PWM变频器输出过电压和谐波对电动机的影响及抑制措施

PWM变频器输出过电压和谐波对电动机的影响及抑制措施
PWM变频器输出过电压和谐波对电动机的影响及抑制措施

PWM变频器输出过电压和谐波对电动机的影响及抑制措施随着电力电子技术和现代控制理论在交流变频器调速驱动系统

的应用,特别是近年来,IGBT等高开关速率的电力电子器件及PWM 变频调速技术的进步,变频器(或逆变器)越来越广泛地应用于工业生产和日常生活中,并且有取代直流调速传动的趋势。从目前国内看,中小容量的变频器调速系统使用的比较广泛,研制和开发技术还比较成熟,在使用的变频器中,低压变频器和100kW 以下的变频器占绝大多数,其中70%以上应用在风机泵类负载及压缩机上,如供水与供暖系统、输液系统和通风系统。在我国拖动风机泵类负载的电动机中,虽然大功率在数量上仅占20 %,但在容量上却占80%以上。因此,大功率电动机的变频调速是现在节能措施中极为重要的手段。石化、化工、采矿、钢铁、发电及自来水厂等行业所拥有的大功率风机泵类负载节能改造对大功率变频器的需求很大,这对变频器行业来说是一急需开发的市场。但是,目前在我国变频器的生产厂家中,实际能生产大功率低压变频器的还不多,大多数厂家实际上仅能生产75kW甚至是37kW以下的变频器。研究PWM逆变器供电对异步电动机的影响,不仅可以对电机和大功率变频器的设计和应用具有现实意义,而且对电机绝缘寿命有重要意义。PWM供电对电动机的影响PWM变频调速对异步电动机的影响有很多方面,我现在从PWM 变频器对电网和对电动机这两端来看,谈以下主要两点:1. 机端过电压PWM变频器输出的具有陡上升沿或下降沿的脉冲电压却在电

动机接线端子及绕组上产生了过电压,造成电动机绕组绝缘的过早破坏,许多变频电动机寿命只有1~2年,甚至有些在试运行期间电动机绝缘就发生击穿破坏。文献[1]中试验研究表明,很高的电压上升率( )在电动机绕组上产生不均匀的电压分布,随着变频器与电动机之间电缆长度的增加,在电动机接线端子上将产生近2倍高频振荡的过电压,而且电缆越长,过电压的峰值越大,长时间重复性的过电压应力的作用将致电动机绕组匝间绝缘的过早破坏。在文献[1]中,也表明变频器开关器件高的开关频率会造成上升沿时间很短,电力晶体管(GTR)和IGBT通常时间小于0.1μ,GTO常处于2-10μ,这样使电机在很短的时间内承受很高的峰值电压;有些电机制造商给出了可以接受的上升时间,一般希望上升时间大约为5μ,而且过电压和入射电压、反射电压都在tr上升时间内同时急剧增加,这对电机来讲,长时间的作用会损坏电机。在文献[2]中,PWM驱动电机的输出电压幅值和频率通过控制逆变器开关状态来改变的,高的开关频率最明显的优点是减少低次谐波,可以减少输出滤波器的容量,但过快的电压变化能够引起严重的绝缘问题,对于每个脉冲的前沿和后沿在短时间内都有高频衰减振荡,而且峰值电压的85%都降落在第一个线圈上的第一匝,易引起匝间故障。2.变频器电源的谐波变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波

将干扰输入供电系统。在逆变输出回路中,输出电压信号是受PWM 载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。谐波电压和电流对电动机影响更大,会增加电动机的铁耗和铜耗,使电动机温度上升,效率下降,并产生噪声,还会使电动机转子振动,甚至造成电机损坏,谐波还对通信以及电子设备产生严重干扰,影响周围设备的正常运行。同时,谐波引起电缆内耗加大,电缆发热,缩短电缆的使用寿命;而高次谐波对电容的影响更为突出,含有高次谐波的电压加至电容两端时,由于电容器对高次谐波的阻抗很小,所以电容器很容易发生过负荷导致损坏。高次谐波的干扰,往往还会导致电动机保护开关误动作,造成电网停电,严重影响用电设备的正常工作。同时,高次谐波电流还通过电缆向空间辐射,对通讯设备也产生干扰信号。文献[6]中,用傅立叶分析方法把PWM变频器输出脉冲进行频谱分析,由于PWM在三相桥式逆变电路情况下,根据晶体管V1-V6的导通和截止的不同组合,三相输出端U、V、W相对于直流回路的中点0的电位分别为+E/2或-E/2,而输出线电压为+E、-E、0。经过分析,得到三

