标函数32z x y =+的最大值的变化范围是A.[6,15]B. [7,15]C. [6,8]D. [7,8]解析:由⎩⎨⎧-=-=⇒⎩⎨⎧=+=+42442s y sx x y s y x 交点为)4,0(),,0(),42,4(),2,0(C s C s s B A '--,(1)当43<≤s 时可行域是四边形OABC ,此时,87≤≤z (2)当54≤≤s时可行域x +y是△OA C '此时,8max =z ,故选D.5.(湖北卷)已知平面区域D 由以(1,3),(5,2),(3,1)A B C 为顶点的三角形内部&边界组成。

若在区域D 上有无穷多个点(,)x y 可使目标函数z =x +my 取得最小值,则m =A .-2B .-1C .1D .46.(湖南卷)若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为22则直线l 的倾斜角的取值范围是 ( )A.[,124ππ] B.[5,1212ππ] C.[,]63ππ D.[0,]2π7.(湖南卷)圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是A .36 B. 18 C. 26 D. 25 解析:圆0104422=---+y x y x 的圆心为(2,2),半径为32,圆心到直线014=-+y x 的2522,圆上的点到直线的最大距离与最小距离的差是2R =62,选C.8.(江苏卷)圆1)3()1(22=++-y x 的切线方程中有一个是 (A )x -y =0 (B )x +y =0 (C )x =0 (D )y =0 解析:直线ax+by=022(1)(3)1x y -+=与相切|3|12a b -=,由排除法, 选C,本题也可数形结合,画出他们的图象自然会选C,用图象法解最省事。

六年级数学上册第五章《圆》常考题汇编(提高版)

六年级数学上册第五章《圆》常考题汇编(提高版)

六年级数学上册第五章《圆》常考题精选汇编(提高版)六年级数学上册章节常考题精选汇编(提高版)第五章《圆》一.选择题1.(2019秋•迎江区期末)在直径是10m的圆形花坛外,铺一条宽2m的环形小路,环形小路的面积是().A.24πB.44πC.64π2.(2019秋•濉溪县期末)把一个圆平均分成32份,然后剪开,拼成一个近似的长方形,这个转化过程中,()A.周长和面积都没变B.周长没变,面积变了C.周长变了,面积没变D.周长和面积都变了3.(2019秋•文水县期末)一个圆形水池,直径是10米,在水池周围围一圈栅栏,再在栅栏外围修一条宽2米的环形小路,环形小路的面积是()平方米.A.138.16 B.75.36 C.34.54 D.301.444.(2017秋•涟源市校级期末)在边长的正方形里面画一个最大的圆,则正方形的面积与圆的面积之比是()A.2:1 B.4:1 C.4:πD.π:45.(2018秋•巴彦淖尔期中)以一点为圆心可以画出()个圆.A.1 B.2 C.无数D.无答案6.(2017•广东)周长都相等的圆、正方形和长方形,它们的面积()A.圆最大B.正方形最大C.长方形最大D.一样大二.填空题7.(2019秋•芙蓉区期末)一个正方形边长10厘米,在这个正方形里画一个最大的圆,这个圆的周长是________厘米,面积是_______平方厘米.8.(2019秋•皇姑区期末)一个圆的直径扩大到原来的5倍,这个圆的半径扩大到原来的_____倍,周长扩大到原来的______倍,面积扩大到原来的_______倍.9.(2019秋•隆昌市期末)一个圆环,内圆周长是,外圆半径是,圆环的面积是_______.10.(2018秋•虹口区期末)将一个半径为5厘米的圆沿半径剪成2个半径相同的扇形,已知大扇形面积为小扇形的4倍,则两个扇形的周长差为_________厘米.11.(2018秋•浦东新区期末)如果一个半径为的圆的面积恰好与一个半径为的扇形面积相等,那么这个扇形的圆心角度数为_________.13.(2019秋•蓬溪县期末)圆的半径扩大4倍,周长也扩大4倍,面积也扩大4倍.()14.(2018秋•定州市期末)一个圆形铁片的周长是31.4厘米,把它沿直径剪开变成两个半圆形铁片.每个半圆19.(2019•郑州模拟)计算阴影部分的面积.20.(2019•衡水模拟)求下面图形中阴影部分的周长和面积.21.(2014秋•黄山月考)求①图圆与正方形之间部分的面积和②图圆环的面积.草坪的面积是多少平方米?26.用一块长30厘米,宽20厘米的塑料片剪一个最大的圆后,剩下多少平方厘米的边角料?六.解答题27.(2018秋•鹿城区期末)我们学过,将圆转化为近似的长方形,在这个过程中.A.周长和面积都不变B.周长不变,面积变C.面积不变,周长变D.不能确定28.(2018秋•沧州期末)明明用一根长62.8厘米的铁丝围了一个圆(没有剩余),亮亮说:“如果我画一个半径为10厘米的圆,一定比你围的圆面积大.”哪个圆的面积大呢?请你帮忙做出判断,并说明理由.29.(2019秋•汉南区期末)公园里有一个直径是8米的圆形花坛,在花坛周围有一条宽2米的小路.这条石子小路的面积是多少?30.(2019秋•孝昌县期末)公园里有一个圆形花坛,花坛半径是10米,现在要进行扩建,要求扩建后花坛的半径是原来的3/2.扩建后花坛的面积比原来面积大多少平方米?31.(2019秋•宜宾期中)如果大圆的半径等于小圆的直径,则大圆半径是小圆半径的倍.小圆的面积是大圆面积的________.。

历届高考直线与圆试题汇编

历届高考直线与圆试题汇编

历届高考直线与圆试题汇编专题九:解析几何第二十五讲直线与圆一、选择题1.(2018全国卷Ⅲ) 直线 x+y+2=0 分别与 x 轴,y 轴交于 A,B 两点,点 P 在圆 (x-2)²+y²=2 上,则ΔABP 面积的取值范围是:A。

[2,6]B。

[4,8]C。

[2,32]D。

[22,32]2.(2018天津) 已知圆 x+y-2x=0 的圆心为 C,直线 y=3-x相交于 A,B 两点,则ΔABC 的面积为:3.(2018北京) 在平面直角坐标系中,记 d 为点P(cosθ,sinθ) 到直线 x-my-2=0 的距离,当θ,m 变化时,d 的最大值为:A。

1B。

2C。

3D。

44.(2017新课标Ⅲ)已知椭圆C:(x²/a²)+(y²/b²)=1 (a>b>0) 的左、右顶点分别为 A1,A2,且以线段 A1A2 为直径的圆与直线 bx-ay+2ab=0 相切,则 C 的离心率为:A。

