历年高考数学真题(全国卷整理版)

合集下载

2022年全国高考(新高考II卷)数学真题+答案 逐题解析

2022年全国高考(新高考II卷)数学真题+答案 逐题解析

2022年普通高等学校招生全国统一考试(新高考全国Ⅱ卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}- B.{1,2}C.{1,4}D.{1,4}-【答案】B 【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B = ,故选:B.2.(22i)(12i)+-=()A.24i -+ B.24i -- C.62i + D.62i-【答案】D 【解析】【分析】利用复数的乘法可求()()22i 12i +-.【详解】()()22i 12i 244i 2i 62i +-=+-+=-,故选:D.3.中国的古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AA k k k OD DC CB BA ====,若123,,k k k 是公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =()A.0.75B.0.8C.0.85D.0.9【答案】D 【解析】【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===,依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D4.已知(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a cbc ,则t =()A.6- B.5- C.5D.6【答案】C 【解析】【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解:()3,4c t =+ ,cos ,cos ,a c b c = ,即931635t t c c+++= ,解得5t =,故选:C5.有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有多少种()A.12种 B.24种C.36种D.48种【答案】B 【解析】【分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式,故选:B6.角,αβ满足sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则()A.tan()1αβ+= B.tan()1αβ+=-C.tan()1αβ-= D.tan()1αβ-=-【答案】D 【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-,即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=,所以()tan 1αβ-=-,故选:D7.正三棱台高为1,上下底边长分别为积是()A.100π B.128πC.144πD.192π【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以122,2sin 60sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =,2d =121d d -=或121d d +=1=或1=,解得225R =符合题意,所以球的表面积为24π100πS R ==.故选:A.8.若函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A.3- B.2- C.0D.1【答案】A 【解析】【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.函数()sin(2)(0π)f x x ϕϕ=+<<的图象以2π,03⎛⎫⎪⎝⎭中心对称,则()A.y =()f x 在5π0,12⎛⎫⎪⎝⎭单调递减B.y =()f x 在π11π,1212⎛⎫-⎪⎝⎭有2个极值点C.直线7π6x =是一条对称轴D.直线2y x =-是一条切线【答案】AD 【解析】【分析】根据三角函数的性质逐个判断各选项,即可解出.【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z ,即4ππ,3k k ϕ=-+∈Z ,又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫⎪⎝⎭上是单调递减;对B,当π11π,1212x ⎛⎫∈-⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点;对C,当7π6x =时,2π23π3x +=,7π()06f =,直线7π6x =不是对称轴;对D,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点30,2⎛⎫ ⎪ ⎪⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)2y x -=--即2y x =-.故选:AD.10.已知O 为坐标原点,过抛物线2:2(0)C y px p =>的焦点F 的直线与C 交于A ,B 两点,点A 在第一象限,点(,0)M p ,若||||AF AM =,则()A.直线AB 的斜率为B.||||OB OF =C.||4||AB OF > D.180OAM OBM ∠+∠<︒【答案】ACD 【解析】【分析】由AF AM =及抛物线方程求得36()42p A ,再由斜率公式即可判断A 选项;表示出直线AB 的方程,联立抛物线求得6(,33p B -,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB =即可判断C 选项;由0OA OB ⋅< ,0MA MB ⋅< 求得AOB ∠,AMB ∠为钝角即可判断D 选项.【详解】对于A,易得(,0)2pF ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp +=,代入抛物线可得2233242p y p p =⋅=,则36(,)42p A ,则直线AB的斜率为62342p p =-,A 正确;对于B,由斜率为可得直线AB的方程为2p x y =+,联立抛物线方程得220y py p -=,设11(,)B x y ,则16626p y p +=,则163y =-,代入抛物线得21623p x ⎛⎫-=⋅ ⎪ ⎪⎝⎭,解得13p x =,则(,)33p B -,则732pOB OF =≠=,B 错误;对于C,由抛物线定义知:325244312p p p AB p p OF =++=>=,C 正确;对于D,23663663(,(,)0423343234p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭ ,则AOB ∠为钝角,又26262665(,(,0423343236p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠= ,则180OAM OBM ∠+∠< ,D 正确.故选:ACD.11.如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V,则()A.322V V =B.312V V =C.312V V V =+D.3123V V =【答案】CD 【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅= ,()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅= ,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥,又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D = ,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ===,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,213222EFM S EM FM a =⋅= ,AC =,则33123A EFM C EFM EFM V V V AC S a --=+=⋅= ,则3123V V =,323V V =,312V V V =+,故A、B 错误;C、D 正确.故选:CD.12.对任意x ,y ,221+-=x y xy ,则()A.1x y +≤ B.2x y +≥-C.222x y +≤ D.221x y +≥【答案】BC 【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为22222a b a b ab ++⎛⎫≤≤ ⎪⎝⎭(,a b ÎR ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos ,sin 22y x y θθ-==,所以cos ,x y θθθ==,因此2222511cos sin cos 12cos 2333x y θθθθ=θ-θ+=+++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当33,33x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC.三、填空题:本题共4小题,每小题5分,共20分.13.已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为()22,X N σ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.14.写出曲线ln ||y x =过坐标原点的切线方程:____________,____________.【答案】①.1ey x =②.1ey x =-【解析】【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得;【详解】解:因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =;当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-,又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-;故答案为:1e y x =;1e y x=-15.已知点(2,3),(0,)A B a -,若直线AB 关于y a =的对称直线与圆22(3)(2)1x y +++=存在公共点,则实数a 的取值范围为________.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】【分析】首先求出点A 关于y a =对称点A '的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【详解】解:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a=上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦16.已知椭圆22163x y +=,直线l 与椭圆在第一象限交于A ,B 两点,与x 轴,y 轴分别交于M ,N 两点,且||||,||MANB MN ==l 的方程为___________.【答案】0x +-=【解析】【分析】令AB 的中点为E ,设()11,A x y ,()22,B x y ,利用点差法得到12OE AB k k ⋅=-,设直线:AB y kx m =+,0k <,0m >,求出M 、N 的坐标,再根据MN 求出k 、m ,即可得解;【详解】解:令AB 的中点为E ,因为MA NB =,所以ME NE =,设()11,A x y ,()22,B x y ,则2211163x y +=,2222631x y +=,所以2222121206633x x y y -+-=,即()()()()12121212063x x x x y y y y -++-+=所以()()()()1212121212y y y y x x x x +-=--+,即12OE AB k k ⋅=-,设直线:AB y kx m =+,0k <,0m >,令0x =得y m =,令0y =得m x k =-,即,0m M k ⎛⎫- ⎪⎝⎭,()0,N m ,所以,22m m E k ⎛⎫- ⎪⎝⎭,即1222mk m k⨯=--,解得k =22k =(舍去),又MN =,即MN =,解得2m =或2m =-(舍去),所以直线2:22AB y x =-+,即0x +-=;故答案为:0x +-=四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.【答案】(1)证明见解析;(2)9.【解析】【分析】(1)设数列{}n a 的公差为d ,根据题意列出方程组即可证出;(2)根据题意化简可得22k m -=,即可解出.【小问1详解】设数列{}n a 的公差为d ,所以,()11111111224283a d b a d b a d b b a d +-=+-⎧⎨+-=-+⎩,即可解得,112db a ==,所以原命题得证.【小问2详解】由(1)知,112d b a ==,所以()1111121k k m b a a b a m d a -=+⇔⨯=+-+,即122k m -=,亦即[]221,500k m -=∈,解得210k ≤≤,所以满足等式的解2,3,4,,10k = ,故集合{}1|,1500k m k b a a m =+≤≤中的元素个数为10219-+=.18.记ABC 的三个内角分别为A ,B ,C ,其对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知123123S S S B -+==.(1)求ABC 的面积;(2)若sin sin 3A C =,求b .【答案】(1)28(2)12【解析】【分析】(1)先表示出123,,S S S ,再由12332S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB A C=,即可求解.【小问1详解】由题意得22221231,,22444S a a S b S c =⋅⋅===,则22212333334442S S S a b c -+=-+=,即2222a c b +-=,由余弦定理得222cos 2a c b B ac+-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,132cos 4ac B ==,则12sin 28ABC S ac B == ;【小问2详解】由正弦定理得:sin sin sin b a cB A C==,则223294sin sin sin sin sin 423b ac ac B A C A C =⋅==,则3sin 2b B =,31sin 22b B ==.19.在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);(2)估计该地区一人患这种疾病年龄在区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%,从该地区任选一人,若此人年龄位于区间[40,50),求此人患该种疾病的概率.(样本数据中的患者年龄位于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001)【答案】(1)44.65岁;(2)0.89;(3)0.0014.【解析】【分析】(1)根据平均值等于各矩形的面积乘以对应区间的中点值的和即可求出;(2)设A ={一人患这种疾病的年龄在区间[20,70)},根据对立事件的概率公式()1(P A P A =-即可解出;(3)根据条件概率公式即可求出.【小问1详解】平均年龄(50.001150.002250.012350.017450.023x =⨯+⨯+⨯+⨯+⨯550.020650.012750.006850.002)1044.65+⨯+⨯+⨯+⨯⨯=(岁).【小问2详解】设A ={一人患这种疾病的年龄在区间[20,70)},所以()1()1(0.0010.0020.0060.002)1010.110.89P A P A =-=-+++⨯=-=.【小问3详解】设{B =任选一人年龄位于区间}[40,50),{C =任选一人患这种疾病},则由条件概率公式可得()0.1%0.023100.0010.23(|)0.00143750.0014()16%0.16P BC P C B P B ⨯⨯⨯====≈.20.如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)求证://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --的正弦值.【答案】(1)证明见解析(2)1113【解析】【分析】(1)连接BO 并延长交AC 于点D ,连接OA 、PD ,根据三角形全等得到OA OB =,再根据直角三角形的性质得到AO DO =,即可得到O 为BD 的中点从而得到//OE PD ,即可得证;(2)过点A 作//Az OP ,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;【小问1详解】证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC【小问2详解】解:过点A 作//Az OP ,如图建立平面直角坐标系,因为3PO =,5AP =,所以224OA AP PO =-=,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD ,3AB =,所以12AC =,所以()23,2,0O ,()43,0,0B ,()23,2,3P ,()0,12,0C ,所以33,1,2E ⎛⎫ ⎪⎝⎭,则333,1,2AE ⎛⎫= ⎪⎝⎭ ,()3,0,0AB =,()0,12,0AC = ,设平面AEB 的法向量为(),,n x y z = ,则33302430n AE x y z nAB x ⎧⋅=++=⎪⎨⎪⋅==⎩,令2z =,则3y =-,0x =,所以()0,3,2n =-;设平面AEC 的法向量为(),,m a b c = ,则33302120m AE a b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩ ,令3a =6c =-,0b =,所以)3,0,6m =-;所以1243cos ,131339n m n m n m⋅==-⨯设二面角C AE B --为θ,由图可知二面角C AE B --为钝二面角,所以43cos 13θ=-,所以211sin 1cos 13θθ=-=故二面角C AE B --的正弦值为1113;21.设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P且斜率为的直线与过QM ,请从下面①②③中选取两个作为条件,证明另外一个条件成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M 在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.【小问1详解】右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b =,∴222244c a b a =+==,∴1a =,∴b =.∴C 的方程为:2213y x -=;【小问2详解】由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为,直线QM∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==---,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3y y +-=中,得:()()00003y y ⎡⎤+-+=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=+⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴003x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283k x ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.22.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax x h x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t tt <-对任意的1t >恒成立,从而可得()ln 1ln n n +-<任意的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.【小问1详解】当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.【小问2详解】设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax x g x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e e e ax ax ax x x h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x ax h x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.【小问3详解】取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有2ln <整理得到:()ln1lnn n+-<,()ln2ln1ln3ln2ln1lnn n+>-+-+++-()ln1n=+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.。

