磁场分布测量实验讲义

磁场分布测量实验讲义
磁场分布测量实验讲义

磁场分布测量

沈阳城市大学

物理教学中心

用集成霍尔元件测定载流圆线圈与亥姆霍兹线圈磁场

在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍霍尔效应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。

【实验目的】

1.学习测量载流圆线圈的磁场分布。

2.了解亥姆霍兹线圈磁场分布的特点。

3.验证矢量迭加原理。

【实验原理】

1.载流圆线圈与亥姆霍兹线圈的磁场 (1)载流圆线圈磁场

根据毕奥-萨伐尔定律一半径为R ,通以直流电流I 的圆线圈,其轴线上离圆线圈中心距离为X 米处的磁感应强度的表达式为:

2

/3222

00)

X R (2R I N B +???μ= (1) 式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,,m /H 10470-?π=μ 磁场的分布图如图1所示,是一条单峰的关于Y 轴对称的曲线。

(2)亥姆霍兹线圈

两个完全相同的圆线圈彼此平行且共轴,通以同方向电流I ,线圈间距等于线圈半径(即

R d =)时,从磁感应强度分布曲线可以看出,

(理论计算也可以证明):两线圈合磁场在中心轴线上(两线圈圆心连线)附近较大范围内是均匀的,这样的一对线圈称为亥姆霍兹线圈,如图2所示。从分布曲线可以看出,在两线圈中心连线一段,出现一个平台,这说明该处是匀强磁场。

根据霍尔效应可以知道,当霍尔探头放入磁场中时,由于运动电荷受到洛伦兹力作用,电流方向会发生偏离,在某两个端面之间产生的电势差,通过电势差的大小就可以测量磁场的大小。当亥姆霍兹线圈两线圈通有方向一致的电流时,两线圈形成的磁场方向也一致,两线圈之间就形成均匀磁场,霍尔探头在该区域运动时其测量的数值几乎不变。当然两线圈通上相反方向电流,则其间的磁场可以互相抵消为零。

【实验仪器】

520FB 型三维亥姆霍兹线圈磁场实验仪。

一.520FB 三维线圈磁场实验信号源

仪器背部为520FB 交流电源插座和电源开关,以及配520FB 三维亥姆霍兹线圈磁场

实验仪测试架的专用插座。仪器主机见图4

1.励磁电流M I 输出:直流A 500.0~0恒流输出连续可调,接到测试架的励磁线圈,提供实验用的励磁电流。励磁电流M I 输出端连接到测试架线圈时,可以选择接单个线圈或双线圈。接双线圈时,将两线圈串联,即一个线圈的黑接线柱与另一线圈的红接线柱相连。另外两端子接至实验仪的M I 端。

2.由集成霍尔元件构成的微特斯拉计:每台仪器在出厂时,工作电流S I 及集成霍尔元件输出信号放大器都已配套调节好,只要用专用四芯连接线把实验仪与测试架连接。测量磁感应强度B 可直接读数。使用前,在仪器位置方向确定后,在励磁电流为零时,用调零旋钮调零。以消除地磁场及实验环境周围的杂散磁场对实验的影响。(提醒:集成霍尔元件工作电流出厂时已配对调好,如果把实验仪与测试架互换,将造成测试数据不准,甚至出现无法调零的情况,这时只要注意按仪器上的编号更正即可)。 3.换向开关:用于改变磁场线圈励磁电流M I 的方向。

二.520FB 三维亥姆霍兹线圈磁场测试架(本测试架的特点是实现三维可靠调节)

1.亥姆霍兹线圈:

如图5所示,两个圆线圈(1)、(2)安装于底板(3)上,其中圆线圈(1)为固定线圈,圆线圈(2)可以沿底板移动,从而调节两线圈的间距,移动范围为:mm 200~50d =,操作时,只需松开圆线圈(2)底座上的紧固螺钉,就可以用双手均匀地移动圆线圈(2),从而改变两个圆线圈的间距,实验架上设有2/R ,R 2 ,R 等位置标志,移到所需的位置后,再拧紧紧固螺钉。励磁电流通过圆线圈后面的插孔接入,可以做单个线圈或双线圈的磁场分布。

2.三维可移动装置:

见图5,滑块(10)可以沿导轨(5)左右移动,配合铜杆(8)的位置调节,可以改变集成霍尔元件(4)X 方向的位置坐标,移动距离:mm 200±。移动时,用力要轻,速度不可过快,如果滑块移动时阻力太大或太松,则应适当调节滑块上的螺钉(9)的松紧度;左右(即X 方向)移动不能影响前后方向即Y 方向位置;必要时,可以锁紧导轨(5)右端的紧定螺钉(13),防止Y 方向位置发生改变。沿Y 方向轻推滑块(10), 让导轨(5)沿导轨(6)均匀移动,可使集成霍尔元件Y 方向的位置坐标变化,移动距离:mm 80±;这时,导轨(5)右端的紧定螺钉(13)应处于松开状态。注意:这时不可左右方向用力,以免改变集成霍尔元件X 方向的位置。 松开紧固螺钉(12),铜杆(8)可以沿导轨(7)上下移动,移到所需的位置后,再拧紧紧固螺钉(12),用于改变霍尔元件Z 方向的位置坐标,移动距离:mm 80±。在进行X 方向位置移动时,一般将Z 方向标尺置于0点,这样保证集成霍尔元件正处于线圈中心轴线上。 实验装置在Z ,Y ,X 方向均配有位置标尺,