√(3/32)B。

1/√(3/32)C。

√(3/8)D。

1/√(3/8)5.(2017新课标Ⅲ)在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上。

若AP=λAB+μAD,则λ+μ 的最大值为:A。

3B。

2√2C。

5D。

26.(2015山东)一条光线从点 (-2,-3) 射出,经 y 轴反射后与圆 (x+3)²+(y-2)²=1 相切,则反射光线所在直线的斜率为:A。

-2/5 或 5/2B。

-5/2 或 2/5C。

-2/3 或 3/2D。

-3/2 或 2/37.(2015新课标2)已知圆 C1:(x-1)²+y²=1,圆 C2:(x-2)²+y²=4,则圆 C1 与圆 C2 的公共弦所在直线的斜率为:A。

1/3B。

1/2C。

2/3D。

3/48.(2015新课标2)过三点 A(1,3),B(4,2),C(1,-7) 的圆交于 y 轴于 M、N 两点,则 MN 的长度为:A。

中考数学圆的综合综合题汇编附答案

中考数学圆的综合综合题汇编附答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E.(1)如图1,求证:∠DAC=∠PAC;(2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA=,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG;(3)在(2)的条件下,如图3,若AE=23DG,PO=5,求EF的长.【答案】(1)证明见解析;(2)证明见解析;(3)EF=32.【解析】【分析】(1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可;(2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案;(3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出EH∥DG,求出OM=12AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO=12MOBM=,tanP=12COPO=,设OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】(1)证明:连接OC,∵PC为⊙O的切线,∴OC⊥PC,∵AD⊥PC,∴OC∥AD,∴∠OCA=∠DAC,∵OC=OA,∴∠PAC=∠OCA,∴∠DAC=∠PAC;(2)证明:连接BE交GF于H,连接OH,∵FG∥AD,∴∠FGD+∠D=180°,∵∠D=90°,∴∠FGD=90°,∵AB为⊙O的直径,∴∠BEA=90°,∴∠BED=90°,∴∠D=∠HGD=∠BED=90°,∴四边形HGDE是矩形,∴DE=GH,DG=HE,∠GHE=90°,∵BF AF=,∴∠HEF=∠FEA=12∠BEA=1902o⨯=45°,∴∠HFE=90°﹣∠HEF=45°,∴∠HEF=∠HFE,∴FH=EH,∴FG=FH+GH=DE+DG;(3)解:设OC交HE于M,连接OE、OF,∵EH=HF,OE=OF,HO=HO,∴△FHO≌△EHO,∴∠FHO=∠EHO=45°,∵四边形GHED是矩形,∴EH∥DG,∴∠OMH=∠OCP=90°,∴∠HOM=90°﹣∠OHM=90°﹣45°=45°,∴∠HOM=∠OHM,∴HM=MO,∵OM⊥BE,∴BM=ME,∴OM=12 AE,设OM=a,则HM=a,AE=2a,AE=23DG,DG=3a,∵∠HGC=∠GCM=∠GHE=90°,∴四边形GHMC是矩形,∴GC=HM=a,DC=DG﹣GC=2a,∵DG=HE,GC=HM,∴ME=CD=2a,BM=2a,在Rt△BOM中,tan∠MBO=122 MO aBM a==,∵EH∥DP,∴∠P=∠MBO,tanP=12 COPO=,设OC=k,则PC=2k,在Rt△POC中,,解得:在Rt△OME中,OM2+ME2=OE2,5a2=5,a=1,∴HE=3a=3,在Rt△HFE中,∠HEF=45°,∴.【点睛】考查了切线的性质,矩形的性质和判定,解直角三角形,勾股定理等知识点,能综合运用性质进行推理是解此题的关键.2.如图,在锐角△ABC中,AC是最短边.以AC为直径的⊙O,交BC于D,过O作OE∥BC,交OD于E,连接AD、AE、CE.(1)求证:∠ACE=∠DCE;(2)若∠B=45°,∠BAE=15°,求∠EAO的度数;(3)若AC=4,23CDF COE S S ∆∆=,求CF 的长.【答案】(1)证明见解析,(2)60°;(3)433【解析】 【分析】(1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°; (3)易证12COE CAES S=,由于23CDF COES S=,所以CDF CAES S =13,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案. 【详解】(1)∵OC =OE ,∴∠OEC =∠OCE .∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G .∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°. ∵OE ∥BC ,∴∠AEO =∠AGC =60°. ∵OA =OE ,∴∠EAO =∠AEO =60°.(3)∵O 是AC 中点,∴12COE CAESS =. 23CDF COES S=,∴CDF CAES S=13. ∵AC 是直径,∴∠AEC =∠FDC =90°. ∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴CF CA =33,∴CF =33CA =433.【点睛】本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.3.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.(1)求证:∠ABD=2∠BDC;(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.【答案】(1)证明见解析;(2)见解析;(3)92 DE=.【解析】【分析】(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到AB=22AD BD+=26,由相似三角形的性质即可得到结论.【详解】(1)连接AD.如图1,设∠BDC=α,∠ADC=β,则∠CAB=∠BDC=α,∵点C为弧ABD中点,∴AC=CD,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;(2)∵CH⊥AB,∴∠ACE+∠CAB=∠ADC+∠BDC=90°,∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴12OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18,∵△AHE ∽△ADB ,∴AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =92.【点睛】本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图.在△ABC 中,∠C =90°,AC =BC ,AB =30cm ,点P 在AB 上,AP =10cm ,点E 从点P 出发沿线段PA 以2c m/s 的速度向点A 运动,同时点F 从点P 出发沿线段PB 以1c m/s 的速度向点B 运动,点E 到达点A 后立刻以原速度沿线段AB 向点B 运动,在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧,设点E 、F 运动的时间为t (s )(0<t <20).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与△ABC 重叠部分的面积为S .①试求S 关于t 的函数表达式;②以点C 为圆心,12t 为半径作⊙C ,当⊙C 与GH 所在的直线相切时,求此时S 的值.【答案】(1)t=2s或10s;(2)①S=2229?(02)75050(210)240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩;②100cm2.【解析】试题分析:(1)如图1中,当0<t≤5时,由题意AE=EH=EF,即10﹣2t=3t,t=2;如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10;(2)分四种切线讨论a、如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2.b、如图4中,当2<t≤5时,重叠部分是五边形EFGMN.c、如图5中,当5<t<10时,重叠部分是五边形EFGMN.d、如图6中,当10<t<20时,重叠部分是正方形EFGH.分别计算即可;②分两种情形分别列出方程即可解决问题.试题解析:解:(1)如图1中,当0<t≤5时,由题意得:AE=EH=EF,即10﹣2t=3t,t=2如图2中,当5<t<20时,AE=HE,2t﹣10=10﹣(2t﹣10)+t,t=10.综上所述:t=2s或10s时,点H落在AC边上.(2)①如图3中,当0<t≤2时,重叠部分是正方形EFGH,S=(3t)2=9t2如图4中,当2<t≤5时,重叠部分是五边形EFGMN,S=(3t)2﹣12(5t﹣10)2=﹣72t2+50t﹣50.如图5中,当5<t<10时,重叠部分是五边形EFGMN,S=(20﹣t)2﹣12(30﹣3t)2=﹣72t2+50t﹣50.如图6中,当10<t<20时,重叠部分是正方形EFGH,S=(20﹣t)2=t2﹣40t+400.综上所述:S=2229?(02)75050(210) 240400?(1020)t tt t tt t t⎧<≤⎪⎪-+-<≤⎨⎪-+<<⎪⎩.②如图7中,当0<t≤5时,12t+3t=15,解得:t=307,此时S=100cm2,当5<t<20时,12t+20﹣t=15,解得:t=10,此时S=100.综上所述:当⊙C与GH所在的直线相切时,求此时S的值为100cm2点睛:本题考查了圆综合题、正方形的性质、等腰直角三角形的性质、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,注意不能漏解,属于中考压轴题.5.已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.【答案】(1)证明见解析;(2)PA=PB+PC.理由见解析;(3)若∠BAC=120°时,(2)3 PA=PB+PC.【解析】试题分析:(1)如图①,连接PC.根据“内接四边形的对角互补的性质”即可证得结论;(2)如图②,通过作辅助线BC、PE、CE(连接BC,延长BP至E,使PE=PC,连接CE)构建等边△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC;(3)如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.利用全等三角形△ABP≌△AQP(SAS)的对应边相等推知AB=AQ,PB=PG,将PA、PB、PC的数量关系转化到△APC中来求即可.试题解析:(1)如图①,连接PC.∵△ACQ是由△ABP绕点A逆时针旋转得到的,∴∠ABP=∠ACQ.