相变频器输出线电压的基波和谐波幅值,谐波含量和幅值比较高,对电动机的影响比较严重。解决方案初探1抑制谐波常用的方法逆

变器是电力电子装置中的重要组成部分,是不间断电源、交流电气传动、中频电源等许多设备的核心,因而其研究工作倍受人们的关注,

研究的焦点是如何方便地调节逆变电源的输出电压和频率,并降低谐波含量,改善输出波形。迄今为止,降低谐波含量和调节输出电压(大小或频率)的常用措施有:(1)对逆变电源的开关进行高频PWM 调制,使逆变器输出为高频等幅的PWM波;(2)通过改变逆变电源主电路拓扑结构,在主电路上进行波形重构以实现阶梯波形输出,减小低阶高次谐波含量;对于高频PWM调制来说,开关频率越高,谐波含量越小,但开关损耗也越大,故不宜用在大功率逆变电源中。而波形重构方式往往需要多个逆变器来实现电压的叠加。波形重构的级数越多,出现的最低谐波次数越高,但主电路和控制电路也越复杂,相应地控制难度也越大,输出电压的调节也不甚方便,因此这种方式通常只在大功率逆变电源中采用。理论分析表明,早在1973年提出的消谐控制策略能有效地克服上述问题,它只需要较少的开关脉冲数即可完全消除容量较大的低阶高次谐波,取得很好的滤波效果,具有开关频率低、开关损耗小、电压利用率高、滤波容量小等许多优点,是实现逆变电源PWM控制的理想方法。然而该方法经过近二十年的研究至今仍未实际应用,其主要原因是消谐模型的求解复杂,难以获得实时控制。文献[5]中,提出适当的调节输出电压调制比、载波频率和逆变电路开关滞时等参数,可以减少谐波对电机的影响。以上的消除谐波多是从变频器的逆变侧出发,通过各种有效措施来减少输出的谐波含量。从谐波对电网的影响来看,治理谐波问题基本思路是:第一,对电力电子装置本身进行有效地控制,改造本身的性能,使其功率因数可控制为1,不产生谐波;第二,装谐波补偿装置来补偿谐

波源,使其注入电网的谐波几乎为0.传统装设谐波补偿装置的方法是采用LC调谐滤波器,它的基本原理是利用LC串联谐振,为滤除特定次谐波提供阻抗极低的通路,使其不注入电网,同时还可以补偿无功功率。如图(1)所示,这种消谐方式结构简单,不必要控制回路,运行费用低,造价相对也较低,一直被广泛使用。这种方法主要缺点是补偿特性受电网阻抗和运行状态影响,容易和系统发生并联谐振,导致谐波放大,使LC滤波器过载甚至烧毁。但是目前LC滤波器仍是补偿谐波的主要手段,而且常用单调谐和二阶高通滤波器组合来滤波,二阶高通其结构如图(1)。由于LC滤波器本身缺点,国内外都探索采用其他滤波方式来进行电网谐波抑制。有源滤波器(APF)就是一种能够弥补无源滤波器不足的新型滤波设备。它的基本原理是向系统电网注入补偿谐波电流,以抵消非线性负载所产生的谐波电流。如图(2)所示。有源滤波器基本原理可用如下一组公式来描述:, , , ,式中表示为负载电流的基波分量;但是有源滤波器的使用要求有较大的容量来提供足够的补偿电流。因此,文献[7]又提出了混合型有源滤波器,它的优点在于结合了无源滤波器和有源滤波器的优点,克服有源电力滤波器容量大、成本高的缺点,又可获得良好的补偿性能。无源LC滤波器典型组成可以滤除特征谐波,如5、7、9、11等,这样,绝大多数由谐波源产生的谐波已由LC滤波器滤除,有源滤波器只需要补偿LC滤波器未能补偿的谐波,因而,有源滤波器只需要提供很小的补偿电流,容量不需要很大。2.机端过电压的抑制在电机端子上安装阻抗匹配器可以很大程度地消除过电压,最简单的是并