集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

 集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考全国Ⅱ卷·第2题
6.(2021年新高考Ⅰ卷·第1题)设集合 , ,则 ()
A. B. C. D.
【答案】B
解析:由题设有 ,故选B.
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考Ⅰ卷·第1题
7.(2020年新高考I卷(山东卷)·第1题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()
【解析】 或 , ,
故 ,故选A.
【点评】本题主要考查一元二次不等式,一元二次不等式的解法,集合的运算,属于基础题.
本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
【题目栏目】集合\集合的基本运算
【题目来源】2019年高考数学课标全国Ⅱ卷理科·第1题
【题目栏目】集合\集合的基本运算
【题目来源】2021年高考全国甲卷理科·第1题
11.(2020年高考数学课标Ⅰ卷理科·第2题)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B.–2C.2D.4
【答案】B
【解析】求解二次不等式 可得: ,
求解一次不等式 可得: .
A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}
【答案】A
解析:由题意可得: ,则 .
故选:A
【点睛】本题主要考查并集、补集的定义与应用,属于基础题.
【题目栏目】集合\集合的基本运算
【题目来源】2020年高考数学课标Ⅱ卷理科·第1题
13.(2020年高考数学课标Ⅲ卷理科·第1题)已知集合 , ,则 中元素的个数为()

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 数列大题(原卷版及解析版)

【2022高考必备】2012-2021十年全国高考数学真题分类汇编 数列大题(原卷版及解析版)
6.(2018年高考数学课标Ⅲ卷(理))(12分)等比数列 中, ,
(1)求 的通项公式;
(2)记 为 的前 项和,若 ,求 .
(1) 或 ;(2)
【答案】【官方解析】(1)设 的公比为 ,由题设得
由已知得 ,解得 (舍去), 或
故 或
(2)若 ,则 ,由 ,得 ,此方和没有正整数解
若 ,则 ,由 ,得 ,解得
【答案】解析:(1)设 的公差为 ,由题意得 .
由 得 ,所以 的通项公式为 .
(2)由(1)得 .
所以当 时, 取得最小值,最小值为 .
8.(2016高考数学课标Ⅲ卷理科)已知数列 的前 项和 ,其中 .
(Ⅰ)证明 是等比数列,并求其通项公式;
(Ⅱ)若 ,求 .
【答案】(Ⅰ) ;(Ⅱ) .
【解析】(Ⅰ)由题意得 ,故 , , .
所以数列 是以 为首项,以 为公差等差数列;
(2)由(1)可得,数列 是以 为首项,以 为公差的等差数列,
,
,
当n=1时, ,
当n≥2时, ,显然对于n=1不成立,
∴ .
【点睛】本题考查等差数列的证明,考查数列的前n项和与项的关系,数列的前n项积与项的关系,其中由 ,得到 ,进而得到 是关键一步;要熟练掌握前n项和,积与数列的项的关系,消和(积)得到项(或项的递推关系),或者消项得到和(积)的递推关系是常用的重要的思想方法.
【解析】(1)设 的公比为 , 为 的等差中项,


(2)设 前 项和为 , ,
,①
,②
① ②得,


【点睛】本题考查等比数列通项公式基本量的计算、等差中项的性质,以及错位相减法求和,考查计算求解能力,属于基础题.

函数-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)

 函数-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)
2013-2022十年全国高考数学真题分类汇编
专题02函数
一、选择题
1.(2022年全国乙卷理科·第12题)已知函数 的定义域均为R,且 .若 的图像关于直线 对称, ,则 ()
A. B. C. D.
2.(2022新高考全国II卷·第8题)已知函数 的定义域为R,且 ,则 ()
A. B. C.0D.1
A. B. C. D.
12.(2021年高考全国甲卷理科·第4题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足 .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( )
A.1.5B.1.2C.0.8D.0.6
27.(2018年高考数学课标Ⅱ卷(理)·第3题)函数 的图象大致为()
A. B. C. D.
24.(2019年高考数学课标全国Ⅰ卷理科·第5题)函数 在 的图象大致为()
25.(2018年高考数学课标Ⅲ卷(理)·第7题)函数 的图象大致为()
26.(2018年高考数学课标Ⅱ卷(理)·第11题)已知 是定义域为 的奇函数,满足 .若 ,则 ()
A. B.0C.2D.50
13.(2020年高考数学课标Ⅰ卷理科·第12题)若 ,则()
A. B. C. D.
14.(2020年高考数学课标Ⅰ卷理科·第5题)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()
3.(2021年新高考全国Ⅱ卷·第8题)已知函数 的定义域为 , 为偶函数, 为奇函数,则()

全国卷年数列高考题整理汇总附答案

全国卷年数列高考题整理汇总附答案

解:(1)由题设得
,即
又因为 a1+b1=l,所以 由题设得 又因为 a1–b1=l,所以
(2)由(1)知,
是首项为 1,公比为 的等比数列.
,即 是首项为 1,公差为 2 的等差数列.


所以


. .
数列专题
高考真题
(2014·I) 17. (本小题满分 12 分)
已知数列{ }的前 项和为 , =1,

(Ⅰ)证明:

(Ⅱ)是否存在 ,使得{ }为等差数列?并说明理由.
,其中 为常数.
(2014·II) 17.(本小题满分 12 分)
已知数列 满足 =1,
.
(Ⅰ)证明
是等比数列,并求 的通项公式;
(1)求的通项公式;
(2)求,并求的最小值.
(2018·III)17.(12 分) 等比数列中,. (1)求的通项公式; (2)记为的前项和.若,求.
(2019·I)9.记为等差数列 的前 项和.已知
,则
A.
B.
C.
D.
(2019·I) 14.记为等比数列 的前 项和.若
,则 =____________.
考点:等差数列的的性质,前项和公式,对数的运算. (2016·III)(17)
解:(Ⅰ)由题意得
,故





,所以
.

.
,即
.由

因此 是首项为 ,公比为 的等比数列,于是
(Ⅱ)由(Ⅰ)得
,由

解得


,即 ( )5 , 1
(2018·II)17. (1)设的公差为 d,由题意得. 由得 d=2. 所以的通项公式为. (2)由(1)得. 所以当 n=4 时,取得最小值,最小值为−16. (2018·III)17. 解:(1)设的公比为,由题设得. 由已知得,解得(舍去),或. 故或. (2)若,则.由得,此方程没有正整数解. 若,则.由得,解得. 综上,. (2019·III)19.