由图①知,点A、B、P、C四点共圆,∴∠ACP+∠ABP=180°(圆内接四边形的对角互补),∴∠ACP+∠ACQ=180°(等量代换);(2)PA=PB+PC.理由如下:如图②,连接BC,延长BP至E,使PE=PC,连接CE.∵弦AB=弦AC,∠BAC=60°,∴△ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°(圆内接四边形的对角互补),∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,∵PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=∠ECP=∠EPC=60°;又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP(等量代换),在△BEC和△APC中,CE PCBCE ACPAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△APC(SAS),∴BE=PA,∴PA=BE=PB+PC;(3)若∠BAC=120°时,(23.理由如下:如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.∵∠BAC=120°,∠BAC+∠BPC=180°,∴∠BPC=60°.∵弦AB=弦AC,∴∠APB=∠APQ=30°.在△ABP和△AQP中,PB PQAPB APQAP AP=⎧⎪∠=∠⎨⎪=⎩,∴△ABP≌△AQP(SAS),∴AB=AQ,PB=PQ(全等三角形的对应边相等),∴AQ=AC(等量代换).在等腰△AQC中,QG=CG.在Rt△APG中,∠APG=30°,则AP=2AG,PG=3AG,∴PB+PC=PG ﹣QG+PG+CG=PG﹣QG+PG+QG=2PG=23AG,∴3PA=23AG,即3PA=PB+PC.【点睛】本题考查了圆的综合题,解题的关键要能掌握和灵活运用圆心角、弧、弦间的关系,全等三角形的判定与性质,圆内接四边形的性质等.6.已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2﹣kx+23 =0的两根(k为常数).(1)求证:PA•BD=PB•AE;(2)求证:⊙O的直径长为常数k;(3)求tan∠FPA的值.【答案】(1)见解析;(2)见解析;(3)tan∠FPA=2﹣3 .【解析】试题分析:(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE;(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.试题解析:(1)证明:如图,∵PB切⊙O于点B,∴∠PBD=∠A,∵PF平分∠APB,∴∠APE=∠BPD,∴△PBD∽△PAE,∴PB:PA=BD:AE,∴PA•BD=PB•AE;(2)证明:如图,∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.又∵∠PBD=∠A,∠EPA=∠BPD,∴∠BED=∠BDE.∴BE=BD.∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数),∴AE+BD=k,∴AE+BD=AE+BE=AB=k,即⊙O直径为常数k.(3)∵PB切⊙O于B点,AB为直径.∴∠PBA=90°.∵∠A=60°.∴PB=PA•sin60°=PA,又∵PA•BD=PB•AE,∴BD=AE,∵线段AE、BD的长是一元二次方程 x2﹣kx+2=0的两根(k为常数).∴AE•BD=2,即AE2=2,解得:AE=2,BD=,∴AB=k=AE+BD=2+,BE=BD=,在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2.在Rt△PBE中,tan∠BPF===2﹣,∵∠FPA=∠BPF,∴tan∠FPA=2﹣.【点睛】此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.7.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)【答案】(1)3π;(2)27π;(3)3.【解析】试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,AC BC AB ==,∴AC BC l l ==AB l =603180π⨯=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;(2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =21203360π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,AD =12AC =32,∴OI =AI =3230AD cos DAI cos ∠=︒=3,∴当它第1次回到起始位置时,点I 所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.8.如图,AB 是O 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF 为CD 的垂直平分线,得CF=DF ,∠CDF=∠DCF ,由∠CDO=∠OCD ,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD ⊥DF ,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB 为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB ,FB=OB= OC =2,在直角三角形OCE 中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF 是⊙O 的切线∴∠OCF=90°∴∠OCD+∠DCF=90°∵直径AB ⊥弦CD∴CE=ED,即OF为CD的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD⊥DF∴DF是⊙O的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3sin COEOC2∠==∴CF3=∴CD=2 CF23=【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.9.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若tan∠CAF=12,求12SS的值.【答案】(1)48°(2)证明见解析(3)3 4【解析】【分析】(1)连接CD,根据圆周角定理和垂直的定义可得结论;(2)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得CD PB PD==,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=2x-a,根据勾股定理列方程得:(2x-a)2=x2+a2,则a=34x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(2)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴CD PB=,∵AD是⊙O的直径,AD⊥PC,∴CD PD=,∴CD PB PD==,∴∠BAD=2∠DAC,∵∠COF=2∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF=12=CF AF,∴AF=2x ,∵OC=OA,由(2)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=2x﹣a,Rt△COF中,CO2=CF2+OF2,∴(2x﹣a)2=x2+a2,a=34 x,∴OF=AG=34 x,∵OA=OB,OG⊥AB,∴AB=2AG=32x,∴1213··3 22 1·24·2AB OG x xSS x xCF AF===.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(2)根据外角的性质和圆的性质得:CD PB PD==;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.10.已知AB ,CD 都是O 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=;()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点G ,求证:DG CF =;()3如图3,在()2的条件下,当DG 3CE 4=时,在O 外取一点H ,连接CH 、DH 分别交O 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长.【答案】(1)证明见解析(2)证明见解析(3)837+【解析】【分析】(1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可;(2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可;(3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可;【详解】()1证明:如图1中,O 与CE 相切于点C ,OC CE ∴⊥,OCE 90∠∴=,D E 90∠∠∴+=,2D 2E 180∠∠∴+=,AOD COB ∠∠=,BOC 2D ∠∠=,AOD 2D ∠∠=,AOD 2E 180∠∠∴+=.()2证明:如图2中,作OR AF ⊥于R .OCF F ORF 90∠∠∠===,∴四边形OCFR 是矩形,AF//CD ∴,CF OR =,A AOD ∠∠∴=,在AOR 和ODG 中,A AOD ∠∠=,ARO OGD 90∠∠==,OA DO =,AOR ∴≌ODG ,OR DG ∴=,DG CF ∴=,()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W .设DG 3m =,则CF 3m =,CE 4m =,OCF F BTE 90∠∠∠===,AF//OC//BT ∴,OA OB =,CT CF 3m ∴==,ET m ∴=, CD 为直径,CBD CND 90CBE ∠∠∠∴===,E 90EBT CBT ∠∠∠∴=-=,tan E tan CBT ∠∠∴=,BT CT ET BT∴=,BT 3m m BT∴=,BT ∴=负根已经舍弃),tan E ∠∴== E 60∠∴=,CWD HDE H ∠∠∠=+,HDE HCE ∠∠=,H E 60∠∠∴==,MON 2HCN 60∠∠∴==,OM ON =,OMN ∴是等边三角形,MN ON ∴=,QM OB OM ==,MOQ MQO ∠∠∴=,MOQ PON 180MON 120∠∠∠+=-=,MQO P 180H 120∠∠∠+=-=, PON P ∠∠∴=,ON NP 141125∴==+=,CD 2ON 50∴==,MN ON 25==,在Rt CDN 中,CN 48==,在Rt CHN 中,CN 48tan H HN HN∠===HN ∴=在Rt KNH 中,1KH HN 2==NK 24==,在Rt NMK 中,MK 7===,HM HK MK 7∴=+=.【点睛】本题考查圆综合题、全等三角形的判定和性质、平行线的性质、勾股定理、等边三角形的判定和性质、锐角三角函数等知识,添加常用辅助线,构造全等三角形或直角三角形解题的关键.。