联一个与电缆的波阻抗接近的电阻,但在电阻上功耗很大。采用阻抗匹配与滤波于一体低通滤波器,它是将电阻和电容串联后并联在电机接线端子相相之间,如图(2) 要阻止机端过电压,必须正确地选择滤波器参数,对于任意容量或电压等级的变频调速系统,滤波器参数的选取应根据变频器的上升时间及幅值、电缆和电动机的波阻抗及电缆长度来确定。文献[3]中试验表明,一般来说,驱动系统的容量越大,变频器的上升时间就越长,电缆和电动机的波阻抗就越小,滤波器的参数Rf和Cf则相应减小。对于滤波电阻Rf的阻值应该与电缆的波阻抗Z0相等,而电动机的冲击阻抗(或波阻抗)远大于Z0,这样负载阻抗近似为电阻,电缆末端的负载阻抗与电缆的波阻抗相匹配,那末在电机机端就不会产生电压波的全反射,也不会形成过电压。滤波器的Rf和Cf与电动机端过电压的关系:(1) 滤波器的电容值Cf越大,Rf越小,过电压倍率(上升沿处的电压峰值Vm与稳态值V之比)就越小;(2) 过电压倍率随电容增加而变化幅度与Rf有关,Rf越大,过电压倍率随电容变化幅度越小,当Rf大于一定阻值时,过电压倍率随电容的增加,变化幅度很小;滤波器的Rf与Cf与电动机端上升沿时间的关系:(1) Rf越小,上升沿时间tr就越大,且随Cf的增大而增加,但Cf超过一定值时,tr趋于饱和,与电容值无关;(2) 电缆长度L越长,上升沿时间也相应增加,这样电压变化率就越小;在文献[9]中,为了抑制电动机端电压反射现象,可采用RC一阶无源滤波器来显著减少电动机端的过电压,消除了高频阻尼震荡现象,从而避免电动机绝缘的快速老化甚至损坏。通过分析表明,电压反射现象

与逆变器输出脉冲的上升时间以及电缆的长度有关,PWM上升时间越短,电缆长度越长,反射越明显。在文献[8]中提出使用新的逆变器输出滤波器的拓扑结构,能够有效减少高频谐波引起电动机轴承和绝缘损害。新的滤波器是由LC滤波器和RLC滤波网络串联构成,如图(3) LC滤波器由变频器开关频率来调谐,能够十分有效地滤掉开关频率出地电压谐波,在开关频率处阻抗为无穷大,滤波器的谐振角频率为,对于RLC滤波器而言,也要满足一定的条件。此种新的滤波器结构使输出波形比较平缓,可以降低输出脉冲的过电压和上升沿时间,相对于传统的并在电动机出口的RC滤波而言,如图(4),它能够很好的消除过电压对电机的影响。总结从上述所讲,PWM变频器所产生的谐波和过电压对电网和对电机的影响是十分严重的,尽管目前已经提出了各种解决方法,但是对于谐波而言,所引起得一些基本概念还没有统一定义,谐波治理还停留在无源阶段,需要大量工作来使有源和混合型滤波器投入实际运行中,对于PWM输出脉冲所产生过电压问题,如何有效抑制,基本都用无源RC来抑制,对于参数的选取比较麻烦,如果寻求一种更高效防止过电压的电路,能够实时的检测PWM上升沿和下降沿,及时的补偿过电压来提高效率,减少电机的损坏和使用寿命。

变频器高次谐波干扰的五大危害

1)变压器电流谐波将增加铜损,谐波电压将增加铁损,其综合结果就是使得变压器的温度上升。谐波还可能引起变压器绕组及线间电容之间的共振,从而产生噪声污染。 2)变频器当变频器输入电压发生畸变,输入电流峰值增大,就使得变频器整流二极管及电解电容负担加重,容易产生过电压或者过电流,导致变频器的运行不正常。由于变频器属于电力电子装置,很容易感受谐波失真而误动作,从而影响变频器的工作性能和使用寿命。 3)电动机电机绕组存在杂散电容,谐波主要引起电动机的附加发热,导致电动机的额外温升,使得电动机的机械效率下降。谐波的产生还会引起绕组不均匀处过热导致的绝缘层损坏、电机转矩脉冲及噪声的增加。 4)供电线路高频谐波电流使线路阻抗随着频率的增加而提高,对供电线路产生了附加谐波损耗,造成电能的浪费,并且导体对高频谐波电流的集肤效应使线路的等效阻抗增加,导致线路压降增大,输出电缆的截面要相应增大。 5)电力电容器工频状态下,电力系统装设的电容器比系统中的感抗要大得多。但在谐波频率较高时,感抗值成倍增加而容抗值大幅减少,这就可能出现谐振,谐振造成异常电流进入电容器,导致电容器过热,绝缘破坏直至烧毁。 此外,谐波可能导致开关设备、保护电器的误动作,影响计量仪表测量精度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/f313651360.html,。