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用版):数列解答题(解析版)

【2023高考必备】2013-2022十年全国高考数学真题分类(全国通用版):数列解答题(解析版)
2013-2022 十年全国高考数学真题分类汇编
专题 06 数列解答题
1.(2022
年全国甲卷理科·第
17
题)记
Sn
为数列 an 的前
n
项和.已知
2Sn n
n
2an
1.
(1)证明: an 是等差数列;
(2)若 a4, a7 , a9 成等比数列,求 Sn 的最小值.
【答案】(1)证明见解析:; (2) 78 .
解析:(1)设数列an 的公差为d
,所以,
aa11dd22bb118ab11
2d
a1
4b1 3d
,即可解得,
b1
a1
d 2

所以原命题得证.
(2)由(1)知, b1
a1
d 2
,所以 bk
am
a1
b1 2k1
a1
m 1 d
a1 ,即 2k1
2m ,亦即
m 2k2 1,500 ,解得 2 k 10 ,所以满足等式的解 k 2,3, 4,,10 ,故集合
解析:(1)解:因为
2Sn n
n
2an
1,即 2Sn
n2
2nan
n
①,
当 n 2 时, 2Sn1 n 12 2 n 1 an1 n 1 ②,
① ②得, 2Sn n2 2Sn1 n 12 2nan n 2n 1 an1 n 1 ,
即 2an 2n 1 2nan 2n 1 an1 1 ,
k | bk am a1,1 m 500 中的元素个数为10 2 1 9 .
【题目栏目】数列\数列的综合应用\数列的综合问题 【题目来源】2022 新高考全国 II 卷·第 17 题

2024年新高考I卷数学高考试卷(原卷+答案)

2024年新高考I卷数学高考试卷(原卷+答案)

2024年普通高等学校招生全国统一考试(新高考I 绝密★启用前卷)1. 项是正确的.请把正确的选项填涂在答题卡相应的位置上3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8 小题,每小题5 分,共40 分. 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦数(适用地区:山东、广东、湖南、湖北、河北、江苏、福建、浙江、江西、安徽、河南)学注意事项:干净后,再选涂其他答案标号。