是三维磁场测量系统,可以方便地测量空间磁场的三维坐标。 3.集成霍尔元件:

装置采用优质A 95集成霍尔元件,特点是灵敏度高,温度漂移小,作为微特斯拉计的传感器是非常好的选择。可以对三维磁场分布进行准确测量。集成霍尔元件(4)安装于铜管(8)的左前端,导线从铜管中引出,连接到测试架后面板上的专用插座。

改变圆线圈(2)的位置进行磁场分布测量实验时,为了读数方便,应该改变铜管(8)的位置。松开紧固螺钉(11),移动铜管至2/R ,R 2 ,R 的位置,对应于圆线圈(2)在

2/R ,R 2 ,R 的位置,这样做的优点是移动滑块(10)时,X 方向的读数是以0位置为

对称的。如果不改变铜管(8)的位置,则应对X 方向位置读数进行修正。

【实验内容】

1.测量单个载流圆线圈(1)轴线上(X 方向)磁场1B 的分布:

① 用连接线将励磁电流M I 输出端连接到圆线圈(1),霍尔传感器探头的信号线连接到测试架后面板的专用四芯插座。紧固滑块(10),再拧紧紧固螺钉(12)。

② 开机前,预热10分钟,调节520FB 型霍尔法亥姆霍兹线圈磁场实验仪的电流调节,使励磁电流 A 000.0I M =,在线圈磁场强度等于零的条件下,把特斯拉计调零(目的是消除地磁场和其他环境杂散干扰磁场以及不平衡电势的影响),这样特斯拉计就校准好了。(注意:如果测量过程中改变了测试架位置方向,需重复调零步骤。)

③ 调节励磁电流A 500.0I M =,移动X 方向导轨滑块(10),以mm 10为间隔距离测量单个线圈通电时轴线上各点的磁感应强度,将数据记录在表1,即圆线圈轴线上B 的分布图,并绘出X ~B 1曲线。

表1 X ~B 1关系 (A 500.0I M ±=)

载流圆线圈(1)轴线上磁场分布的数据记录

(设亥姆霍兹线圈中间为坐标原点)

班级: 姓名: 日期:

2.测量单个载流圆线圈2轴线上(X 方向)磁场2B 的分布:

表2 X ~B 2关系 (A 500.0I M ±=)

载流圆线圈(2)轴线上磁场分布的数据记录

(设亥姆霍兹线圈中间为坐标原点)

班级: 姓名: 日期:

3.测量亥姆霍兹线圈轴线上磁场R B 的分布:

(1) 先松开线圈(2)的固定螺丝,把两线圈的距离调节到mm 100R d ==,组成亥姆霍兹线圈。要达到这样的设置只需要将铜管位置到R 处,Y 方向导轨(5),Z 方向导轨(7)都置于(0),固定螺丝,这样就可以将霍尔位于亥姆霍兹线圈的轴线上。 (2) 将线圈(1),(2)同向串联,并通入励磁电流M I 。 (3) 与前相同,开机前预热10分钟,调节520FB 型亥姆霍兹线圈磁场实验仪的电流调节,

使励磁电流 A 000.0I M =,在线圈磁场强度等于零的条件下,把特斯拉计调零。 (4) 调节励磁电流A 5.0I M =,移动X 方向导轨,以mm 10为间隔距离测量通电亥姆霍兹线圈轴线上磁感应强度。记录数据填入表3,并绘出X ~B R 曲线。

表3 X ~B R 关系 (A 500.0I M ±=)

亥姆霍兹线圈轴线上磁场分布的数据记录

(设亥姆霍兹线圈中间为坐标原点)

班级: 姓名: 日期:

4.比较与验证磁场叠加原理:

将表1和表2中的磁场强度21B ,B 数据按X 方向的坐标位置相加,得到21B B +,将

21B ,B 数据及21B B +数据绘制在一起并与表3的R B 数据比较。

(注:以下内容选做):

【附录】

520FB 型三维亥姆霍兹线圈磁场实验仪使用说明书

一.用途及特点:

1.用途:

520FB 型三维亥姆霍兹线圈磁场测量实验仪设计有连续可调稳压、恒流电源。磁场测定探头采用高灵敏度A 95型集成霍尔传感器,该仪器可用于研究载流圆线圈磁场分布、

亥姆霍兹线圈磁场分布。

520FB 型三维磁场实验仪由二部分组成:(1) 磁场实验仪 ,(2) 磁场测试架。 2.特点:

(1) 霍尔传感器位置可做Z ,Y ,X 三维移动,从而对亥姆霍兹线圈三维磁场分布情况进行测量和分析研究。

(2) 励磁电源可以提供连续可调的励磁电流,并用数字式电流表精确指示。

(3) 两个圆线圈,按设计要求,右边一个为固定线圈,左边一个线圈可以沿导轨平移,以实现改变线圈间距,满足实验需要。例如使间距分别为: R 2d 2/R d ,R d ===及等。 (4) 采用高灵敏度A 95型集成霍尔传感器作为磁场探头(注意:微特斯拉计的探头每一台都是专配的,需按编号配套使用,不得互换,否则将不能保证测量数据的准确性)。 (5) 微特斯拉计设计有补偿电路,用以消除地磁场及环境杂散磁场对磁场实验产生的干扰。(注:仪器位置改变时,地磁场对探头影响发生变化,应重新对微特斯拉计进行调零)。

二.主要性能指标:

1.稳压恒流源输出电流:单个圆线圈可达A 900.0~0,两个圆线圈串联时大于A 400.0且连续可调。

2.磁场测试架机械结构:其中左边的一个线圈的位置可以调节,可满足实验中改变线圈间距的需要:在R d =、2/R d =、R 2d =等特定位置,测试架和导轨上均刻有标志线,可以方便地确定线圈位置。 3.测试传感器调节范围:

轴向:cm 0.20±

径向:水平方向cm 0.8±,垂直方向cm 0.8± 4.圆线圈参数:

线圈平均半径m 100.0R = ,单只匝数:匝400;允许最大励磁电流:mA 1000 5.A 95集成霍尔传感器:

线性测量范围:mT 67~mT 67+-,工作电压V 5.5~5.4DC 。 灵敏度:T /V )3.13.31(±,线性误差1%,温度误差 C / %06.0 ?<

6.微特斯拉计显示精度:T 2μ±,分辨率:T 1μ 7.电流表显示精度:mA 2±

8.仪器的工作环境: 大气压强为:kPa 106~86, 环境温度:C 40~0?, 相对湿度:

% 80~25

9.外形尺寸(长×宽×高):

520FB 型三维亥姆霍兹线圈磁场实验仪: mm 120260320?? 520FB 型三维亥姆霍兹线圈磁场实验仪测试架:mm 270275800??

三.仪器结构:

仪器由520FB 型三维亥姆霍兹线圈磁场实验仪和测试架两部分组成。参见图4、图5 。 1.520FB 型霍尔法亥姆霍兹线圈磁场实验仪:

(1) 由连续可调式直流励磁恒流源,用数字式电流表指示励磁电流,用钮子式双刀双掷开关改变励磁电流的方向。

(2) 提供A 95型集成霍尔传感器工作电源,接收传感器信号加以放大处理,对地磁场及环境杂散磁场补偿调零电位器。把测量的磁感应强度直接用数显表显示微特斯拉数值。 2.520FB 型磁场实验测试架:

(1) 两只圆电流线圈,右边一只固定,左边一只可移动,线圈移动导轨及位置标志; (2) A 95型集成霍尔传感器固定支架,可轴向调节、径向水平调节和径向垂直调节装置。 (3) 刻度标尺,接线端钮等。

四.使用说明:

520FB 型三维亥姆霍兹线圈磁场实验仪的正确使用:

1.由于每个A 95型集成霍尔传感器的灵敏度存在差异,为了保证磁感应强度的准确性,必须认准配套编号把520FB 型亥姆霍兹线圈磁场实验仪和对应的520FB 型测试架两部分用专用连接导线正确连接起来,并把仪器位置固定摆放在实验平台上,将磁场实验仪接入

Hz 50 V 220 AC 电源,闭合电源开关。

2.在励磁电流等于零的条件下,通过补偿电位器,对微特斯拉计进行补偿调零(消除地磁场及周围杂散磁场的影响)。在实验过程中测试架位置要保持不变,若有变动,微特斯拉计要重新进行补偿调零。

3.松开测试架上线圈(2)的固定螺栓,按实验要求移动到规定的位置,原则是使测量数

据能作出以Y 轴基本对称的磁感应强度的分布曲线,以便研究分析磁场分布规律。 4.调节励磁电流至实验需要值例如mA 400I ,按实验讲义的步骤,逐点测定磁感应强度的数值。

5.霍尔传感器的轴向移动(X 坐标)、径向水平移动(Y 坐标)、径向垂直移动(Z 坐标)只要通过用手推动相应移动装置即可。

6.实验室中磁场实验仪较多,为避免相互影响,应注意不要相互靠得太近。

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国冯·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管内激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4)

磁场测量的原理和元件

磁场测量的原理和元件 磁场是无形的,在实际检测中,通常是将磁场转换成电信号然后实现自动化处理,从而实现无形磁场的可视化。磁电转换原理和元件有以下几种: 1.感应线圈 感应线圈的原理:通过线圈切割磁力线产生感应电压,而感应电压的大小与线圈匝数、穿过线圈的磁通变化率或者线圈切割磁力线的速度成线性关系。感应线圈测量的是磁场的相对变化量,并对空间域上的高频率磁场信号更敏感。 2.磁通门 磁通门传感器是利用被测磁场中高导磁铁芯在交变磁场的饱和激励下,其磁感应强度与磁场强度的非线性关系来测量的弱磁场的一种传感器,其原理是建立在法拉第电磁感应定律和某些材料的磁化强度M与磁场强度H的非线性关系上。使用磁通门传感器的仪器有磁通门高斯计,如磁通门高斯计GF600,能精确测量微弱的磁场,仪表无须调零,是测量弱磁场最好的选择,但磁通门传感器不能长期暴露在高磁场环境下,使用环境应低于100G(10mT)。 3.霍尔传感器 霍尔传感器是根据霍尔效应制作的一种磁场传感器,测量绝对磁场大小。 霍尔效应从本质上讲是运动的带点粒子在磁场中收到洛伦兹力作用引起的偏转,从而形成霍尔电势V=K H①·I·B。以霍尔传感器开发出来的仪器有霍尔效应高斯计,常用的有手持式高斯计G100,具有精度高、温度补偿功能强、零点漂移小和磁场测量反应速度快等优点。 4.磁敏电阻 磁阻效应是指某些金属或半导体的电阻值随外加磁场变化而变化的现象。 常用的元件有磁敏电阻、磁敏二极管、磁敏三极管等。 5.磁共振法 原子核磁性的直接和精密的测量是利用核磁共振的方法。核磁共振是原子核磁矩系统在相互垂直的恒定磁场B和角频率ω的交变磁场的同时作用下,满足ω=γ②B时,原子核系统对交变磁场产生强烈吸收(共振吸收)现象。 除了上述介绍的几种方法外,还有磁光克尔效应法、磁膜测磁法、磁致收缩法、磁量子隧道效应法、超导效应法等。 ①元件的灵敏度,它表示在单位磁场和单位控制电流下霍尔电势的大小 ②为原子核的磁旋比,即原子核的磁矩与角动量之比。