变频器谐波干扰及抑制

变频器谐波干扰及抑制 0 引言 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其他许多优点而被国内外公认为最有发展前途的调速方式。但是由于变频器中普遍有晶闸管、整流二极管及大功率IGBT开关等非线性元器件,在使用中会产生大量谐波,从而干扰周围电器正常运行。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作,因此有必要对变频器应用系统中的干扰问题进行探讨。 1 变频调速系统谐波的产生 变频器的主电路一般由交-直-交组成,外部输入的380 V/50 Hz 的工频电源经三相桥路晶闸管整流成直流电压信号后,经滤波电容滤波及大功率晶体管开关器件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅里叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR 大功率逆变器件,其PWM的载波频率为2耀3 kHz,而IGBT大功率逆变器件的PWM最高载频可达15 kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 用于电机调速的交-直-交型通用变频器一般是6脉动装置,其谐波电流含有率如表1所列。此外,交-交型变频器通过一套可关断晶闸管和斩波技术,不经过整流这个环节,把电网工频直接变成交流调速电机所需要的交流频率。交-交型变频器除了向电网系统注入高次谐波外,还注入谐间波(即频率不是工频倍数)电流。谐波电流的频率和含量随电机的工况变化而变化。 2 谐波的传播途径 变频器能产生功率较大的谐波,对系统其他设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射,这是频率很高的谐波分量的主要传播方式;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其他设备,这是变频器输入电流干扰信号的主要传播方式;最后变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流,感应的方式又有两种:即电磁感应方式,这是电流干扰信号的主要方式;静电感应方式,这是电压干扰信号的主要方式。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 3 谐波的危害 1)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2)谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3)谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4)谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

谐波对电器的危害

(1) 电力电容器 根据IEC标准规定一般电容器最大电流只允许35%的超载。实际运转时由于谐波的影响常发生严重过载。电容器阻抗随频率的增加而减少,故产生谐波时,电容器即成为一陷流点流人大量电流,导致过热、增加介电质的应力,甚至损坏电力电容器。当电容器与线路阻抗达到共振条件时,会发生振动短路、过电流及产生噪声。 (2) 同步发电机 变频器产生的高次谐波电流在同步发电机的激磁绕组中会产生感应电流,引起损耗增加,可能导致电机过热、绝缘降低、寿命缩短等[2>。 (3) 变压器 电流谐波将增加变压器铜损,电压谐波将增加铁损,综合效果是使变压器温度上升,影响其绝缘能力,并造成容量裕度减小。谐波也可能引起变压器绕组及线间电容之间共振,及引起铁心磁通饱和而产生噪声。 (4) 电动机 谐波会引起电动机附加发热,导致电动机额外温升,电动机往往要降额使用。如果输入电动机的波形失真,会增加其重复峰值电压,影响电动机的绝缘。(5) 电力电子设备 电力电子设备在多种场合是产生谐波的谐波源,但他自身也很容易感受谐波失真而误动作。这种设备靠着电压的过零点或电压波形来控制或操作,若电压有谐波成分时,零点移动、波形改变,造成许多误动作。 (6) 保护继电器 由于高次谐波的影响,可能引起继电器过电压、产生绝缘损坏、振动引起的机械破坏等等。对于以有效值为基准而动作的继电器,高次谐波的存在使得继电器在接近额定值处也有误动作的可能。 (7) 指示电气仪表 电能表等计量仪表会因谐波而造成感应转盘产生额外的电磁转矩,引起误差,降低精确度。20%的5次谐波将产生10%-15%的误差。过大的谐波电流,也很容易使仪器里的线圈损。

变频器谐波危害分析及解决措施

变频器谐波危害分析及解决措施 摘要:本文从谐波的概念入手,结合变频器的内部结构的相关知识,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法. 关键词:变频器谐波危害抑制 前言:在工业调速传动领域中,与传统的机械调速相比,用变频器调速有诸多优点,顾其应用非常广泛,但由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载,变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频器为代表的电力电子装置是公用电网中最主要的谐波源之一,其对电力系统中电能质量有着重要的影响。 一、变频器原理及其谐波的产生 变频器是工业调速领域中应用较广泛的设备之一,目前已在企业大量使用。变频器一般采用是交-直-交结构(如图一所示),它是把工频(50HZ)变换成各种频率的交流电源,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,变频调速装置用于交流异步电动机的调速,调速范围广、节能显著、稳定可靠。