回答非选择题时,将答案书写在答题卡上,写在本试卷上无效。

在每小题给出的四个选项中,只有一个选.已知集合=−<<=−−A xx B 3}{∣55,{3,1,0,2,3},则A B =()A−{1,0} B.{2,3} C. −−{3,1,0} D. 2. −{1,0,2}若z −z1=+1i ,则z =()A.−−1i B.−+1i C. −1i D. 3. +1i 已知向量a b x ==(0,1),(2,),若b b a ⊥−(4),则x =()A. −2 B. 4. D. C. −112已知 αβαβ+==mcos(),tan tan 2,则cos()αβ−=()A. −3m B. −m 3C.m 3D. 5. 3m,则圆锥的体积为()AB.C.D.6. 已知函数⎩++≥−−−<⎧x x x ax a x x e ln(1),0f x ()=⎨2,0在R 上单调递增,则a 的2取值范围是()A.−∞(,0] B.−[1,0] C. −[1,1] D. 7. +∞[0,)当[0,2]πx 时,曲线y x =sin 与⎝⎭⎪⎛⎫y x π=−6 D. C. B. 2sin 3的交点个数为()468f x ()的定义域为R A. 38. 已知函数,,>−+−f x f x f x ()(1)(2)且当x <3时f x x ()=,则下列结论中一定正确的是().A. f >(10)100B. f >(20)1000C.f <(10)1000 D. 要求. 全部选对得6 分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9. 随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.二、选择题:本题共3 小题,每小题6 分,共18 分. f <(20)10000在每小题给出的选项中,有多项符合题目为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值x =2.1,样本方差s =0.012,已知该种植区以往的亩收入X 服从正态分布N )(1.8,0.12,假设推动出口后的亩收入Y 服从正态分布N x s ,2)(,则()(若随机变量Z 服从正态分布N)(μσ,2, P Z <+≈μσ()0.8413)A. P X >>(2)0.2 B. P X ><(2)0.5 C.P Y >>(2)0.5 D. 10. P Y ><(2)0.8设函数 f x x x ()(1)(4)=−−2,则()A.x =3是f x ()的极小值点 B. 当<<x 01时,f x f x()<2)C. (当<<x 12时,−<−<f x D. 4(21)0当x−<<10时,11. 设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:−>f x f x (2)()横坐标大于−2,到点F (2,0)的距离与到定直线 x a a =<(0)的距离之积为4,则()A. B. a =−2点D. C. C 在第一象限的点的纵坐标的最大值为在C 上1当点,)在C (x y 00上时,x 0+4212. 三、填空题:本题共3 小题,每小题5 分,共15 分y 0≤.设双曲线−=>>a bC a b x y :1(0,0)2222左右焦点分别为、F F 12,过F 2作平行于y 轴的直线交C 于A ,B 两点,若||13,||1013. ,则C F A AB 1==的离心率为___________.若曲线=+y x e x 在点(0,1)处的切线也是曲线=++y x a ln(1)的切线,则张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________分别标有数字2,4,6,81,3,5,714. a =__________.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字,乙的卡片上,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一.的15. 四、解答题:本题共5 小题,共77 分. 解答应写出文字说明、证明过程或演算步骤.记ABC 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin =C B,a b c (1)求B ;(2)222+−=若ABC的面积为16. c 3.已知A (0,3)和⎝⎭⎪⎛⎫P 23,3椭圆+=>>a bC a b x y :1(0)22(1)求C 的离心率;(2)若过P 上两点22.的直线l 交C 于另一点B ,且ABP17. 的面积为9,求l 的方程.如图,四棱锥−P ABCD 中,底面ABCD PA ⊥,PA AC ==2,BC AB == (1)1,.若⊥AD PB ,证明:(2)PBC AD //平面;若⊥AD DC ,且二面角−−A CP D正弦值为7,求AD .为18. 已知函数 2−=++−f x ax b x x()ln(1)(1)x3若b =0,且 x ≥f '()0,求(2)a 的最小值;证明:曲线(3)y f x =()是中心对称图形;若f x >−()2当且仅当<<x 12,求19. 设m b 的取值范围.为正整数,数列a a a a 1242,,...,m +是公差不为0的等差数列,若从中删去两项i 和a i j j (<)后剩余的4m 项可被平均分为 组,且每组的m 个数都能构成等差数列,则称数列a a a 1242,,...,m +是(1)(i j ,)−可分数列.写出所有的(i j ,),≤<≤i j 16,使数列 ,,...,a a a 126是(2)(i j ,)−可分数列;当m ≥3时,证明:数列,,...,m +a a a 1242是(3)(2,13)−可分数列;从1,2,...,42m +中一次任取两个数i 和<j i j )(,记数列,,...,m +a a a 1242是(i j ,)−可分数列的概率为P m ,证明:P >m 81.1.【答案】A 【详解】参考答案因为=<<=−−A x x B |,3,1,0,2,3{}{,且注意到<<12从而AB ,=故选:A.2.【答案】C 【详解】{−1,0}.因为−−−==+=+z z z 11111i z z −+111,所以z =+=−i 11i (4故选:C.3【答案】D 1.【详解】因为)b b a ⊥−,所以)b b a (40⋅−= ,所以b a b −⋅=240即+−=440x x 2,故 故选:D.4.【答案】A x =2,【详解】因为cos (αβ+=)m ,所以 cos cos sin sin αβαβ−=m ,而tan tan 2αβ=,所以= ααβsin sin 2cos cos ,故cos cos 2cos cos αβαβ−=m 即cos cos αβ=−m ,从而sin sin 2αβ=−m ,故cos 3αβ−=−m )故选:A.5. 【答案】B (,【详解】设圆柱的底面半径为r,而它们的侧面积相等,所以=π2πr r=,故r =3,故圆锥的体积为3故选:B.6. 【答案】B 【详解】π⨯=91.因为f x ()在R 上单调递增,且x ≥0时,f x x x)(()=++e ln 1单调递增,则需满足()⎩−≤+⎪⨯−⎪ ⎨⎧−≥21a e ln1−2a0−≤≤10a 0,解得,.即a 的范围是T =2πy x =sin 故选:B.7. 【答案】C 【详解】−[1,0].因为函数的的最小正周期为,函数⎝⎭⎪y x ⎛⎫=−62sin 3π的最小正周期为 T =32π,所以在x ∈[0,2π]上函数⎝⎭⎪y x ⎛⎫=−62sin 3x <8. 【答案】B 【详解】由图可知,两函数图象有6个交点.故选:π有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:C 因为当3时 f x x()=,所以f f (1)1,(2)2==,又因为>−+−f x f x f x ()(1)(2),则f f f f f f (3)(2)(1)3,(4)(3)(2)5>+=>+>,>+>>+>>+>f f f f f f f f f (5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21,>+>>+>>+>f f f f f f f f f (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89,f f f f f f f f f >+>>+>>+>11)377(11)(10)(9)144,(12)(11)(10)233,(13)(12)(>+>>+>f f f f f f (14)(13)(12)610,(15)(14)(13)987,>+>>f f f (16)(15)(14)15971000,则依次下去可知且无证据表明ACD 一定正确.故选:B.9. 【答案】,则B f >(20)1000正确;BC【详解】依题可知,x s ==2.1,0.012,所以(2.1,0.1YN),故P Y P Y P Y )() (),C 正确,D (>=>−=<+≈>2 2.10.1 2.10.10.84130.5错误;因为(1.8,0.1XN ),所以P X P X )()(>=>+⨯2 1.820.1,因为P X )(<+≈1.80.10.8413,所以 P X )(>+≈−=<1.80.110.84130.15870.2,而P X P X P X )()()故选:BC .10. 【答案】ACD 【详解】对A ,B 正确,A (>=>+⨯<>+<2 1.820.1 1.80.10.2错误,,因为函数f x 的定义域为R (),而'f x x x x x x 2))(())()((()=−−+−=−−2141313,易知当x ∈(1,3)时,'f x ()<0,当x ∈−(∞,1)或x ∈+(3,∞)时,'f x ()>0函数f x ()在(−∞,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增,故x =3是函数f x 点,正确;对B ()的极小值,当<<x 01时,x x x x −=−>2)(10,所以>>>10x x 2,而由上可知,函数f x ()在(0,1)上单调递增,所以f x f x2)对C ()>(,错误;,当<<x 12时,<−<x 1213,而由上可知,函数 f x ()在(1,3)上单调递减,所以f f x f ())()>−>(1213,即−<−<f x 4210)对D (,正确;,当x −<<10时,−−=−−−−−−=−−>f x f x x x x x x x (2)()12141220222))()()()(()(,所以故选:ACD.11. 【答案】ABD 【详解】对于A −>f x f x (2)(),正确;:设曲线上的动点P x y (,),则x >−2x a −=4,a04−=,解得对于B ,故A 正确a =−2.x +=24,而x >−2,x +=24)(.当x y ==0=−=2844)(,故)对于C 在曲线上,故B 正确(.:由曲线的方程可得()x +y x =−−216222(2),取x =23,则494y 2641=−,而⨯−−=−=>−49449449410641645256245,故此时y 2>1,故对于D 在第一象限内点的纵坐标的最大值大于1,故C 错误C .:当点,)在曲线上时,由C (x y 00的分析可得()()++x x 2216160022y x 00=−−≤22(2),故 −≤≤x x 00++4422故选:ABD.12. ,故D 正确y 0.【答案】2【详解】3由题可知,,A B F 2三点横坐标相等,设A 在第一象限,将=x c 代入a b −=x y12222得a y =±b 2,即⎝⎭⎝⎭−⎛⎫⎛⎫a a A c B c ⎪ ⎪,,,b b 22,故a AB ==102b 2,a AF ==52b 2,又AF AF a −=212,得AF AF a a 12=+=+=22513,解得a =4,代入a=5b 2得b 2=20,故c a b 222=+=36,,即c =6,所以a e ===c 4263.故答案为:213. 3【答案】【详解】ln 2由=+y x e x得y '|e 12x =0=+=0y '=+e 1x ,,故曲线=+y xe x在(0,1)处的切线方程为y x =+21;由=++y x a ln 1)(得 x +y '=11,设切线与曲线=++y x a ln 1) (相切的切点为,ln 100()(x x a )++,由两曲线有公切线得y '==x 0+112,解得2x 01=−,则切点为⎝⎭ ⎪−+ ⎛⎫a 22,ln 11,切线方程为⎝⎭ ⎪=+++=++− ⎛⎫y x a x a 222ln 21ln 211,根据两切线重合,所以 a −=ln 20,解得a =ln 2.故答案为:14. ln 2【答案】2【详解】1##0.5设甲在四轮游戏中的得分分别为,,,X X X X 1234,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率⨯===P X k 448163)(,所以 E X k k (1,2,3,4))==83(.从而==E X E X X X X E X k k k823311123444)( )∑∑(()=+++===.记p P X k k k ===)(0,1,2,3)如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8(.,所以A 24114如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6p 0==4;,所以A 24114p 3==4.而的所有可能取值是0,1,2,3X ,故p p p p 0123+++=1,223p p p E X 1233++==().所以12p p 12++=11,822p p 1213++=,两式相减即得242p 211+=,故 2所以甲的总得分不小于2p p 231+=.的概率为 2p p 231+=.故答案为: 215.【答案】(11.) B =3(2π)a b c ab C +−=【小问1详解】由余弦定理有2cos 222,对比已知a b c 222+−=,可得+−ab ab a b c 222cos C ===222,因为C ∈(0,π),所以sin 0C >,从而C ===2 sin ,又因为sin =C B ,即 2cos B =1,注意到B ∈(0,π),所以 B =3【小问2详解】由(1π.)可得B =3π,2cos C =,C ∈0,π(),从而C =4π,A =−−=3412 π5πππ,而⎝⎭⎝⎭⎪ ⎪⎛⎫⎛⎫A ==+=+⨯=124622224sin sin sin 1ππ5π,由正弦定理有==a b c1234sin sin sin ππ5π,从而==== +a c b c 4222,1,由三角形面积公式可知,ABCSab C c c c 的面积可表示为ABC==⋅⋅= +222228sin 由已知21113,ABC的面积为+3,可得 c 8=332所以16. 【答案】(1c =)2(2)1直线l 的方程为3260【解析】【小问1x y −=x y −−=或20.详解】由题意得⎪+=⎪⎪⎪⎧14⎨99⎩a b b =322⎩a ,解得=⎨212⎧b 2=9,所以e ===21【小问2.详解】法一:−k AP==−03223−AP 13,则直线的方程为 y x =−+231,即x y +−=260,==AP ,由(1)知+= x y 129C :122,设点B 到直线AP的距离为d,则d ==25,则将直线AP 沿着与AP 垂直的方向平移5单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:x y C ++=20,=5,解得C =6或C =−18,当C =6时,联立⎪⎩x y ++=⎪260⎨129+=1⎧x y 22,解得⎩y =−⎨3⎧x =0或⎩⎪⎨y ⎧=−23⎪x =−3,即B (0,3−)或⎝⎭⎪−−⎛⎫23,3,当B (0,3−)时,此时k l =23,直线l 的方程为2y x =−33,即3260x y −−=,当⎝⎭ ⎪−−⎛⎫B 23,3时,此时k l=21,直线l 的方程为 =y x 21,即x y −=20,当C =−18时,联立⎪⎩x y +−=⎪2180⎨129+=1⎧x y 22得2271170,此时该直线与椭圆无交点27421172070y y 2−+=,∆=−⨯⨯=−<2.