700223霍尔效应法测螺线管磁场(实验23)

霍耳效应法测螺线管磁场实验报告 【一】实验目的及实验仪器 实验目的 1.了解和熟悉霍尔效应的重要物理规律 2.熟悉集成霍尔传感器的特性和应用,掌握测试霍尔效应器件的工作特性 3.学习用霍尔效应测量磁场的原理和方法 4.学习用霍尔器件测绘长直螺线管的轴向磁场分布 实验仪器FD-ICH-II 新型螺线管磁场测定仪 【二】实验原理及过程简述 霍尔元件如图4-23-1所示。若电流I流过厚度为d的半导体薄片,且磁场B垂直于该半导体,于是电子流方向由洛伦磁力作用而发生改变,在薄片两个横向面a,b之间应产生电势差,这种现象称为霍尔效应。在与电流I、磁场B垂直方向上产生的电势差称为霍尔电势差,通常用UH 表示。霍尔效应的数学表达式为: 随着科技的发展,新的集成元件不断被研制成功。本实验采用的SS95A型集成霍尔传感器,是一种高灵敏度集成化传感器,它由霍尔元件放大器和薄膜电阻剩余电压补偿组成,测量时输出信号大,并且剩余电压的影响已被消除。SS95A型集成霍尔传感器,他的工作电流已设定被称为标准,工作电流使用传感器时,必须使工作电流处在该标准状态,在实验 室只要在磁感应强度为零条件下调节v +v - 所接的电源电压是输出电压为 2.500伏,则传感器就可处在标准工作状态之下。 当螺线管内有磁场且集成霍尔传感器的标准工作电流时 螺线管是由绕在圆柱面上的导线构成的,对于密绕的螺线管可以看成是一列有共同轴线的圆形线圈的并列组合,因此一个载流长直螺线管轴线上某点的磁感应强度,可以从对各圆电流在轴线上该点所产生的磁感应强度进行积分求和得到,对于一限长的螺线管,在距离两端等远的中心点磁

感应强度为最大,且等于 过程简述 1.装置接线 2.断开开关K2,调节使集成霍尔传感器达到标准化工作状态。 3.测量霍尔传感器的灵敏度 4.测量通电螺线管中的磁场分布 【三】实验数据处理及误差计算: 5让风吹 1.根据实验所测,描绘螺线管中间位置霍尔电势差与螺线管通电电流的关系; 2.求出K/ 和r以及K; ∴K’=0.4169V/A r=1

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应。1879 年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象, 故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属 的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人 们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发 展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电 流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】 霍尔效应从本质上讲,是运动的带电粒子在 磁场中受洛仑兹力的作用而引起的偏转。当带电 粒子(电子或空穴)被约束在固体材料中,这种 偏转就导致在垂直电流和磁场的方向上产生正 负电荷在不同侧的聚积,从而形成附加的横向电 场。如图13-1所示,磁场B位于Z的正向,与 之垂直的半导体薄片上沿X正向通以电流Is(称 为工作电流),假设载流子为电子(N型半导体材 料),它沿着与电流Is相反的X负向运动。 由于洛仑兹力f L作用,电子即向图中虚线 箭头所指的位于y轴负方向的B侧偏转,并使B 侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度v,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为:

螺线管磁场讲义

霍尔效应法测定螺线管 轴向磁感应强度分布 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.掌握测试霍尔元件的工作特性。 2.学习用霍尔效应法测量磁场的原理和方法。 3.学习用霍尔元件测绘长直螺线管的轴向磁场分布。 二、实验原理 1.霍尔效应法测量磁场原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a)所示的N型半导体试样,若在X方向的电极D、E上通以电流Is,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力 F B v e g (1)其中e为载流子(电子)电量,为载流子在电流方向上的平均定向漂移速率,B为磁感应强度。 无论载流子是正电荷还是负电荷,F g的方向均沿Y方向,在此力的作用下,载流子发生便移,则在Y方向即试样A、A′电极两侧就开始聚积异号电荷而在试样A、A′两侧产生一个电位差V H,形成相应的附加电场E—霍尔电场,相应的电压V H称为霍尔电压,电极A、A′称为霍尔电极。电场的指向取决于试样的导电类型。N型

霍尔效应法测量螺线管磁场

研胳wZprtf 霍尔效应法测量螺线管磁场实验报告 【实验目的】 1?了解霍尔器件的工作特性。 2?掌握霍尔器件测量磁场的工作原理。 3?用霍尔器件测量长直螺线管的磁场分布。 4.考查一对共轴线圈的磁耦合度。 【实验仪器】 长直螺线管、亥姆霍兹线圈、霍尔效应测磁仪、霍尔传感器等。 【实验原理】 1?霍尔器件测量磁场的原理 图1霍尔效应原理 如图1所示,有—N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电 极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,则电子将沿负I方向以速 ur ir u 度运动,此电子将受到垂直方向磁场B的洛仑兹力F m ev e B作用,造成电子在半导体薄片的1测积累 urn 过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场E H,该电场对电子ur uuu uir n ir 的作用力F H eE H,与F m ev e B反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起 稳定的电压U H,此种效应为霍尔效应,由此而产生的电压叫霍尔电压U H , 1、2端输出的霍尔电压可由 数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,可以推导出 式中,R H为霍耳系数,通常定义K H R H /d , 由R H和K H的定义可知,对于一给定的霍耳传感器,R H和K H有唯一确定的值,在电流I不变的情况下, U H R H U H满足: 世K H IB , d K H称为灵敏度。