2020中学数学真题汇编-圆打印版

2020中学数学真题汇编-圆打印版

圆一.切线的判定与性质(共35小题)1.(2020•葫芦岛)如图,四边形ABCD内接于⊙O,AC是直径,AB=BC,连接BD,过点D的直线与CA的延长线相交于点E,且∠EDA=∠ACD.(1)求证:直线DE是⊙O的切线;(2)若AD=6,CD=8,求BD的长.2.(2020•赤峰)如图,AB是⊙O的直径,AC是⊙O的一条弦,点P是⊙O上一点,且P A =PC,PD∥AC,与BA的延长线交于点D.(1)求证:PD是⊙O的切线;(2)若tan∠P AC=23,AC=12,求直径AB的长.3.(2020•河池)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是BD̂的中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.4.(2020•沈阳)如图,在△ABC中,∠ACB=90°,点O为BC边上一点,以点O为圆心,OB长为半径的圆与边AB相交于点D,连接DC,当DC为⊙O的切线时.(1)求证:DC=AC;(2)若DC=DB,⊙O的半径为1,请直接写出DC的长为.5.(2020•镇江)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O 为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为MN̂的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=13,连接AE,当AE与⊙O相切时,求AB的长.6.(2020•宁夏)如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O 交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求BEDE.7.(2020•云南)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)求证:CE是⊙O的切线;(2)若AD=4,cos∠CAB=45,求AB的长.8.(2020•毕节市)如图,已知AB是⊙O的直径,⊙O经过Rt△ACD的直角边DC上的点F,交AC边于点E,点F是弧EB的中点,∠C=90°,连接AF.(1)求证:直线CD是⊙O切线.(2)若BD=2,OB=4,求tan∠AFC的值.9.(2020•邵阳)如图,在等腰△ABC中,AB=AC,点D是BC上一点,以BD为直径的⊙O 过点A,连接AD,∠CAD=∠C.(1)求证:AC是⊙O的切线;(2)若AC=4,求⊙O的半径.10.(2020•玉林)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD ⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.11.(2020•东营)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=3,AE=4,AM=5.(1)求证:BC是⊙O的切线;(2)求⊙O的直径AB的长度.12.(2020•娄底)如图,点C在以AB为直径的⊙O上,BD平分∠ABC交⊙O于点D,过D作BC的垂线,垂足为E.(1)求证:DE与⊙O相切;(2)若AB=5,BE=4,求BD的长;(3)请用线段AB、BE表示CE的长,并说明理由.13.(2020•烟台)如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;̂的长(结果保留π).(2)若AD=2√3,求AM14.(2020•广东)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧AÊ上一点,AD=1,BC=2.求tan∠APE 的值.15.(2020•株洲)AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM=∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=53,若⊙O的半径为1,cosα=34,求AG•ED的值.16.(2020•湘西州)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(1)若D为AC的中点,证明:DE是⊙O的切线;(2)若CA=6,CE=3.6,求⊙O的半径OA的长.17.(2020•潍坊)如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧BF̂的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.18.(2020•营口)如图,△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;(2)若tan A=34,AD=2,求BO的长.19.(2020•青海)如图,已知AB是⊙O的直径,直线BC与⊙O相切于点B,过点A作AD ∥OC交⊙O于点D,连接CD.(1)求证:CD是⊙O的切线.(2)若AD=4,直径AB=12,求线段BC的长.20.(2020•盐城)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.21.(2020•张家界)如图,在Rt△ABC中,∠ACB=90°,以AB为直径作⊙O,过点C作直线CD交AB的延长线于点D,使∠BCD=∠A.(1)求证:CD为⊙O的切线;(2)若DE平分∠ADC,且分别交AC,BC于点E,F,当CE=2时,求EF的长.22.(2020•郴州)如图,△ABC内接于⊙O,AB是⊙O的直径.直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).23.(2020•临沂)已知⊙O 1的半径为r 1,⊙O 2的半径为r 2.以O 1为圆心,以r 1+r 2的长为半径画弧,再以线段O 1O 2的中点P 为圆心,以12O 1O 2的长为半径画弧,两弧交于点A ,连接O 1A ,O 2A ,O 1A 交⊙O 1于点B ,过点B 作O 2A 的平行线BC 交O 1O 2于点C .(1)求证:BC 是⊙O 2的切线;(2)若r 1=2,r 2=1,O 1O 2=6,求阴影部分的面积.24.(2020•随州)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,与BC 交于点M ,与AB 的另一个交点为E ,过M 作MN ⊥AB ,垂足为N .(1)求证:MN 是⊙O 的切线;(2)若⊙O 的直径为5,sin B =35,求ED 的长.25.(2020•福建)如图,AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,E 是BCD ̂上不与B ,D 重合的点,sin A =12. (1)求∠BED 的大小;(2)若⊙O 的半径为3,点F 在AB 的延长线上,且BF =3√3,求证:DF 与⊙O 相切.26.(2020•长沙)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=√3,求⊙O的半径.27.(2020•辽阳)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.28.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,AĈ=CD̂=DB̂,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.29.(2020•凉山州)如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分∠BAC交半圆于点D,过点D作DH⊥AC与AC的延长线交于点H.(1)求证:DH是半圆的切线;(2)若DH=2√5,sin∠BAC=√53,求半圆的直径.30.(2020•枣庄)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.31.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.32.(2020•聊城)如图,在△ABC 中,AB =BC ,以△ABC 的边AB 为直径作⊙O ,交AC 于点D ,过点D 作DE ⊥BC ,垂足为点E .(1)试证明DE 是⊙O 的切线;(2)若⊙O 的半径为5,AC =6√10,求此时DE 的长.33.(2020•黔东南州)如图,AB 是⊙O 的直径,点C 是⊙O 上一点(与点A ,B 不重合),过点C 作直线PQ ,使得∠ACQ =∠ABC .(1)求证:直线PQ 是⊙O 的切线.(2)过点A 作AD ⊥PQ 于点D ,交⊙O 于点E ,若⊙O 的半径为2,sin ∠DAC =12,求图中阴影部分的面积.34.(2020•铜仁市)如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC ,CE ⊥AB 于点E ,D 是直径AB 延长线上一点,且∠BCE =∠BCD .(1)求证:CD 是⊙O 的切线;(2)若AD =8,BE CE =12,求CD 的长.35.(2020•遵义)如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BĈ于点D,过点D作DE∥BC交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.二.切线长定理(共1小题)36.(2020•永州)如图,已知P A,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O 于点M.给出下列四种说法:①P A=PB;②OP⊥AB;③四边形OAPB有外接圆;④M是△AOP外接圆的圆心.其中正确说法的个数是()A.1B.2C.3D.4三.三角形的内切圆与内心(共6小题)37.