(图一)一般通用变频器为交-直-交结构 众所周知,电机的转速和电源的频率是线性关系。 变频器就是利用这一原理将50Hz的工频电通过整流和逆变转换为频率可调方向的交流电源。变频器输入部分为整流电路,输出部分为逆变电路,这些都是由非线性原件组成的,在开断过程中,其输入端和输出端都会产生高次谐波。另外变频器输入端的谐波还会通过输入电源线对公用电网产生影响。 从结构上来看,变频器有交-直-交变频器和交-交变频器之分。目前应用较多的还是交-直-交变频器。变频器主电路为交-直-交,外部输入380V/50HZ工频电源,经三相桥式不可控整流成直流电压,经滤波电容滤波及大功率晶体管开关元件逆变为频率可调的交流信号。 在电力电子装置大量应用以后,电力电子装置成为最主要的谐波源。 变频器输入侧产生谐波机理:对于变频器而言,只要是电源侧有整流回路的,都将产生因非线性引起的谐波。以三相桥整流电路为例,交流电网电压为一正弦波,交流输入电流波形为方波,对于这个波形,

变频器谐波抑制方法

变频器谐波抑制方法 对小容量的通用变频器,高次谐波很少成为问题,但当使用的变频器容量大或数量多时,往往就会产生高次谐波电流和高次谐波干扰问题,因此对于高次谐波先采取适当的对策和预防措施是非常重要的。 1. 改善变频器结构 可以从变频器自身硬件结构或者整个变频系统的构建方式和设备选择等方面考虑,从根本上减少变频系统注入电网的谐波、无功等污染。 (1) 变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器; (2) 在整流环节采用多重化技术,提高脉波数,可以有效地提高特征谐波次数,降低特征谐波幅值。对于大容量晶闸管变频器可以采取这种方法,利用多重化抑制流向电源侧的高次谐波; (3) 采用高频整流电路,改善整流波形,提高功率因数,直流电压可调节; (4) 逆变环节采用高开关频率高的电力电子器件,如MOSFET,IGBT等,可以提高载波频率比,抑制变频器输出端的高频谐波。 (5) 在逆变环节采用多重化技术,提高脉波数,使输出的电流电压波形更加接近正弦波。但重数越多电路越复杂,可靠性会随之降低,三重化电路可以兼顾输出波形质量和设备可靠性,较理想。 2. 采用合适的控制策略 从变频器控制器这一点出发,可采用更合适的控制策略或者在原来的控制策略基础上作点优化和改进,原理上更大限度地减少谐波的产生。以实际应用中常用的正弦脉宽调制法(SPWM)法和特定消谐法(SHE)法为例。 根据SPWM基本理论,当调制波频率为fr,载波频率为fc,载波频率比N=fc/fr,单极性SPWM控制在输出电压中产生N-3次以上的谐波,双极性SPWM控制在输出电压中产生N-2次以上的谐波。比如,N=25,采用单极性SPWM控制,低于22次的谐波全被消除,采用双极性SPWM控制,低于23次的谐波全被消除。 但输出电压频率较高的时候,由于受到元件开关频率的限制,N值不可能大,SPWM 控制的优势就不太明显了,这个时候选择SHE法可以在开关次数相等的情况下输出质量较高的电压、电流,降低了对输入、输出滤波器的要求。