综上直线 l 的方程为x y −−=3260或x y −=20.法二:同法一得到直线AP 的方程为B x y +−=260,点到直线AP 的距离 d =5,B x y ,00)(,则⎩⎪⎪=129+=1x y 0022,解得⎩⎪⎨⎧2y 0=− 3⎪x 0=−3或⎩y 0=−⎨3⎧x 0=0,设即B (0,3−)或⎝⎭⎪−−⎛⎫23,,以下同法一3.法三:同法一得到直线AP 的方程为B x y +−=260,点到直线AP的距离 d =5,设B ,3sin θθ)(,其中θ∈π[0,2)= 5,联立cos sin 1θθ+=22,解得⎩⎪⎨⎪⎧2⎪sin θ=−21⎪cos θ=−或⎩θ⎨=−θ=sin 1⎧cos 0,即B (0,3−)或⎝⎭⎪−−⎛⎫23,3,以下同法一;法四:当直线AB 的斜率不存在时,此时B SPAB(0,3−),=⨯⨯=26391,符合题意,此时k l =23,直线l 的方程为2y x =−33,即x y −−=3260,当线AB 的斜率存在时,设直线AB 的方程为y kx =+3,联立椭圆方程有⎪⎩⎪129+=1⎨x y ⎧y kx =+322,则43240k x kx 22++=)(,其中k k ≠AP ,即k ≠−21,解得x =0或x =43k 2−24k +,k ≠0, k ≠−21,令x =43k 2−24k +,则+k y =k 43−+12922,则⎝⎭++ ⎪−−+⎛⎫k k B k k 4343 ,24129222同法一得到直线AP 的方程为x y +−=260,点B 到直线AP的距离 d =5,=,解得32 k,此时⎝⎭ ⎪−−⎛⎫B 23,3,则得到此时k l=21,直线l 的方程为 =y x 21,即x y −=20,综上直线 l 的方程为3260x y −=20x y −−=或.法五:当l 的斜率不存在时,⎝⎭⎪=−=⎛⎫l x B PB A 2:3,3,,3, 3到PB 距离d =3,此时SABP=⨯⨯=≠ 22339不满足条件19.当l 的斜率存在时,设−=−2PB y k x :(3)3,令P x y B x y ,,,1122))((,⎪⎪⎪⎪x y ⎩⎧y k x =−+129+=12(3)⎨322,消y 可得+−−+−−=2222 ))(Δ(4324123636270k x k k x k k ,=−−+−−>2222)(()k k ≠)(24124433636270k kk k k ,且AP ,即k ≠−21,⎩+⎪⎨⎪−⎧k 43363627,432⎪x x 12=k k 2−−PB ==k 2+⎪x x 12+=2412k k 2,A 到直线PB 距离9PABd S===21 ,∴=k 21或23,均满足题意,∴=l y x 2:1或2y x =−33,即x y −−=3260或x y −=20.法六:当l斜率不存在时,⎝⎭⎪=−=⎛⎫l x B PB A 2:3,3,,3, 3到PB 距离d =3,此时SABP=⨯⨯=≠ 22339不满足条件19.当直线l 斜率存在时,设2l y k x :(3)=−+3,设l 与y 轴的交点为Q ,令x =0,则⎝⎭⎪ ⎛⎫Q k 20,3−+3,联立⎪⎨⎩⎪y kx k ⎧=−+343623x y 223+=,则有⎛⎫ ⎪⎝⎭32222)(34833636270+−−+−−=k x k k x k k ,⎛⎫ ⎪⎝⎭32222)(34833636270+−−+−−=k xk k x k k ,其中⎝⎭ ⎪⎛⎫2834343636270Δ=−−+−−>k k k k k 3222)2()(,且k ≠−21,则==++−−−−k kx x B B 3434 3,3636271212922k k k k 22,则+=−=+=S AQ x x k k +P B 2223439k 11312182,解的k =21或32 的,经代入判别式验证均满足题意k .则直线l 为=y x 21或y x =−233,即x y −−=3260或(217. 【答案】(1)x y −=20.证明见解析PA 【解析】【小问1详解】(1)因为⊥平面ABCD ,而 AD ⊂平面ABCD ,所以⊥PA AD ,又⊥AD PB ,PBPA P =,⊂PB PA ,平面PAB ,所以AD ⊥平面 PAB ,而PAB AB ⊂平面,所以 ⊥AD AB .因BC AB AC +=222,所以,⊥BC AB 根据平面知识可知AD BC //,又⊄AD 平面PBC ,⊂BC 平面PBC ,所以AD //平面【小问2详解】如图所示,过点D PBC .作⊥DEAC E ,再过点E 作⊥EF CP 于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面=ABCD AC ,所以⊥DE 平面 PAC ,又⊥EF CP ,所以 CP ⊥平面DEF ,根据二面角的定义可知,∠DFE 即为二面角−−A CP D 的平面角,即DFE 7sin ∠=,即 ∠=DFE tan 因为⊥AD DC ,设=AD x,则=CD,由等面积法可得,DE =2,又CE ==24−x2,而EFC 为等腰直角三角形,所以EF =2,故∠==DFE tan 22x =AD =.为18. 【答案】(1)(3(2)−2证明见解析)b ≥−3b =0【解析】【小问12详解】时,−xf x ax ()=+ln2x,其中x ∈(0,2),则()− '−x x x x f x a a x ,0,2()()=++=+∈11222,因为⎝⎭x x ⎛⎫⎪2−+2x x2)(21−≤=,当且仅当x =1时等号成立,故=+'f x a 2min (),而'f x ()≥成立,故a +≥20即a ≥−2,所以a 的最小值为【小问2.−2,详解】−xf x ax b x 3) (()=++−ln12x 的定义域为(0,2),设P m n(,)为=y f x ()图象上任意一点,P m n (,)关于(1,a )的对称点为Q m a n (2,2−−),因为P m n ,)(在=y f x ()图象上,故=++−n am b m 2−m mln 1 3)(,而⎣⎦⎢⎥⎡⎤−m m 2f m a m b m am b m a −2m m 33)())(()=−+(2ln221ln 12−=+−+−−=−++−+,n a 2,所以Q m a n(2,2−−)也在=y f x ()图象上,由P 的任意性可得=y f x ()图象为中心对称图形,且对称中心为【小问3(1,a ).详解】因为f x ()>−2当且仅当<<x12,故x =1为f x ()=−2的一个解,所以f)=−(12即a =−2,先考虑<<x12时,f x 恒成立()>−2.此时f x ()>−2即为+−+−>2−x x ln21103) )((x b x 在(1,2)上恒成立,设t x =−∈10,1(),则1−−+>tln 20t bt t +13(0,1)上恒成立,设−g t t bt t 3()()=−+∈ln 2,0,11t +1t,则−'−t tg t bt 112−++32322232 t bt b 22)()(=−+=,当b ≥0,−++≥−++=>32332320bt b b b 2,故'g t ()>0恒成立,故 g t ()在(0,1)上为增函数,故g t g )(00 ()>=即f x 上恒成立(1,2()>−2在).当−≤<3b 0 2时,−++≥+≥323230bt b b 2,故'g t ()≥0恒成立,故 g t ()在(0,1)上为增函数,故g t g )(00()>=即 f x ()>−2在上恒成立(1,2).当b <−32,则当<<<t 01时,'g t ()<0故在⎝ ⎛上g t ()为减函数,故g t g)(00()<=,不合题意,舍;综上,f x ()>−2在(1,2)上恒成立时 b ≥−2.3而当 b ≥−32时,而b ≥−32时,由上述过程可得g t ()在(0,1)递增,故 g t ()>0的解为(0,1),即 f x >−2()的解为(1,2).综上, b ≥−19. 【答案】(12.3) )()()(3)(1,2,1,6,5,6证明见解析(2(i j ,)−(2)证明见解析【解析】【分析】(1)直接根据可分数列的定义即可;)根据(i j ,)−可分数列的定义即可验证结论;在(3)证明使得原数列是(i j ,)−可分数列的(i j ,)至少有2),,...,m 【小问1详解】个,再使用概率的定义(m m +−1.首先,我们设数列+a a a 1242的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形'=+=+da k m ka a k 11,2,...,42−1)(,得到新数列a k k m '==+k(1,2,...,42),然后对,,...,m '''+进行相应的讨论即可a a a 1242.换言之,我们可以不妨设a k k m ==+k 回到原题,第1,此后的讨论均建立在该假设下进行(1,2,...,42).小问相当于从中取出两个数 i 和j i j ,使得剩下四个数是等差数列(<).那么剩下四个数只可能是 1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(i j ,)就是)()()m 【小问2详解】(1,2,1,6,5,6.由于从数列+1,2,...,42中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,2,3,4,5,61,4,7,10,3,6,9,12,5,8,11,14}}{}{{,共3组;②{m m m m −++}} }{{15,16,17,18,19,20,21,22,...,41,4,41,42,共m −3组.(如果,则忽略②m −=30)故数列m +1,2,...,42是【小问3可分数列(2,13)−.详解】定义集合=+==+A k k m m }}{{410,1,2,...,1,5,9,13, (41)=+==+B k k m m}}{ {420,1,2,...,2,6,10,14,...,42.下面证明,对≤<≤+i j m 142,如果下面两个命题同时成立,则数列 1,2,...,42m +一定是 命题1(i j ,)−可分数列::∈∈i A j B ,或命题2∈∈i B j A ,;:我们分两种情况证明这个结论j i −≠3..第一种情况:如果∈∈i A j B ,,且j i −≠3.此时设j k =+422i k =+411,,∈,0,1,2,...,k k m 12}{.则由i j <可知4142k k 12+<+,即 4k k 211−>−,故k k ≥21.此时,由于从数列 m +1,2,...,42中取出i k =+411和 j k =+422后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①−−−1111}}{k k k k}{{1,2,3,4,5,6,7,8,...,43,42,41,4,共k 1组;②++++++++−−+111111112222}}{}{{42,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ,共k k −21组;③++++++++−++22222222}}{ }{ {43,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ,共组m k −2.(如果某一部分的组数为 0,则忽略之)故此时数列m +1,2, (42)可分数列(i j ,)−.第二种情况:如果∈∈i B j A ,,且j i −≠3.此时设i k =+421,j k =+412,∈,0,1,2,..., k k m 12}{.则由<i j 可知4241k k 12+<+,即 4k k 211−>,故k k >21.由于j i −≠3,故+−+≠21))((41423k k ,从而k k 21−≠1,这就意味着k k 21−≥2.此时,由于从数列m +1,2,...,42中取出i k =+421和j k =+412后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①−−−1111}}{k k k k}{{1,2,3,4,5,6,7,8,...,43,42,41,4,共k 1组;②+++++++1121212}{41,31,221,31k k k k k k k ,+++++++1212122 }{32,222,32,42k k k k k k k ,共③2组;全体+++++++1121212} {4,3,22,3k p k k p k k p k k p ,其中3,4,...,21=−p k k ,共k k 21−−2组;④++++++++−++22222222}}{ }{{43,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ,共m k −2组.(如果某一部分的组数为这里对②和③进行一下解释:将③0,则忽略之)中的每一组作为一个横排,排成一个包含4k k 21−−2个行,个列的数表以后,4个列分别是下面这些数:+++1112}{43,44,...,3k k k k ,+++++121212}{33,34,...,22k k k k k k ,+++++121212}{223,223,...,3k k k k k k ,++++33,34,...,412122}{k k k k k . 可以看出每列都是连续的若干个整数,它们再取并以后,将取遍+++112}{41,42,...,42k k k 中除开五个集合++11}{41,42k k ,++++1212}{31,32k k k k ,221,222k k k k 1212++++}{,++++31,321212}{k k k k ,++22}中的十个元素以外的所有数{41,42k k .而这十个数中,除开已经去掉的42 k 1+和41以外,剩余的八个数恰好就是②中出现的八个数k 2+.这就说明我们给出的分组方式满足要求,故此时数列m +1,2,...,42是可分数列(i j ,)−.至此,我们证明了:对≤<≤+i j m ,如果前述命题1和命题2142同时成立,则数列的个数(i j ,可分数列.(i j ,)m +1,2,...,42一定是−然后我们来考虑这样的).首先,由于A B ⋂=∅,A 和B 各有个元素,故满足命题1m +1的(i j ,)总共有2(m +1)个;而如果j i −=3,假设∈∈i A j B ,,则可设i k =+411,j k =+422,代入得+−+=21 ))((42413k k .但这导致 2k k 211−=,矛盾,所以∈∈i B j A ,.设i k =+421,j k =+412,∈,0,1,2,...,k k m 12}{,则+−+=21) )((41423k k ,即k k 21−=1.所以可能的,)(k k 12恰好就是(0,1,1,2,...,1,)()(m m −),对应的m m (i j ,)分别是−+2,5,6,9,...,42,41)()()(,总共个m .所以这2个满足命题1(m +1)的)中,不满足命题2(i j ,的恰好有这就得到同时满足命题1和命题2个m .的(i j ,)的个数为2)(m m +−1.当我们从m +1,2,...,42中一次任取两个数i 和j i j (<)时,总的选取方式的个数等于=++2)((2141m m))()(4241m m ++.而根据之前的结论,使得数列,,...,m +a a a 1242是(i j ,)−可分数列的(i j ,)至少有 2)个(m m +−1.所以数列a a a 1242,,...,m +是(i j ,)−可分数列的概率))))P m 一定满足(()(()(()(()⎝⎭ ⎪P ⎛⎫≥=>==m m ++214121412142221218m m m m m m m m m +m ++++++++42m m ++11122212)这就证明了结论(m m +−1..。