(2020•随州)设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h、r、R,则下列结论不正确的是()A.h=R+r B.R=2r C.r=√34a D.R=√3 3a38.(2020•济宁)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是()A.4√3B.2√3C.2D.4 39.(2020•金华)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF̂上一点,则∠EPF的度数是()A.65°B.60°C.58°D.50°40.(2020•青海)如图,在△ABC中,∠C=90°,AC=3,BC=4,则△ABC的内切圆半径r=.41.(2020•泰州)如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),则△ABC内心的坐标为.42.(2020•达州)已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4√b−1−19,则△ABC 的内切圆半径=.四.正多边形和圆(共8小题)43.(2020•阜新)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i∁i D i E i,则正六边形OA i B i∁i D i E i(i=2020)的顶点∁i的坐标是()A.(1,−√3)B.(1,√3)C.(1,﹣2)D.(2,1)44.(2020•德阳)半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a 45.(2020•连云港)10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心()A.△AED B.△ABD C.△BCD D.△ACD 46.(2020•凉山州)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2√2:√3B.√2:√3C.√3:√2D.√3:2√2 47.(2020•德州)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为()A.24√3−4πB.12√3+4πC.24√3+8πD.24√3+4π48.(2020•济南)如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为.49.(2020•葫芦岛)如图,以AB为边,在AB的同侧分别作正五边形ABCDE和等边△ABF,连接FE,FC,则∠EF A的度数是.50.(2020•黄石)匈牙利著名数学家爱尔特希(P.Erdos,1913﹣1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是.一.正多边形和圆(共12小题)1.(2020•玉林)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是.2.(2020•株洲)一个蜘蛛网如图所示,若多边形ABCDEFGHI为正九边形,其中心点为点O,点M、N分别在射线OA、OC上,则∠MON=度.3.(2020•湘西州)观察下列结论:(1)如图①,在正三角形ABC中,点M,N是AB,BC上的点,且AM=BN,则AN =CM,∠NOC=60°;(2)如图2,在正方形ABCD中,点M,N是AB,BC上的点,且AM=BN,则AN=DM,∠NOD=90°;(3)如图③,在正五边形ABCDE中点M,N是AB,BC上的点,且AM=BN,则AN =EM,∠NOE=108°;…根据以上规律,在正n边形A1A2A3A4…A n中,对相邻的三边实施同样的操作过程,即点M,N是A1A2,A2A3上的点,且A1M=A2N,A1N与A n M相交于O.也会有类似的结论,你的结论是.4.(2020•徐州)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为.5.(2020•株洲)据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为尺.(结果用最简根式表示)6.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.7.(2020•扬州)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b =3cm ,则螺帽边长a = cm .8.(2020•连云港)如图,正六边形A 1A 2A 3A 4A 5A 6内部有一个正五边形B 1B 2B 3B 4B 5,且A 3A 4∥B 3B 4,直线l 经过B 2、B 3,则直线l 与A 1A 2的夹角α= °.9.(2020•绥化)如图,正五边形ABCDE 内接于⊙O ,点P 为DÊ上一点(点P 与点D ,点E 不重合),连接PC 、PD ,DG ⊥PC ,垂足为G ,∠PDG 等于 度.10.(2020•成都)如图,六边形ABCDEF 是正六边形,曲线F A 1B 1C 1D 1E 1F 1…叫做“正六边形的渐开线”,FA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,D 1E 1̂,E 1F 1̂,…的圆心依次按A ,B ,C ,D ,E ,F 循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB =1时,曲线F A 1B 1C 1D 1E 1F 1的长度是 .11.(2020•滨州)如图,⊙O是正方形ABCD的内切圆,切点分别为E、F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为.12.(2020•通辽)中心为O的正六边形ABCDEF的半径为6cm,点P,Q同时分别从A,D 两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s).(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比.二.弧长的计算(共12小题)13.(2020•盘锦)如图,在△ABC中,AB=BC,∠ABC=90°,以AB为直径的⊙O交AC 于点D,点E为线段OB上的一点,OE:EB=1:√3,连接DE并延长交CB的延长线̂的长是()于点F,连接OF交⊙O于点G,若BF=2√3,则BGA .π3B .π2C .2π3D .3π414.(2020•沈阳)如图,在矩形ABCD 中,AB =√3,BC =2,以点A 为圆心,AD 长为半径画弧交边BC 于点E ,连接AE ,则DÊ的长为( )A .4π3B .πC .2π3D .π3 15.(2020•包头)如图,AB 是⊙O 的直径,CD 是弦,点C ,D 在直径AB 的两侧.若∠AOC :∠AOD :∠DOB =2:7:11,CD =4,则CD̂的长为( )A .2πB .4πC .√2π2D .√2π16.(2020•吉林)如图,在四边形ABCD 中,AB =CB ,AD =CD ,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD 的对角线AC ,BD 相交于点O .以点B 为圆心,BO 长为半径画弧,分别交AB ,BC 于点E ,F .若∠ABD =∠ACD =30°,AD =1,则EF ̂的长为 (结果保留π).17.(2020•娄底)如图,公路弯道标志表示圆弧道路所在圆的半径为m (米),某车在标有R =300处的弯道上从点A 行驶了100π米到达点B ,则线段AB = 米.18.(2020•益阳)小明家有一个如图所示的闹钟,他观察发现圆心角∠AOB =90°,测得ACB ̂的长为36cm ,则ADB̂的长为 cm .19.(2020•潍坊)如图,四边形ABCD 是正方形,曲线DA 1B 1C 1D 1A 2…是由一段段90度的弧组成的.其中:DA 1̂的圆心为点A ,半径为AD ;A 1B 1̂的圆心为点B ,半径为BA 1;B 1C 1̂的圆心为点C ,半径为CB 1;C 1D 1̂的圆心为点D ,半径为DC 1;⋯DA 1̂,A 1B 1̂,B 1C 1̂,C 1D 1̂,…的圆心依次按点A ,B ,C ,D 循环.若正方形ABCD 的边长为1,则A 2020B 2020̂的长是 .20.(2020•河南)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为.̂的长为21.(2020•宁波)如图,折扇的骨柄长为27cm,折扇张开的角度为120°,图中AB cm(结果保留π).22.(2020•温州)若扇形的圆心角为45°,半径为3,则该扇形的弧长为.23.(2020•新疆)如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为.24.(2020•金华)如图,AB ̂的半径OA =2,OC ⊥AB 于点C ,∠AOC =60°. (1)求弦AB 的长. (2)求AB̂的长.三.扇形面积的计算(共26小题)25.(2020•日照)如图,AB 是⊙O 的直径,CD 为⊙O 的弦,AB ⊥CD 于点E ,若CD =6√3,AE =9,则阴影部分的面积为( )A .6π−92√3B .12π﹣9√3C .3π−94√3D .9√326.(2020•西藏)如图,AB 为半圆O 的直径,C 为半圆上的一点,OD ⊥AC ,垂足为D ,延长OD 与半圆O 交于点E .若AB =8,∠CAB =30°,则图中阴影部分的面积为( )A .43π−√3B .43π﹣2√3C .83π−√3D .83π﹣2√327.(2020•毕节市)如图,已知点C ,D 是以AB 为直径的半圆的三等分点,弧CD 的长为13π,则图中阴影部分的面积为( )A .16πB .316π C .124π D .112π+√34 28.(2020•山西)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC =BD =12cm ,C ,D 两点之间的距离为4cm ,圆心角为60°,则图中摆盘的面积是( )A .80πcm 2B .40πcm 2C .24πcm 2D .2πcm 229.