研 島加吋 与B有一一对应关系。 2?误差分析及改进措施 由于系统误差中影响最大的是不等势电势差,下面介绍一种 方法可直接消除不等势电势差的影响,不用多次改变B、丨方 向。如图2所示,将图2中电极2引线处焊上两个电极引线5、6,并在5、6间 连接一可变电阻,其滑动端作为另一引出线2, 将线路完全接通后,可以调节 滑动触头2,使数字电压表所测电压为零,这样就消除了1、2两引线间的不等 势电势差,而且还可以测出不等势电势差的大小。本霍尔效应测磁仪的霍尔电 压测量部分就采用了这种电路,使得整个实验过程变得较为容易操作,不过实 验前要首先进行霍尔输出电压的调零, 以消除霍尔器件的不等位电势”。 在测量过程中,如果操作不当,使霍尔元件与螺线管磁场不垂直,或霍尔元件中电流与磁场不垂直,也会引入系统误差3?载流长直螺线管中的磁场 从电磁学中我们知道,螺线管是绕在圆柱面上的螺旋型线圈。对于密绕的螺线管来说,可以近似地看成是 一系列园线圈并排起来组成的。如果其半径为R、总长度为L,单位长度的匝数为n,并取螺线管的轴线 为x轴,其中心点0为坐标原点,贝U (1)对于无限长螺线管L 或L R的有限长螺线管,其轴线上的磁场是一个均匀磁场,且等于: uu B o o NI 式中0――真空磁导率;N ――单位长度的线圈匝数;I ――线圈的励磁电流。 (2)对于半无限长螺线管的一端或有限长螺线管两端口的磁场为: uu 1 B! —oNI 2 即端口处磁感应强度为中部磁感应强度的一半,两者情况如图3所示。 图2 图3

磁场(教学讲义)

磁 场 第1、2课时 磁场、磁场对电流的作用 授课时间: 考点1. 磁场的基本概念 1. 磁体的周围存在磁场。 2. 电流的周围也存在磁场 3. 变化的电场在周围空间产生磁场(麦克斯韦)。 4. 磁场和电场一样,也是一种特殊物质 5. 磁场不仅对磁极产生力的作用, 对电流也产生力的作用. 6. 磁场的方向——在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所 指的方向,就是那一点的磁场方向. 7. 磁现象的电本质:磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的. 考点2. 磁场的基本性质 磁场对放入其中的磁极或电流有磁场力的作用.(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 1. 磁极和磁极之间有磁场力的作用 2. 两条平行直导线,当通以相同方向的电流时,它们相互吸引,当通以相反方向的电流时, 它们相互排斥 3. 电流和电流之间,就像磁极和磁极之间一样,也会通过磁场发生相互作用. 4. 磁体或电流在其周围空间里产生磁场,而磁场对处在它里面的磁极或电流有磁场力的作 用. 5. 磁极和磁极之间、磁极和电流之间、电流和电流之间都是通过磁场来传递的 考点3。磁感应强度(矢量) 1.在磁场中垂直于磁场方向的通电导线,所受的安培力F 安跟电流I 和导线长度L 的乘积 IL 的比值叫做磁感应强度l I F B 安= ,(B ⊥L ,LI 小) 2.磁感应强度的单位:特斯拉,简称特,国际符号是T m A N 1T 1?= 3.磁感应强度的方向: 就是磁场的方向. 小磁针静止时北极所指的方向,就是那一点的磁场方向.磁感线上各点的切线方向就是这点的磁场的方向.也就是这点的磁感应强度的方

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

霍尔效应测磁场实验报告(完整资料).doc

【最新整理,下载后即可编辑】 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间: 一、实验室名称:霍尔效应实验室 二、 实验项目名称:霍尔效应法测磁场 三、实验学时: 四、实验原理: (一)霍耳效应现象 将一块半导体(或金属)薄片放在磁感应强度为B 的磁 场中,并让薄片平面与磁场方向(如Y 方向)垂直。如在薄片的横向(X 方向)加一电流强度为H I 的电流,那么在与磁场方向和电流方向垂直的Z 方向将产生一电动势H U 。 如图1所示,这种现象称为霍耳效应,H U 称为霍耳电压。霍耳发现,霍耳电压H U 与电流强度H I 和磁感应强度B 成正比,与磁场方向薄片的厚度d 反比,即 d B I R U H H = (1) 式中,比例系数R 称为霍耳系数,对同一材料R 为一常数。因成品霍耳元件(根据霍耳效应制成的器件)的d 也是一常数,故d R /常用另一常数K 来表示,有 B KI U H H = (2) 式中,K 称为霍耳元件的灵敏度,它是一个重要参数,表示该元件在单位磁感应强度和单位电流作用下霍耳电压的大小。如果霍