高压变频器输出谐波对电动机的影响

高压变频器输出谐波对电动机的影响 时间:2012-10-05 10:51来源:未知 作者:360期刊网 点击: 107 次 目前、髙压变频器没有统一的电路拓扑结构,由于变频器对电动机的影响主要取决于变频器逆变电路的结构和特性。因而,不同电路拓扑结构的变频器对电动机的影响也是不同的。 输出谐波对电动机的影响主要有谐波引起电动机附加发热、导致电动机额外温升,电动机要降容使用,由于输出波形失真,增加电动机的重复峰值电压,影响电动机绝缘;同时,谐波还会引起电动机转矩脉动。噪声增加。高次谐波引起的损耗增加主要表现在定子铜损耗、转子铜损耗、铁损耗以及附加损耗的增加。其中影响最为显着的是转子铜损耗,因为电动机转子是以接近基波频率旋转速度旋转的,因此对于髙次谐波电压来说,转子总是在转差率接近1 的状态下旋转,所以转子铜损耗较大,而且在这种情况下,除了直流电阻引起的铜损耗外,还必须考虑由于肌肤效应所产生的实际阻抗增加而引起的铜损耗。 普通的电流源型变频器输出电流波形和输入电流波形极为相似,都是120 度的方波,含有较大的谐波成分,总谐波电流可以达到307。左右。为了降低输出谐波,也有采用输出12脉动方案或设置输出滤波器,输出波形会有很大的改善,但系统的成本和复杂性也会大大的增加。输出滤波器换相式电流型变频器固有的滤波器可以起到一定的滤波作用,所以速度较高时,电动机电流波形有所改善。 三电平变频器与普通的电平变频器相比,由于输出相电压电平数增加,毎个电平幅值相对下降,提髙了输出电压谐波消除算法的自由度,在相同开关频率的前提下,可使输出波形质量比二电平变频器有较大的提高,但输出因谐波使电压波形失真仍达297。电动机电流谐波失真达177。必须采用专用的电动机,如果采用普通电动机,必须设置输出滤波器。 基波旋转磁动势和6倍频率的转子谐波电流共同作用,产生6倍频的脉动转矩, 所以6脉动输出电流源型变频器含有较大的6倍频率脉动转矩。电流源型变频器采用12脉动多重化后,输出电流波形有较大改善,由于5次和7次谐波基本抵消,6倍频率脉动转矩大大降低,剰下的主要为12倍频率的脉动转矩,总的转矩脉动明显降低。脉动转矩在低速时对电动机转速的影响尤为明显。对三相电动机而言,由于60± 1次谐波存在,产生的电磁转矩为。 电动机的转速脉动有以下规律:转速脉动频率分别为电动机基波角频率10.611 倍,其幅值与变频器输出的基波角频率03 或频率0成反比,即输出频率(或电动机转速)越低,转速波动越大,也就是说,电动机在低速运行情况下,为了使转速波动量维持在同一水平,对输出谐波抑制的要求更髙。转速脉动幅值与变频器输出的谐波次数0成反比,即低次谐波所引起的转速脉动比高次谐波的影响更大。所以,要使电动机的转速脉动较小,首先要消除或抑制变频器输出的低次谐波, 将输出谐波往高频推移,不失为减少转速脉动的有效办法。三电平变频器在不采用输出滤波器时,也会产生较大的转矩脉动, 采用输出滤波器后,转矩脉动可大大降低。 由于高速电力电子器件的使用,变频器输出电压变化率对电动机绝缘产生的影响越来越严重。取决于两个方面:一是电压跳变台阶的幅值,它与变频器的电压等级和主电路结构有密切的关系,二是逆变器功率器件的开关速度,开关速度

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

谐波标准及变频器谐波干扰的解决方法

谐波标准及变频器谐波干扰的解决方法 谐波标准及变频器谐波干扰的解决方法 一、前言 采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而被越来越多的应用。但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。 二、谐波和电磁辐射对电网及其它系统的危害 1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2.谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。 5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。 一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。但对系统容量小的系统,谐波产生的干扰就不能忽视。 三、有关谐波的国际及国家标准 现行的有关标准主要有:国际标准IEC61000-2-2,IEC61000-2-4,欧洲标准EN61000-3-2, EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549-93《电能质量共用电网谐波》。下面分别做简要介绍: 1.国际标准 IEC61000-2-2标准适用于公用电网,IEC61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了最大允许的电压畸变率THDv.