(2020•咸宁)如图,在⊙O 中,OA =2,∠C =45°,则图中阴影部分的面积为( )A .π2−√2B .π−√2C .π2−2D .π﹣230.(2020•株洲)如图所示,点A 、B 、C 对应的刻度分别为0、2、4、将线段CA 绕点C 按顺时针方向旋转,当点A 首次落在矩形BCDE 的边BE 上时,记为点A 1,则此时线段CA 扫过的图形的面积为( )A .4πB .6C .4√3D .83π31.(2020•攀枝花)如图,直径AB =6的半圆,绕B 点顺时针旋转30°,此时点A 到了点A ',则图中阴影部分的面积是( )A .π2B .3π4C .πD .3π32.(2020•泰州)如图,半径为10的扇形AOB 中,∠AOB =90°,C 为AB ̂上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE 为36°,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π33.(2020•乐山)在△ABC 中,已知∠ABC =90°,∠BAC =30°,BC =1.如图所示,将△ABC 绕点A 按逆时针方向旋转90°后得到△AB ′C ′.则图中阴影部分面积为( )A .π4B .π−√32C .π−√34D .√32π34.(2020•苏州)如图,在扇形OAB 中,已知∠AOB =90°,OA =√2,过AB̂的中点C 作CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E ,则图中阴影部分的面积为( )A .π﹣1B .π2−1C .π−12D .π2−1235.(2020•聊城)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M ,连接OC ,DB .如果OC ∥DB ,OC =2√3,那么图中阴影部分的面积是( )A .πB .2πC .3πD .4π36.(2020•黔东南州)如图,正方形ABCD 的边长为2,O 为对角线的交点,点E 、F 分别为BC 、AD 的中点.以C 为圆心,2为半径作圆弧BD ̂,再分别以E 、F 为圆心,1为半径作圆弧BÔ、OD ̂,则图中阴影部分的面积为( )A .π﹣1B .π﹣2C .π﹣3D .4﹣π37.(2020•哈尔滨)一个扇形的面积是13πcm 2,半径是6cm ,则此扇形的圆心角是 度. 38.(2020•贵港)如图,在扇形OAB 中,点C 在AB ̂上,∠AOB =90°,∠ABC =30°,AD ⊥BC 于点D ,连接AC ,若OA =2,则图中阴影部分的面积为 .39.(2020•朝阳)如图,点A ,B ,C 是⊙O 上的点,连接AB ,AC ,BC ,且∠ACB =15°,过点O作OD∥AB交⊙O于点D,连接AD,BD,已知⊙O半径为2,则图中阴影面积为.40.(2020•呼伦贝尔)若一个扇形的弧长是2πcm,面积是6πcm2,则扇形的圆心角是度.41.(2020•长春)如图,在△ABC中,∠ABC=90°,AB=BC=2,以点C为圆心,线段̂,交CB的延长线于点D,则阴影部分的面积为(结果保留CA的长为半径作ADπ).42.(2020•鄂尔多斯)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2√3,则阴影部分面积S阴影=.43.(2020•呼和浩特)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧,交AC于点E,若∠A=60°,∠ABC=100°,BC=4,则扇形BDE的面积为.44.(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值)45.(2020•十堰)如图,圆心角为90°的扇形ACB 内,以BC 为直径作半圆,连接AB .若阴影部分的面积为(π﹣1),则AC = .46.如图所示的扇形AOB 中,OA =OB =2,∠AOB =90°,C 为AB ̂上一点,∠AOC =30°,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为 .47.(2020•湘潭)如图,在半径为6的⊙O 中,圆心角∠AOB =60°,则阴影部分面积为 .48.(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为 .(结果保留π)49.(2020•金昌)若一个扇形的圆心角为60°,面积为π6cm 2,则这个扇形的弧长为 cm(结果保留π).50.(2020•凉山州)如图,点C 、D 分别是半圆AOB 上的三等分点,若阴影部分的面积是32π,则半圆的半径OA 的长为 .一.扇形面积的计算(共4小题)1.如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.2.(2020•重庆)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为.(结果保留π)3.(2020•重庆)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB =2√3,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)4.(2020•黔西南州)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.二.圆锥的计算(共26小题)5.(2020•大庆)底面半径相等的圆锥与圆柱的高的比为1:3,则圆锥与圆柱的体积的比为( ) A .1:1B .1:3C .1:6D .1:96.(2020•南通)如图是一个几何体的三视图(图中尺寸单位:cm ),则这个几何体的侧面积为( )A .48πcm 2B .24πcm 2C .12πcm 2D .9πcm 27.(2020•云南)如图,正方形ABCD 的边长为4,以点A 为圆心,AD 为半径,画圆弧DE 得到扇形DAE (阴影部分,点E 在对角线AC 上).若扇形DAE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )A .√2B .1C .√22D .128.(2020•东营)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为( ) A .πB .2πC .2D .19.(2020•湖北)一个圆锥的底面半径是4cm ,其侧面展开图的圆心角是120°,则圆锥的母线长是( )A .8cmB .12cmC .16cmD .24cm10.(2020•青海)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是( )A .3.6B .1.8C .3D .611.(2020•聊城)如图,有一块半径为1m ,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( )A .14mB .34mC .√154mD .√32m 12.(2020•常德)一个圆锥的底面半径r =10,高h =20,则这个圆锥的侧面积是( )A .100√3πB .200√3πC .100√5πD .200√5π13.(2020•镇江)圆锥底面圆半径为5,母线长为6,则圆锥侧面积等于 .14.(2020•宿迁)用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .15.(2020•永州)已知圆锥的底面周长是π2分米,母线长为1分米,则圆锥的侧面积是 平方分米.16.(2020•邵阳)如图①是山东舰徽的构图,采用航母45度破浪而出的角度,展现山东舰作为中国首艘国产航母横空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为10π的弧,若该弧所在的扇形是高为12的圆锥侧面展开图(如图②),则该圆锥的母线长AB 为 .17.(2020•娄底)如图,四边形ABDC中,AB=AC=3,BD=CD=2,则将它以AD为轴旋转180°后所得分别以AB、BD为母线的上下两个圆锥的侧面积之比为.18.(2020•徐州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于.19.(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.20.(2020•广东)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.21.(2020•鄂州)用一个圆心角为120°,半径为4的扇形制作一个圆锥的侧面,则此圆锥的底面圆的半径为.22.(2020•长沙)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为.23.(2020•扬州)圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为.24.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为cm.25.(2020•绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是度.26.(2020•德州)若一个圆锥的底面半径是2cm,母线长是6cm,则该圆锥侧面展开图的圆心角是度.27.(2020•黑龙江)小明在手工制作课上,用面积为150πcm2,半径为15cm的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为cm.28.(2020•无锡)已知圆锥的底面半径为1cm,高为√3cm,则它的侧面展开图的面积为=cm2.29.(2020•嘉兴)如图,在半径为√2的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形的面积为;若将此扇形围成一个无底的圆锥(不计接头),则圆锥底面半径为.30.(2020•营口)一个圆锥的底面半径为3,高为4,则此圆锥的侧面积为.。