【高考真题】2024年普通高等学校招生全国统一考试(全国甲卷)理科数学

【高考真题】2024年普通高等学校招生全国统一考试(全国甲卷)理科数学

【高考真题】2024年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(共12题)1.设z=5+i,则i(+z)=()A.10i B.2i C.10D.﹣22.集合A={1,2,3,4,5,9},B={x|∈A},则∁A(A∩B)=()A.{1,4,9}B.{3,4,9}C.{1,2,3}D.{2,3,5}3.若实数x,y满足约束条件则z=x﹣5y的最小值为()A.5B.C.﹣2D.4.记S n为等差数列{a n}的前n项和.若S5=S10,a5=1,则a1=()A.﹣2B.C.1D.25.已知双曲线C:的左、右两个焦点分别为F1(0,-4),F2(0,4),点P (﹣6,4)在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数f(x)=,则曲线y=f(x)在点(0,1)处的切线与坐标轴围成的三角形的面积为()A.B.C.D.7.函数f(x)=﹣x2+(e x﹣e﹣x)sin x的区间[﹣2.8,2.8]的图像大致为()A.B.C.D.8.已知,则=()A.B.C.D.9.已知向量=(x+1,x),=(x,2),则()A.“⊥”的必要条件是“x=﹣3”B.“∥”的必要条件是“x=﹣3”C.“⊥”的充分条件是“x=0”D.“∥”的充分条件是“x=﹣1+”10.已知α、β是两个平面,m、n是两条直线,α∩β=m.下列四个命题:①若m∥n,则n∥α或n∥β②若m⊥n,则n⊥α,n⊥β③若n∥α,且n∥β,则m∥n④若n与α和β所成的角相等,则m⊥n其中,所有真命题的编号是()A.①③B.②③C.①②③D.①③④11.在△ABC中,内角A,B,C所对边分别为a,b,c,若,则sin A+sin C=()A.B.C.D.12.已知a,b,c成等差数列,直线ax+by+c=0与圆C:x2+(y+2)2=5交于A,B两点,则|AB|的最小值为()A.2B.3C.4D.6二、填空题:本题共4小题,每小题5分,共20分.(共4题)13.二项式的展开式中,各项系数的最大值是.14.已知甲、乙两个圆台上下底面的半径均为r2和r1,母线长分别为2(r1﹣r2)和3(r1﹣r2),则两个圆台的体积之比=.15.已知a>1,,则a=.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m表示前两个球号码的平均数,记n表示前三个球号码的平均数,则m与n差的绝对值不超过的概率是.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.必考题:共60分.(共5题)17.某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:不合格总计优级品合格品品甲车间2624050乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率p=0.5.设为升级改造后抽取的n件产品的优级品率.如果,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?(≈12.247)附:,P(K2≥k)0.0500.0100.001k 3.841 6.63510.82818.已知数列{a n}的前n项和为S n,且4S n=3a n+4.(1)求{a n}的通项公式;(2)设,求数列{b n}的前n项和为T n.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,BC∥AD,EF∥AD,AD=4,AB=BC=EF=2,,FB=,M为AD的中点.(1)证明:EM∥平面BCF;(2)求二面角A﹣EM﹣B的正弦值.20.已知函数f(x)=(1﹣ax)ln(1+x)﹣x.(1)当a=﹣2时,求f(x)的极值;(2)当x≥0时,f(x)≥0,求a的取值范围.21.已知椭圆的右焦点为F,点M(1,)在椭圆C上,且MF⊥x轴.(1)求C的方程;(2)过点P(4,0)的直线与椭圆C交于A,B两点,N为FP的中点,直线NB与MF交于Q,证明:AQ⊥y轴.四、选考题:共10分.请考生在第22、23题中任选一题作答,并用2B铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.第22题[选修4-4:坐标系与参数方程];第23题[选修4-5:不等式选讲](共2题)22.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=ρcosθ+1.(1)写出C的直角坐标方程;(2)直线l:(t为参数),若C与l交于A、B两点,|AB|=2,求a的值.23.实数a,b满足a+b≥3.(1)证明:2a2+2b2>a+b;(2)证明:|a﹣2b2|+|b﹣2a2|≥6.【答案区】1.【答案】A【解析】【解答】解:据题意,,则,,所以故答案为:A.【分析】利用已知条件先求出,再求出的值,代入即可求出结果2.【答案】D【解析】【解答】解:根据题意,,而,利用代入法求解集合B,可得,此时,所以故答案为:D.【分析】根据集合A与集合B的运算求出集合B的所有元素,进而求出A∩B,即可求出∁A(A∩B)的结果.3.【答案】D【解析】【解答】解:据题意,先画出的可行域:如下图所示:法一:先把三条直线两两相交的交点求出得:,分别将这三点代入z=x﹣5y,则在A点时,z有最小值为;法二:由化简成:,此时,为的截距,并且截距有最大值,z有最小值,此时,在可行域内平移直线,在A点时,截距有最大值,此时z有最小值为.故答案为:D.【分析】首先画出可行域,法一:先求交点,直接代入交点比较即可得到结果;法二,对先化简得,利用截距最大,得到z的最小值即可得到结果. 4.【答案】B【解析】【解答】解:由S5=S10,则,化简得:5a1+35d=0,又a5=1,即解得故答案为:B.【分析】由S5=S10,a5=1,化成基本量a1与的,列方程组求解即可得到结果.5.【答案】C【解析】【解答】解:据题意,由F1(0,-4),F2(0,4),则c=4,又P(﹣6,4)在该双曲线上,根据定义有:,根据两点坐标公式得:,,所以2a=4,则a=2;所以故答案为:C.【分析】根据焦点坐标得c得值,根据定义求得a的值,进而求出离心率.6.【答案】A【解析】【解答】解:由f(x)=,要求在点(0,1)处的切线,则,此时切线斜率利用点斜式,则切线方程为:,即3x-y+1=0;令,则;令,则;所以切线与两坐标轴所围成的三角形面积.故答案为:A.【分析】利用求导先求出切线斜率,进而求出切线方程,即可求出与坐标轴的交点,进而求出结果.7.【答案】B【解析】【解答】解:由f(x)=﹣x2+(e x﹣e﹣x)sin x,则,所以f(x)为偶函数,根据图象排除AC选项,利用特殊值:当x=1时,,所以B符合.故答案为:B.【分析】先判断函数奇偶性,接着利用特殊值x=1,进而得到结果.8.【答案】B【解析】【解答】解:由,利用齐次式分子分母同时除以得:,解得,则故答案为:B.【分析】利用齐次式化简得,再利用两角和的正切公式求解即可得到结果. 9.【答案】C【解析】【解答】解:=(x+1,x),=(x,2)当时,,则,解得或,所以A错误,C正确;同理,当,即,即,所以,BD错误.故答案为:C.【分析】利用平行垂直得坐标运算结合充分条件,必要条件的判断即可得到结果. 10.【答案】A【解析】【解答】解:如图,对①,当,因为,,则,当,因为,,则,当既不在也不在内,因为,,则且,故①正确;对②,若,则与不一定垂直,n可以在面内,故②错误;对③,如图,过直线n分别作两平面与、分别相交于直线l1和直线I2,由,得,同理,根据基本事实四,则,所以.,所以,又∩=m,则,根据基本事实四,则,③正确;对于④,若n与α和β所成的角相等,根据同角定理,则,则④错误.故答案为:A.【分析】借助正方体与直线,平面的位置关系进行判断即可得到结果. 11.【答案】C【解析】【解答】解:由,根据正弦定理有:又因为,即,所以;根据余弦定理,所以,根据正弦定理得:,即,结合,因为所以,因为A,B,C是三角形的内角,所以所以故答案为:C.【分析】根据题意,结合正弦定理化简出得,根据余弦定理与正弦定理化简得,结合完全平方公式展开即可得到结果.12.【答案】C【解析】【解答】解:由a,b,c成等差数列,根据等差中项得:,将,代入直线方程,所以有,化简得:,则直线恒过定点;对于圆的方程x2+(y+2)2=5,圆心为,半径为,直线ax+by+c=0与圆C:x2+(y+2)2=5交于A,B两点,要求|AB|的最小值,只需,此时,,利用勾股定理有故答案为:C.【分析】根据题意,先判断出直线的定点坐标,结合圆的几何要素进行判断,当|AB|要取最小值,只需,结合勾股定理即可得到结果.13.【答案】【第1空】5;【解析】【解答】解:根据题意,二项式的通项为:并且假设展开式中第项系数最大,则此时第项系数大于第项系数;并且第项系数大于第项系数,建立不等式进行求解:,解得:,由因为k为正整数,则;所以.故答案为:5.【分析】先设展开式中第项系数最大,此时第项系数大于第项系数;并且第项系数大于第项系数,则建立不等式有,进而求出k即可求解.14.【答案】【第1空】;【解析】【解答】解:据题意,甲乙两个圆台的轴截面都是等腰梯形,可以利用构造直角三角形,结合勾股定理的计算得到圆台的高,即甲、乙两个圆台上下底面的半径均为r2和r1,母线长分别为2(r1﹣r2)和3(r1﹣r2),所以甲圆台构造的直角三角形斜边长为:2(r1﹣r2),而其中一条直角边为,则甲圆台的高为:;同理,乙圆台构造的直角三角形斜边长为:3(r1﹣r2),则;此时,故答案为:..【分析】先根据已知条件和圆台结构特征,构造出直角三角形分别求出两圆台的高,再根据圆台的体积公式,直接代入计算即可得解.15.【答案】【第1空】64;【解析】【解答】解:由,利用换底公式将式子化成以2为底,即,对式子进行化简得:,即,利用因式分解得,所以或,因为a>1,所以,所以,即,故答案为:64.【分析】将利用换底公式转化成,接着化简式子,得到进而因式分解得到即可得到结果.16.【答案】【第1空】;【解析】【解答】解:从6个不同的球中不放回地抽取3次,共有种,设前两个球的号码为,第三个球的号码为,则,,则,故,,所以,若,则,则为:,故有2种,若,则,则为:,,故有10种,当,则,则为:,,故有16种,当,则,同理有16种,当,则,同理有10种,当,则,同理有2种,共与的差的绝对值不超过时不同的抽取方法总数为,故所求概率为.故答案为:.【分析】利用古典概型的计算公式,先根据题意进行全排列可求基本事件的总数,设前两个球的号码为,第三个球的号码为,则,就的不同取值分类讨论后列出对应事件的数量,进而利用古典概型的计算公式求解即可得到结果.17.【答案】(1)解:根据题意可得列联表如下所示:优级品非优级品总数甲车间262450乙车间7030100总计9654150将上面的数值代入公式计算得:,又因为,所以有的把握认为甲、乙两车间产品的优级品率存在差异,没有的把握认为甲,乙两车间产品的优级品率存在差异.(2)解:生产线智能化升级改造后,该工厂产品的优级品的频率为,所以用频率估计概率可得,根据题意,升级改造前该工厂产品的优级品率,则,可知,所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.【解析】【分析】(1)将列联表进行补充,并将数值代入公式进行计算得,再进行比较即可得到解果;(2)根据题意先计算出,在代入进行计算比较,即可得到结论. 18.【答案】(1)解:当时,,解得.当时,,所以即,而,故,故,∴数列是以4为首项,为公比的等比数列,所以.(2)解:,所以故所以,.【解析】【分析】(1)根据题意,由S n与a n之间的关系,利用分类讨论思想求得与的表达式,结合化简即可得到结果;(2)利用错位相减法求解即可得到结果.19.【答案】(1)证明:根据题意,因为为的中点,所以,四边形为平行四边形,所以,又因为平面,平面,所以平面;(2)过B作交于,连接,因为四边形为等腰梯形,,所以,由(1)可知为平行四边形,则,又,所以为等边三角形,为中点,根据直角三角形OBA,所以,又因为四边形为等腰梯形,为中点,所以,四边形为平行四边形,,所以为等腰三角形,与底边上中点重合,,,利用勾股定理得,所以,所以两两垂直,所以以方向为轴,方向为轴,方向为轴,如图建立空间直角坐标系,,,,,设平面的法向量为,平面的法向量为,则,即,则,又,即,则,所以,则,故二面角的正弦值为.