耳元件的灵敏度K 知道(一般由实验室给出),再测出电流H I 和霍耳电压H U ,就可根据式 H H KI U B = (3) 算出磁感应强度B 。 图 1 霍 耳 效 应 示 意 图 图2 霍耳效应解释 (二)霍耳效应的解释 现研究一个长度为l 、宽度为b 、厚度为d 的N 型半导体制成的霍耳元件。当沿X 方向通以电流H I 后,载流子(对N 型半导体是电子)e 将以平均速度v 沿与电流方向相反的方向运动,在磁感应强度为B 的磁场中,电子将受到洛仑兹力的作用,其大小为 evB f B = 方向沿Z 方向。在B f 的作用下,电荷将在元件沿Z 方向的两端面堆积形成电场H E (见图2),它会对载流子产生一静电力E f ,其大小为 H E eE f = 方向与洛仑兹力B f 相反,即它是阻止电荷继续堆积的。当B f 和E f 达到静态平衡后,有E B f f =,即b eU eE evB H H /==,于是电荷堆积的两端面(Z 方向)的电势差为 vbB U H = (4)

10讲义(磁场描绘)

10讲义(磁场描绘)

实验 磁场的描绘与测量 【实验目的】 1.了解感应法测量磁场的原理. 2.研究载流圆线圈轴向磁场的分布,加深对毕 奥-萨伐尔定律的理解. 3.描绘载流圆线圈轴向平面上的磁力线和亥姆 霍兹线圈的磁场均匀区. 【实验仪器】 亥姆霍兹线圈,探测线圈,磁场描绘仪信号源, 交流毫伏表,数字万用表,坐标纸等. 【实验原理】 1. 载流圆线圈轴线上磁场的分布 根据毕奥一萨伐尔定律,载流圆线圈轴线r r P dB ' x α α α α dB o 图1 B x 图2

上任一点P(见图1)的磁感应强度为: 322012I X B R R μ-????=+?? ??????? (1) 式中I 为圆线圈中的电流强度,R 为线圈的半径,X 为P 点至圆心点的距离,μ0叫真空磁导率(μ0 =4π×10-7N·A -2).B ~x 曲线如图2所示. 显然,在圆心处(X=0)的磁感应强度为 00I B 2R μ=,所以, 32201B X B R -????=+?? ??????? (2) 2.磁场的测量 测量磁场的方法有多种,本实验采用感应 法,当线圈中输入交变电流时,其周围空间必定 有变化磁场,可利用探测线圈置于交变磁场中所 产生的感应电动势来量度磁场的大小,当线圈内 通以正弦交变电流时,则在空间形成一个正弦交 变的磁场,磁感应强度为:

B 的方向一致时,感应电动势为最大值: 2m U B = 所以,m B 与U 成正比. 因此,我们可利用毫伏表读数的最大值来测 定磁场的大小,为了减小系统误差,我们采用比 较法进行测量. 轴线上任意一点的U 值与圆心处的0 U 值之比为 322001U B X U B R -????==+?? ??????? (5) 由此可见,0U U 与0 B B 的变化规律完全相同,实验若能证明 32201U X U R -????=+?? ???????,也就证明了32201B X B R -????=+?? ???????, 便验证了毕奥一萨伐尔定律的正确性. 磁感应强度是一矢量,因此磁场的测量不仅 要测量磁场的大小,还要测出它的方向.磁场的 方向如何确定呢?磁场的方向,本来可用毫伏表 读数最大值时所对应的探测线圈法线方向来表

磁场分布

§3.3 磁场分布 【预习重点】 1.毕奥-萨伐尔定律、载流圆线圈在轴线上某点的磁感应强度公式。 2.亥姆霍兹线圈的组成及其磁场分布的特点。 3.霍尔效应、霍尔传感器原理。 【实验目的】 1.测亥姆霍兹线圈在轴线上的磁场分布。 2.测载流圆线圈在轴线上的磁场分布,验证磁场叠加原理。 3.比较两载流圆线圈距离不同时轴线上磁场分布情况。 【实验原理】 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图1。根据毕奥萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R B ?+?= 2 /322 2 0) (2μ (3.3.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.3.2) 轴线外的磁场分布情况较复杂,这里简 略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈内的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.3.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B ′为 3/23/222222 01222R R B N I R R x R x μ??????????????′=???++++??? ???????????????????????? (3.3.3) 而在亥姆霍兹线圈轴线上中心O 处磁感应强度大小′ 0B 为 003/285N I B μ??′= (3.3.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴 线上任一点的磁感应强度大小B ′′为 3/23/222222 01222d d B N I R R x R x μ??????????????′′=???++++??????????????????????????? (3.3.5) 四、霍尔效应、霍尔传感器 1.霍尔效应 霍尔效应是具有载流子的导体(或半导体)同时处在电场和磁场中而产生电势的一种现象。如图3.3.3(带正电的载流子)所示,把一块宽为b ,厚为d 的导电板放在磁感应强度为B 的磁场中,并在导电板中通以纵向电流I ,此时在板的横向两侧面A ,A ′之间就呈现出一定的电势差,这一现象称为霍尔效应,所产生的电势差U H 称霍尔电压。霍尔效应的数学表达式为: U H =R H d IB R H 是由半导体本身载流子迁移率决定的物理常数,称为霍尔系数。霍尔效应可以用洛伦兹力来解释。详见附页。 2.霍尔传感器 近年来,在科研和工业中,集成霍尔传感器被广泛应用于磁场测量,它测量灵敏度高,体积小,易于在磁场中移动和定位。本实验用SS95A 型集成霍尔传感器测量载流圆线圈磁场分布,其工作原理也基于霍尔效应,即U H =R H d IB =K H IB K H =R H /d K H 称为霍尔元件灵敏度,B 为磁感应强度,I 为流过霍尔元件的电流强度。理论上B 为零时,