解析几何试题汇编圆

解析几何试题汇编圆

题型:选择题 难度:易 题目: 1.设曲线C 的方程为(x -3)2+(y -2)2=2,直线l 的方程为x +y -3=0,点P 的坐标为(2,1),那么 ( )(A )点P 在直线l 上,但不在曲线C 上 (B )点P 在曲线C 上,但不在直线l 上(C )点P 即在直线l 上又在曲线C 上 (D )点P 即不在直线l 上又不在曲线C 上 答案:C编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:圆 题型:选择题 难度:中等题目:2.已知曲线是与两定点O (0, 0),A (3,0)的距离的比为21的点的轨迹。

这条曲线的方程是( )(A ) (x +1)2+y 2=4 (B ) (x +3)2+y 2=18 (C ) (x -1)2+y 2=4 (D ) (x -3)2+y =18答案:A编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:圆 题型:选择题 难度:中等题目:3.A =C ≠0,B =0是方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的( )条件(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )不充分不必要条件 答案:B编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:圆 题型:选择题 难度:中等题目:4.曲线y =1+24x 与直线y =k (x -2)+4有两个交点时,实数k 的取值范围是( )(A )(125,+∞) (B ) (125,43 ] (C )(0,125) (D )(31, 43)答案:B编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:圆 题型:选择题 难度:易题目:5.圆x 2+y 2+Dx +Ey +F =0的圆心坐标和直径分别是( )(A )(-2D ,-2E ) ;F E D 422-+ (B )(2D ,2E) ;F E D 422-+(C )(-2D ,-2E ) ;21(D 2+E 2-4F ) (D )(2D ,2E ) ;21(D 2+E 2-4F )答案:A题型:选择题 难度:中等题目:6.圆x 2+y 2=2的经过点P (2,2-2)的切线方程是( )(A )x +y =2 (B )x +y =2 (C )x =2或x +y =2 (D )x =2或x +y =2 答案:C编号: 年级:高二、高三 知识点:圆锥曲线 分知识点:圆 题型:填空题 难度:中等题目:7.经过A (m +1,m )的某一直线与圆(x -1)2+y 2=1相切,则m 的取值范围是 。