【解析】【分析】(1)根据题意,由得到四边形为平行四边形,进而证明,结合直线与平面平行的判定定理即可得到结果;(2)作交于,连接,易证三线两两垂直,利用建系法求出二面角夹角余弦公式即可得到结果.20.【答案】(1)解:当时,f(x)的定义域为,所以,故,因为在上为增函数,根据单调性的性质,所以在上为增函数,又因为,故当时,,当时,,故在处取极小值且极小值为,无极大值.(2)解:因为,所以,设,则,当时,,故在上为增函数,又,即,所以在上为增函数,故.当时,当时,,故在上为减函数,故在上,即在上即为减函数,故在上,不合题意,舍去.当,此时在上恒成立,同理可得在上恒成立,不合题意,舍去;综上,.【解析】【分析】(1)求出函数的导数,根据导数的单调性结合零点存在性定理(考察隐零点问题)即可求出函数的极值.(2)求出函数的二阶导数,根据、、进行分类讨论后可得参数的取值范围.(分离参数,进行求导运算同样也是可以拿分的)21.【答案】(1)解:设,由题设有且,故,解得,,故椭圆方程为.(2)解:直线的斜率必定存在,设,,,由可得,故,故,又根据韦达定理得:,而,故直线,故,所以,故,即轴.【解析】【分析】(1)设,根据的坐标及轴可求基本量,故可求椭圆方程.(2)设,,,联立直线方程和椭圆方程,用的坐标表示,结合韦达定理化简前者可得,故可证轴.22.【答案】(1)解:由,将代入,故可得,两边平方后得:.(2)解:对于直线的参数方程消去参数,得直线的普通方程为.联立,得,,所以,设,根据韦达定理,所以,则,解得【解析】【分析】(1)根据公式即可得到的直角方程.(2)将直线的新的参数方程代入的直角方程,将直线的直角方程与曲线的直角方程联立,结合弦长公式可求的值.23.【答案】(1)证明:因为,当时等号成立,则,因为,所以;(2)证明:【解析】【分析】(1)直接利用,利用放缩法,结合做差法比较两个式子大小,利用基本不等式即可得到结果.(2)根据绝对值不等式并结合(1)中结论即可证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013大纲全国,理1)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为( ).A2.A3.( ).A4.( ).A5.A6.( ).A.-6(1-3-10)B.(1-310)C.3(1-3-10)D.3(1+3-10)7.(2013大纲全国,理7)(1+x)8(1+y)4的展开式中x2y2的系数是( ).A.56B.84C.112D.1688.(2013大纲全国,理8)椭圆C:22=143x y+的左、右顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是[-2,-1],那么直线PA1斜率的取值范围是( ).A.13,24⎡⎤⎢⎥⎣⎦B.33,84⎡⎤⎢⎥⎣⎦C.1,12⎡⎤⎢⎥⎣⎦D.3,14⎡⎤⎢⎥⎣⎦9.(2013大纲全国,理9)若函数f(x)=x2+ax+1x在1,2⎛⎫+∞⎪⎝⎭是增函数,则a的取值范围是( ).A.[-1,0]B.[-1,+∞)C.[0,3]D.[3,+∞)10.(2013大纲全国,理10)已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( ).A11.的直线与CA12.AC1314种.(15.(2013大纲全国,理15)记不等式组0,34,34xx yx y≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域为D.若直线y=a(x+1)与D有公共点,则a的取值范围是__________.16.(2013大纲全国,理16)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,OK=32,且圆O与圆K所在的平面所成的一个二面角为60°,则球O的表面积等于__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013大纲全国,理17)(本小题满分10分)等差数列{a n}的前n项和为S n.已知S3=22a,且S1,S2,S4成等比数列,求{a n}的通项公式.18.(2013大纲全国,理18)(本小题满分12分)设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.(1)求B;(2)若19.(1)(2)20.甲、乙、其中两人比赛,另一局当比赛(1)求第(2)X21.(1)求a,b;(2)设过F2的直线l与C的左、右两支分别交于A,B两点,且|AF1|=|BF1|,证明:|AF2|,|AB|,|BF2|成等比数列.22.(2013大纲全国,理22)(本小题满分12分)已知函数f(x)=1ln(1+)1x xxxλ(+)-+.(1)若x≥0时,f(x)≤0,求λ的最小值;(2)设数列{a n}的通项111=1+23nan+++,证明:a2n-a n+14n>ln2.2013年普通高等学校夏季招生全国统一考试数学理工农医类(大纲全国卷)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:B解析:选B.2.答案:A解析:3.答案:B解析:4.答案:B解析:5.答案:A解析:由题意知1+x =2?x=21y-(y>0),因此f-1(x)=121x-(x>0).故选A.6.答案:C解析:∵3a n +1+a n =0,∴a n +1=13n a -.∴数列{a n }是以13-为公比的等比数列.∵a 2=43-,∴a 1=4.∴S 10=101413113⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦+=3(1-3-10).故选C. 7.2y 2的系数为8. 2PA k =故1PA k ∵2PA k ∴1PA k 9. 答案:D解析:由条件知f ′(x )=2x +a -21x ≥0在1,2⎛⎫+∞ ⎪⎝⎭上恒成立,即212a x x ≥-在1,2⎛⎫+∞ ⎪⎝⎭上恒成立.∵函数212y x x =-在1,2⎛⎫+∞ ⎪⎝⎭上为减函数,∴max 211<23212y -⨯=⎛⎫⎪⎝⎭.∴a ≥3.故选D.10. 答案:A解析:如下图,连结AC 交BD 于点O ,连结C 1O ,过C 作CH ⊥C 1O 于点H .∵11BD ACBD AA AC AA A ⊥⎫⎪⊥⎬⎪=⎭1111BD ACC A CH ACC A ⊥⎫⎬⊂⎭平面平面CH CH BD CH ∴∠设1C O∴∴11.解析:由题意知抛物线C 的焦点坐标为(2,0),则直线AB 的方程为y =k (x -2),将其代入y 2=8x ,得k 2x 2-4(k 2+2)x +4k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2242k k(+),x 1x 2=4.① 由112222y k x y k x =(-)⎧⎨=(-)⎩∵0MA MB ⋅=,∴(x 1+2,y 1-2)·(x 2+2,y 2-2)=0. ∴(x 1+2)(x 2+2)+(y 1-2)(y 2-2)=0, 即x 1x 2+2(x 1+x 2)+4+y 1y 2-2(y 1+y 2)+4=0.④ 由①②③④解得k =2.故选D. 12.令t 则g (令g 当t 当t =当t =∴g (即f (13.答案:解析:由题意知cos α=3==-.故cot α=cos sin αα14.答案:480解析:先排除甲、乙外的4人,方法有44A 种,再将甲、乙插入这4人形成的5个间隔中,有25A 种排法,因此甲、乙不相邻的不同排法有4245A A 480⋅=(种).15.答案:1,42⎡⎤⎢⎥⎣⎦解析:作出题中不等式组表示的可行域如图中阴影部分所示.∵直线y 12BC k =则12≤a 16.解析:则OE ⊥又MN =R 又OK ⊥∴R =∴S =4π17.解:设{a n }的公差为d .由S 3=22a 得3a 2=22a ,故a 2=0或a 2=3. 由S 1,S 2,S 4成等比数列得22S =S 1S 4. 又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , 故(2a 2-d )2=(a 2-d )(4a 2+2d ).若a2=0,则d2=-2d2,所以d=0,此时S n=0,不合题意;若a2=3,则(6-d)2=(3-d)(12+2d),解得d=0或d=2.因此{a n}的通项公式为a n=3或a n=2n-1.18.解:(1)因为(a+b+c)(a-b+c)=ac,所以a2+c2-b2=-ac.由余弦定理得cos B=2221a c b+-=-,因此B=(2)由所以+C)+2sin A故A-C因此C=19.(1)过P作连结OA由△PAB所以OA点,故OE⊥因为O是BD的中点,E是BC的中点,所以OE∥CD.因此PB⊥CD.(2)解法一:由(1)知CD⊥PB,CD⊥PO,PB∩PO=P,故CD⊥平面PBD.又PD⊂平面PBD,所以CD⊥PD.取PD的中点F,PC的中点G,连结FG,则FG∥CD,FG⊥PD.连结AF,由△APD为等边三角形可得AF⊥PD.所以∠AFG为二面角A-PD-C的平面角.连结AG,EG,则EG∥PB.又PB⊥AE,所以EG⊥AE.设AB故AG在△所以以O为坐标原点,OE的方向为-,0,0)设|AB(2PC=AP=,AD=(2,-设平面n1=(x,yz)·(,,2)=0,n·PD=(x,y,z)·(0,,)=0,1可得2x-y-z=0,y+z=0.取y=-1,得x=0,z=1,故n1=(0,-1,1).设平面PAD的法向量为n2=(m,p,q),则n2·AP=(m,p,q)·,0)=0,n2·AD=(m,p,q)·,,0)=0,可得m+q=0,m-p=0.取m =1,得p =1,q =-1,故n 2=(1,1,-1). 于是cos 〈n 1,n 2〉=1212||||3=-·n n n n . 由于〈n 1,n 2〉等于二面角A -PD -C 的平面角,所以二面角A -PD -C的大小为π-20.解:(1)记A 1表示事件“第2局结果为甲胜”,A 2则A =A 1P (A )=P(2)X记A 3”,B 2负”.则P (X =14,P (X=1)=198.21.(1)所以C 将y =2代入上式,求得x =由题设知,=a 2=1. 所以a =1,b =(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.①由题意可设l的方程为y=k(x-3),k(k2-8)x2-6k2x+9k2+8=0.设A(x1,y1),B(x2,y2),则x1≤-1,x2≥1,x1+x2=2268kk-,x1·x2=22988kk+-.于是|AF1|(3x1+1),||(1)解:由已知f(0)=0,f′(x)=21x(+),f′(0)=0.若12λ<,则当0<x<2(1-2λ)时,f′(x)>0,所以f(x)>0.若12λ≥,则当x>0时,f′(x)<0,所以当x>0时,f(x)<0.综上,λ的最小值是12.(2)证明:令12λ=.由(1)知,当x >0时,f (x )<0, 即2ln(1)22x x x x(+)>++.取1x k=,则211>ln 21k k k k k ++(+).于是212111 422(1)n n n a a n k k -⎡⎤-+=+⎢⎥+∑=2n k n -=∑=所以1.).A =B 2.A 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样B .按性别分层抽样C .按学段分层抽样D .系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ). A .y =14x ±B .y =13x ±C .y =12x±D .y =±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A B C D 6.,将一果不A C 7.,S m =0,S m +3,则m =( A .8.则该A .16+8πB .8+8πC .16+16πD .8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =( ). A .5B .6C .7D .810.