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

磁场强度测量方法归类

磁场强度测量方法归类 阳其保 一、利用安培力计算公式F =BIL 测磁感应强度B 例1. 如图1所示,天平可用来测定磁感应强度,天平的右臂上挂有一矩形线圈,宽度为l ,共N 匝,线圈下端悬在匀强磁场中,磁场方向垂直纸面。当线圈中通有电流I (方向如图)时,在天平左右两边加上质量分别为m m 12、的砝码,天平平衡,当线圈中电流反向时,右边需再加砝码m ,天平重新平衡。由此可知( ) 图1 A. 磁感应强度的方向垂直纸面向里,大小为 ()m m g NIl 12-; B. 磁感应强度的方向垂直纸面向里,大小为 mg NIl 2; C. 磁感应强度的方向垂直纸面向外,大小为 ()m m g NIl 12-; D. 磁感应强度的方向垂直纸面向外,大小为mg NIl 2。 分析与解:因为电流反向后,右边需加砝码,故可知电流反向之后,通电线圈受向上的安培力作用,由左手定则得磁场的方向垂直线面向里。又因为磁场对线圈的作用力:F NBIl =,电流反向前,由平衡条件有:m g m g NBIl 12=+,电流反向后有:m g m m g NBIl 12=+-(),综合以上各式有:B mg NIl = 2,正确答案为B 。 二、利用感应电动势E=BLv 测磁感应强度B 例2. 为了控制海洋中水的运动,海洋工作者有时依靠水流通过地磁场产生的感应动势以及水的流速测地磁场的磁感应强度向下的分量B ,某课外活动兴趣小组由四个成员甲、乙、丙、丁组成,前去海边某处测量地磁场的磁感应强度向下的分量B 。假设该处的水流是南北流向,且流速为v ,问下列哪种测定方法可行?( ) A. 甲将两个电极在水平面沿水流方向插入水流中,测出两极间距离L 及与两极相连的测量电势差的灵敏仪器的读数U ,则B U vL =; B. 乙将两个电极在水平面沿垂直水流方向插入水流中,测出两极间距离L 及与两极相连

电磁感应法测交变磁场_讲义

电磁感应法测交变磁场 在工业、国防、科研中都需要对磁场进行测量,测量磁场的方法有不少,如冲击电流计法、霍耳效应法、核磁共振法、天平法、电磁感应法等等,本实验介绍电磁感应法测磁场的方法,它具有测量原理简单,测量方法简便及测试灵敏度较高等优点。 一、实验目的 1.了解用电磁感应法测交变磁场的原理和一般方法,掌握201FB 型交变磁场实验仪及测试仪的使用方法。 2.测量载流圆形线圈和亥姆霍兹线圈的轴向上的磁场分布。 3.了解载流圆形线圈(或亥姆霍兹线圈)的径向磁场分布情况。 4.研究探测线圈平面的法线与载流圆形线圈(或亥姆霍兹线圈)的轴线成不同夹角时所产生的感应电动势的值的变化规律。 二、实验仪器 FB201-Ⅰ型交变磁场实验仪,信号频率可调范围30~200Hz ,信号输出电流,单 个圆线圈可 900mA ≥ ,两个圆线圈串联400mA ≥。亥姆霍兹线圈每个400匝,允许最大电流1A 。 三、实验原理 1.载流圆线圈与亥姆霍兹线圈的磁场: (1)载流圆线圈中心轴线上的磁场分布: 一半径为R ,通以电流I 的圆线圈,轴线上磁场的公式为 : 2 /3222 00)(2X R R I N B +???= μ (1) 式中0N 为圆线圈的匝数,X 为轴上某一点到圆心O '的距离,70410/,H m μπ-=? 磁场的分布图如图1所示。

本实验取匝400N 0=,A 400.0I =,m 107.0R =,圆心O '处0X =,可算得磁感应强度为:T 10940.0B 3-?= , T 10328.1B 2B 3m -?== (2)亥姆霍兹线圈中心轴线上的磁场分布: 两个相同圆线圈彼此平行且共轴,通以同方向电流I ,理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合磁场在轴上(两线圈圆心连线)附近较大范围内是均匀的,这对线圈称为亥姆霍兹线圈,如图2所示。这种均匀磁场在科学实验中应用十分广泛,例如,显像管中的行、场偏转线圈就是根据实际情况经过适当变形的亥姆霍兹线圈。 2.用电磁感应法测磁场的原理: 设均匀交变磁场为(由通交变电流的线圈产生) t B B m sin ω?= 磁场中一探测线圈的磁通量为 t B S N m sin cos ωθ????=Φ 式中:N 为探测线圈的匝数,S 为该线圈的截面积,θ为B 与线圈法线夹角。如图3所示。线圈产生的感应电动势为 t B S N dt d m cos cos ωθωε?????=Φ - = t m cos ωε?-= 式中θωεcos ????=m m B S N 是线圈法线和磁场成θ角时,感应电动势的幅值。当 0=θ ,m B S N ???=ωεmax ,这时的感应电动势的幅值最大。如果用数字式毫伏表测量 此时线圈的电动势,则毫伏表的示值(有效值)max U 应为 2 max ε, 则 ω ω ε??= ??= S N U S N B max max max 2 (2) 由(2)式可算出B 来。 3.探测线圈的设计: 实验中由于磁场的不均匀性,探测线圈又不可能做得很小,否则会影响测量灵敏度。一般设计的线圈长度L 和外径 D 有D 3 2L = 的关系,线圈的内径d 与外径D 有3D d ≤的 关系(本实验选m 012.0D = ,800N =匝的线圈)。线圈在磁场中的等效面积,经过理论计算,可用下式表示:

霍尔效应法测量螺线管磁场分布

霍尔效应法测量螺线管磁场分布 1879年美国霍普金斯大学研究生霍尔在研究载流导体在磁场中受力性质时发现了一种电磁现象,此现象称为霍尔效应,半个多世纪以后,人们发现半导体也有霍尔效应,而且半导体霍尔效应比金属强得多。近30多年来,由高电子迁移率的半导体制成的霍尔传感器已广泛用于磁场测量和半导体材料的研究。用于制作霍尔传感器的材料有多种:单晶半导体材料有锗,硅;化合物半导体有锑化铟,砷化铟和砷化镓等。在科学技术发展中,磁的应用越来越被人们重视。目前霍尔传感器典型的应用有:磁感应强度测量仪(又称特斯拉计),霍尔位置检测器,无接点开关,霍尔转速测定仪,100A-2000A 大电流测量仪,电功率测量仪等。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年德国·克利青教授在低温和强磁场下发现了量子霍尔效应,这是近年来凝聚态物理领域最重要发现之一。目前对量子霍尔效应正在进行更深入研究,并取得了重要应用。例如用于确定电阻的自然基准,可以极为精确地测定光谱精细结构常数等。 通过本实验学会消除霍尔元件副效应的实验测量方法,用霍尔传感器测量通电螺线管激励电流与霍尔输出电压之间关系,证明霍尔电势差与螺线管磁感应强度成正比;了解和熟悉霍尔效应重要物理规律,证明霍尔电势差与霍尔电流成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法. 实验原理 1.霍尔效应 霍尔元件的作用如图1所示.若电流I 流过厚度为d 的半导体薄片,且磁场B 垂直作用于该半导体,则电子流方向由于洛伦茨力作用而发生改变,该现象称为霍尔效应,在薄片两个横向面a 、b 之间与电流I ,磁场B 垂直方向产生的电势差称为霍尔电势差. 霍尔电势差是这样产生的:当电流I H 通过霍尔元件(假设为P 型)时,空穴有一定的漂移速度v ,垂直磁场对运动电荷产生一个洛仑兹力 )(B v q F B ?= (1) 式中q 为电子电荷,洛仑兹力使电荷产生横向的偏转,由于样品有边界,所以偏转的载流 子将在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F E =qE 与磁场作用的洛仑兹力相抵消为止,即 qE B v q =?)( (2) 这时电荷在样品中流动时不再偏转,霍尔电势差就是由这个电场建立起来的。 如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍尔电势差有不同的符号,据此可以判断霍尔元件的导电类型。 设P 型样品的载流子浓度为Р,宽度为ω,厚度为d ,通过样品电流I H =Рqv ωd ,则空穴的速度v= I H /Рq ωd 代入(2)式有 d pq B I B v E H ω= ?= (3) 上式两边各乘以ω,便得到 d B I R pqd B I E U H H H H == =ω (4) 其中pq R H 1 = 称为霍尔系数,在应用中一般写成

霍尔效应法测螺线管磁场-实验报告

实验数据处理 1.霍尔电势差U 与螺线管通电电流Im 的关系图(x=17.0cm 处): 0 450 500 0 22.2 44.1 66.1 88.1 110.1 132 154.1 176 198 220 直线的斜率K'=0.4301;相关系数r=1 L=26.0±0.1cm,N=(3000±20)匝,平均直径D=3.5±0.1cm μ。=4π×10*-7H/m K N D L K '+= 。μ2 ^2^=30.01(V/T) U/mV Im/mA

2.通电螺线管内磁感应强度分布测定(Im=250mA)螺线内磁感应强度B与位置刻度X的关系 x/cm U1'/mV U2'/mV U'/mV B/mT 1 9.6 -10.1 10.1 0.34 1.5 13.8 -14.6 14.2 0.47 2 20.5 -21. 3 20.9 0.7 2.5 30.9 -31.7 31.3 1.04 3 44.8 -45.5 45.15 1.5 3.5 60.8 -61.6 61.2 2.04 4 74 -74.9 74.4 5 2.48 4.5 83.3 -84.1 83.7 2.80 5 89.8 -90.7 90.25 3.01 5.5 93.4 -94.2 93.8 3.12 6 95.9 -96.5 96.2 3.21 6.5 9 7.7 -9 8.6 98.15 3.27 7 98.8 -98.6 98.7 3.29 7.5 100.8 -101.1 100.95 3.36 8 101.4 -102.3 101.85 3.39 10 105.2 -106 105.6 3.52 14 106.5 -107.1 106.8 3.55 16 107.3 -107.8 107.55 3.58 21 106.5 -106.8 106.65 3.55 24 104.8 -105.1 104.95 3.5 25 102.3 -102.6 102.45 3.41 25.5 100.5 -100.9 100.7 3.36 26 98.7 -99 98.85 3.29 26.5 96.6 -97 96.8 3.23 27 93.9 -94.2 94.05 3.13 27.5 89.2 -89.7 89.45 2.98 28 82.3 -82.9 82.6 2.75 28.5 70.9 -71.5 71.2 2.37 29 55.8 -56.3 56.05 1.87 29.5 39.8 -40.5 40.15 1.34 30 25.9 -26.7 26.3 0.88

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

相关文档
最新文档