2012年高考真题汇编——理科数学(解析版)9:直线与圆

2012年高考真题汇编——理科数学(解析版)9:直线与圆

2012高考真题分类汇编:直线与圆1.【2012高考真题重庆理3】任意的实数k ,直线1+=kx y 与圆222=+y x 的位置关系一定是(1) 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心【答案】C【解析】直线1+=kx y 恒过定点)1,0(,定点到圆心的距离21<=d ,即定点在圆内部,所以直线1+=kx y 与圆相交但直线不过圆心,选C.2.【2012高考真题浙江理3】设a ∈R ,则“a =1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行 的A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件【答案】A【解析】当1=a 时,直线1l :02=+y x ,直线2l :042=++y x ,则1l //2l ;若1l //2l ,则有012)1(=⨯-+a a ,即022=-+a a ,解之得,2-=a 或1=a ,所以不能得到1=a 。

故选A.4.【2012高考真题陕西理4】已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )A.l 与C 相交B. l 与C 相切C.l 与C 相离D. 以上三个选项均有可能【答案】A.【解析】圆的方程可化为4)2(22=+-y x ,易知圆心为)0,2(半径为2,圆心到点P 的距离为1,所以点P 在圆内.所以直线与圆相交.故选A.5.【2012高考真题天津理8】设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则m+n 的取值范围是(A )]31,31[+- (B )),31[]31,(+∞+⋃--∞(C )]222,222[+- (D )),222[]222,(+∞+⋃--∞【答案】D【解析】圆心为)1,1(,半径为 1.直线与圆相切,所以圆心到直线的距离满足1)1()1(|2)1()1|22=+++-+++n m n m (,即2)2(1n m mn n m +≤=++,设z n m =+,即01412≥--z z ,解得,222-≤z 或,222+≥z6.【2012高考江苏12】(5分)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ▲ . 【答案】43。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(2016年北京高考)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为
(A )1 (B )2 (C

D )
【答案】C
2、(2016年山东高考)已知圆M :截直线所得线段的长
度是,则圆M 与圆N :的位置关系是

A )内切(
B )相交(
C )外切(
D )相离
3、(2016年天津高考)已知圆C 的圆心在x
轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=,则圆C 的方程为__________ 【答案】22(2)9.x y -+=
4、(2016年全国I 卷高考)设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若 ,则圆C 的面积为 .
【答案】4π
5.(2016年全国III 卷高考)已知直线:与圆交于两
点,过分别作的垂线与轴交于两点,则_____________.
【答案】4
6、(2016年浙江高考)已知,方程表示圆,则圆心坐标是_____,半径是______.
【答案】;5.
7、(2016年江苏省高考)
如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M:及其上一点A(2,4)
(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程;
(2)设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC=OA,求直线l 的方程;
(3)设点T (t,o )满足:存在圆M 上的两点P 和Q,使得,求实数t 的取值范围。

2220(0)x y ay a +-=>0x y +=22(1)1x y +-=(-1)l 60x +=2212x y +=,A B ,A B l x ,C D ||CD =a ∈R 222
(2)4850a x a y x y a +++++=(2,4)--221214600x y x y +--+=,TA TP TQ +=
解:圆M 的标准方程为()()226725x y -+-=,所以圆心M(6,7),半径为5,.
(1)由圆心N 在直线x=6上,可设()06,N y .因为圆N 与x 轴相切,与圆M 外切, 所以007y <<,于是圆N 的半径为0y ,从而0075y y -=+,解得01y =.
因此,圆N 的标准方程为()()22611x y -+-=.
(2)因为直线l ∥OA ,所以直线l 的斜率为40220
-=-. 设直线l 的方程为y=2x+m ,即2x-y+m=0,
则圆心M 到直线l 的距离
d
因为BC OA ==
=
而2
22,2BC MC d ⎛⎫=+ ⎪⎝⎭
所以()252555m +=+,解得m=5或m=-15.
故直线l 的方程为2x-y+5=0或2x-y-15=0.
(3)设()()1122,,Q ,.P x y x y
因为()()2,4,,0,A T t TA TP TQ +=,所以212124
x x t y y =+-⎧⎨=+⎩
……①
因为点Q 在圆M 上,所以()()22226725.x y -+-= …….②
将①代入②,得()()22114325x t y --+-=.
于是点()11,P x y 既在圆M 上,又在圆()()224325x t y -++-=⎡⎤⎣⎦上,
从而圆()()226725x y -+-=与圆()()224325x t y -++-=⎡⎤⎣⎦有公共点,
所以5555,-≤≤+ 解得22t -≤≤+.
因此,实数t 的取值范围是22⎡-+⎣. 8、[2014·福建卷] 设P ,Q 分别为圆x 2+(y -6)2
=2和椭圆x 2
10+y 2=1上的点,则P ,Q 两点间的最大距离是( )
A .5 2 B.46+ 2 C .7+ 2 D .6 2
[解析] D 设圆心为点C ,则圆x 2+(y -6)2=2的圆心为C (0,6),半径r = 2.设点Q (x 0,y 0)
是椭圆上任意一点,则x 2010+y 20=1,即x 20=10-10y 20,
∴|CQ |=10-10y 20+(y 0-6)2=-9y 20-12y 0+46=-9⎝⎛⎭⎫y 0+232
+50, 当y 0=-23时,|CQ |有最大值5
2, 则P ,Q 两点间的最大距离为5
2+r =6 2.
10.[2014·湖北卷] 直线l 1:y =x +a 和l 2:y =x +b 将单位圆C :x 2+y 2=1分成长度相等的四段弧,则a 2+b 2=________.
[解析] 2 依题意得,圆心O 到两直线l 1:y =x +a ,l 2:y =x +b 的距离相等,且每段弧长
等于圆周的14,即|a |2=|b |2
=1×sin 45°,得 |a |=|b |=1.故a 2+b 2=2.
11.[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.
[解析] .43 如图所示,根据题意,OA ⊥PA ,OA =2,OP =10,所以PA =OP 2-OA 2=2
2,所以tan ∠OPA =OA PA =22 2
=12,故tan ∠APB =2tan ∠OPA 1-tan 2∠OPA =43, 即l 1与l 2的夹角的正切值等于43.
12.[2014·陕西卷] 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.
[解析] x 2+(y -1)2=1由圆C 的圆心与点(1,0)关于直线y =x 对称,得圆C 的圆心为(0,
1).又因为圆C 的半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.。

相关文档
最新文档