(2013课标全国Ⅰ,理10)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +11.是( A .(12.,….若b 1>c 1A .C .第(22)题~第13.若b ·c =0,则14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和33n n ,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x =θ时,函数f(x)=sinx -2cosx 取得最大值,则cos θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x =-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB BC=1,P 为△ABC 内一点,∠BPC =90°. (1)若PB =12,求PA ; (2)若∠APB =150°,求tan ∠PBA .18.(2013课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=(1)(2)19.先从4(1)(2)20.1)2+y 2=9(1)求C (2)l 求|AB |. 21.(2013课标全国Ⅰ,理21)(本小题满分12分)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2. (1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.(2013课标全国Ⅰ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE 交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求△BCF外接圆的半径.23.(1)把C1(2)求C124.x)=|2x -1|+(1)当a(2)设a2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2. ∴z =故z 3. 4. 答案:C解析:∵2c e a ==,∴22222254c a b e a a +===. ∴a 2=4b 2,1=2b a ±.∴渐近线方程为12by x xa=±±.5.答案:A解析:若t∈[-1,1),则执行s=3t,故s∈[-3,3).若t∈[1,3],则执行s=4t-t2,其对称轴为t=2.故当t=6.答案:A解析:BC=2,由R2=(7.答案:C解析:∴a m=S m∴d=a m+∵S m=ma1+12m m(-)×1=0,∴112ma-=-.又∵a m+1=a1+m×1=3,∴132mm--+=.∴m=5.故选C. 8.答案:A解析:由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A. 9. 答案:B1212∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a . 又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E的方程为22=1189x y.故选D.11.答案:D解析:由y=|f(x)|的图象知:①当x>0时,y=ax只有a≤0时,才能满足|f(x)|≥ax,可排除B,C.②当x≤22故由|f(当x=0当x<0∵x-212.答案:B第(22)题~第13.解析:∴b·c又∵|a|=|b|=1,且a与b夹角为60°,b⊥c,∴0=t|a||b|cos60°+(1-t),0=12t+1-t.∴t=2.14.答案:(-2)n -1解析:∵2133n n S a =+,①∴当n ≥2时,112133n n S a --=+.②①-②,得12233n n n a a a -=-, 即1nn a a -∵a 1=∴a 1=∴{a n }15.令cos 则f (x 当x =即θ=2k π+π2-α(k ∈Z ), 所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==16.答案:16解析:∵函数f (x )的图像关于直线x =-2对称,∴f (x )满足f (0)=f (-4),f (-1)=f (-3),即15164,0893,b a b a b =-(-+)⎧⎨=-(-+)⎩解得8,15.a b =⎧⎨=⎩∴f (x )=-x 4-8x 3-14x 2+8x +15. 由f ′(32得x 1易知,f 2)∴f (-=(-8=80-f (-2)=-=-f (-2=(-8=80-故f (x )三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得PA 2=11732cos 30424+-︒=.故PA =2. (2)设∠PBA =α,由已知得PB =sin α.在△PBA sin sin(30)αα=︒-,α=4sin α. 所以tan 18.(1)因为CA 由于AB 故△AA 1B 所以OA 1因为OC 又A 1C ⊂(2)又平面所以OC 故OA ,以O 为坐标原点,OA 的方向为O -xyz .由题设知A (1,0,0),A 1(0,0),C (0,03),B (-1,0,0).则BC =(1,0,1BB =1AA =(-10),1AC =(0,). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则10,0,BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.x x ⎧+=⎪⎨-+=⎪⎩可取n =,1,-1). 故cos 〈n ,1AC 〉=11A C A C⋅n n =5-. 所以A 1C 与平面BB 1C 1C 所成角的正弦值为5. 19.解:B 2P (A )=P (A 1=416(2)X P (X =所以X EX =20.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P (x ,y ),半径为R . (1)因为圆P 与圆M 外切并且与圆N 内切, 所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y+(x≠-2).(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4.若l的倾斜角为90°,则l与y轴重合,可得|AB|=若l1Rr,可求得由l解得当k解得所以|当k=综上,|AB|=|AB|=187.21.解:(1)由已知得f(0)=2,g(0)=2,f′(0)=4,g′(0)=4.而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4.从而a=4,b=2,c=2,d=2.(2)由(1)知,f(x)=x2+4x+2,g(x)=2e x(x+1).设函数F(x)=kg(x)-f(x)=2k e x(x+1)-x2-4x-2,则F′(x)=2k e x(x+2)-2x-4=2(x+2)(k e x-1).由题设可得F(0)≥0,即k≥1.令F′(x)=0得x1=-ln k,x2=-2.①若1≤F′(x)>0.即F F(x1).而F(x1)故当x≥②若k=从而当x而F(-③若k>从而当x综上,k22.(1)由弦切角定理得,∠=∠.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG . 设DE 的中点为O ,连结BO ,则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故Rt △BCF 外接圆的半径等于2.23.解:(1)即C 1:x 2将x y ρρ=⎧⎨=⎩ρ2-8ρ所以C 1ρ2-8ρ(2)C 2由22x x ⎧+⎨+⎩解得x y ⎧⎨⎩所以C 1与C 2交点的极坐标分别为4⎪⎭,2,2 ⎪⎝⎭.24.解:(1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0. 所以原不等式的解集是{x |0<x <2}.(2)当x不等式f 所以x ≥故2a -≥从而a 1.M ∩N =( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,lβ,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a=( A 6.输出的S =( A .10++B .110!++C .111++D .111!++7.(2013,(1,1,0)8.A .c >b>aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A .14B .12C .1D .210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MFA.C.12.将△ABC A.22题~第13.BD⋅=14.15.(2013课标全国Ⅱ,理15)设θ为第二象限角,若π1tan42θ⎛⎫+=⎪⎝⎭,则sinθ+cosθ=__________.16.(2013课标全国Ⅱ,理16)等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅱ,理17)(本小题满分12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值.18.(2013课标全国Ⅱ,理18)(本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB1的中点,AA 1=AC =CB =2AB . (1)(2)19.产品,品,每1t 分布X ≤150) (1)将T (2)(3)若需求量X 的概数学期望.20.分)>b>0)(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 21.(2013课标全国Ⅱ,理21)(本小题满分12分)已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.22.(2013课标全国Ⅱ,理22)(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B,E,F,C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B,E,F,C四点的圆的面积与△ABC外接圆面积的比值.23.P,Q都在曲线C PQ的中点.(1)求M(2)将M24.设a,b(1)ab+2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:A 解析:M ∩N =2. 答案:A 解析:z 3. 答案:C 解析:99,不∵q ≠1∴311q q--∵a 5=a 1·q 4=9,即81a 1=9,∴a 1=9.4. 答案:D解析:因为m ⊥α,l ⊥m ,lα,所以l ∥α.同理可得l ∥β.又因为m ,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D.5. 答案:D解析:因为(1+x )5的二项展开式的通项为5C r r x (0≤r ≤5,r ∈Z ),则含x 2的项为225C x +ax ·15C x =(10+5a )x 2,所以10+5a =5,a =-1. 6. 答案:B解析:当k =2当k =3当k =4当k =10110!++,k S ,所以B 7. 答案:A 解析:8. 答案:D解析:根据公式变形,lg 6lg 21lg 3lg 3a ==+,lg10lg 21lg 5lg 5b ==+,lg14lg 21lg 7lg 7c ==+,因为lg7>lg5>lg3,所以lg2lg2lg2lg7lg5lg3<<,即c<b<a.故选D. 9.答案:B解析:由题意作出1,3xx y≥⎧⎨+≤⎩所表示的区域如图阴影部分所示,作直线2x+y=1,因为直线2x+y=1与直线x=1的交点坐标为(1,-1),结合题意知直线y=a(x-3)10.答案:C解析:示,则在(-11.答案:C解析:又点F将x=0由2y=所以C的方程为y2=4x或y2=16x.故选C.12.答案:B第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

相关文档
最新文档