电压不稳定对电机的影响

电力系统中的所有电气设备都有额定工作电压和频率。电气设备在其额定电压和频率下工作时,其综合经济效果最好。例如感应电动机,若电压偏高,虽然转矩增大,但电流也增大,温度增高,将使电动机绝缘严重受损,缩短使用寿命;若电压偏低,则转矩将按电压二次方减少,而在负荷转矩要求一定的情况下,绕组电流必然增大,并使电动机绝缘受损,缩短使用寿命;若电源频率偏高或偏低,也将严重影响电动机的转矩和使用寿命。我国采用的供电频率(简称"工频”)为50Hz,频率偏差范围一般规定为±0.5Hz。又如热辐射光源,若电压偏高,其使用寿命将大大缩短;若电压偏低,则光源照度将明显变暗,严重影响工作效率和人的视力健康。可见电网电压波动将影响电气设备的正常工作和使用寿命。因此,电压、频率和供电连续可靠,是表征电能质量的基本指标。 2 影响供电电压频率稳定的因素 2.1高次谐波产生和造成的危害 高次谐波是指一个非正弦波按傅立叶级数分解后所含的频率为基波频率整数倍的所有谐波分量,而基波频率就是50Hz。高次谐波简称“谐波”。电力系统中的发电机发出的电压,一般可认为是50Hz的正弦波。但由于系统中有各种非线性元件存在,因而在系统中和用户处的线路中出现了高次谐波,使电压或电流波形发生一定程度的畸变。 系统中产生高次谐波的非线性元件很多,例如荧光灯、高压汞灯、高压钠灯等气体放电灯及交流电动机、电焊机变压器和感应电炉等.都要产生高次谐波电流,最为严重的是大型硅整流设备和大型电弧炉,它们产生的高次谐波电流最为突出,是造成电力系统中谐波干扰的最主要的“谐波源”。 当前,高次谐波的干扰已成为电力系统中影响电能质量的一大“公害”。 高次谐波电流通过变压器,可使变压器的铁心损耗明显增加,从而使变压器过热,缩短使用寿命。高次谐波电流通过交流电动机,不仅会使电动机铁心损耗明显增加,而且还将会使电动机转子发生振动,严重影响机械加工的产品质量。高次谐波对电容器的影响更为突出,含有高次谐波的电压加在电容器两端时,由于电容器对高次谐波的阻抗很小,电容器极易因过负荷而烧坏。此外,高次谐波电流可使电力线路的能耗增加,使计算电费的感应式电度表的计量不准确;还可能使电力系统发生电压谐振,在线路上引起过电压攀升,有可能击穿线路设备的绝缘。高次谐波的存在,还可能使系统的继电保护和自动装置误动或拒动,并可对附近的通信设备和线路产生信号干扰。 因此,国家标准GB/T 14549-93《电能质量·公用电网谐波》规定了公用电网中谐波电压限值和谐波电流允许值,若超过规定值就必须加以改进。 2.2高次谐波的抑制 抑制高次谐波,宜采取下列措施: (1) 大容量的非线性负荷由短路容量较大的电网供电:电网的短路容量越大,它承受非线性负荷的能力越强。

交-交变频交流励磁电机谐波的解析分析

交-交变频交流励磁电机谐波的解析分析 吴志敢贺益康 摘要研究交-交变频器供电励磁的发电、电动系统的谐波问题,给出多种结构和工作模式交-交变频器输出谐波的解析表达;根据交流励磁电机谐波正序、负序电路模型,导出交流励磁电机空载及并网运行时电网谐波和电机谐波转矩的分析方法。通过计算实例分析和比较了几种系统的谐波特性。 关键词:交-交变频器交流励磁谐波 An Analytical Study of the Harmonics in the AC Excited Machines fed by the Cycloconverter Wu Zhigan He Yikang (Zhejiang University 310027 China) Abstract The harmonic issue in the AC excited machines (ACEM)fed by the cycloconverter was studied.Based on the firstly presented analytical expressions of outputs generated by the various type cycloconverters operated in different modes and the positive,negative sequence harmonic equivalent circuits of ACEM,the analysis method of harmonic voltage,current as well as torque in the no load or networked ACEM was derived.The harmonic nature of various schemes were also analyzed and compared. Keywords:Cycloconverter AC excitation Harmonics 1 引言 交流励磁电机结构上是一台绕线式异步电机,转子绕组采用三相低频交流电励磁[1,2]。改变励磁电压的幅值、频率和相位即可实现对电机运行的有效调节,用作发电机可实现变速恒频发电,独立调节有功和无功功率;用作电动机可实现变频起动和功率因数控制。此项技术对于抽水蓄能发电和变落差、多泥沙水系变速发电及大中型异步电机进相运行等场合意义重大,应用前景十分广阔。但由于中大型交流励磁电机转子一般外接交-交变频器,其输出电压富含谐波,将在发电机定子侧产生大量空载谐波电压,导致并网困难,并网后大量的谐波电流污染电网;也增加电机损耗,产生各类脉振转矩,导致电机产生噪声与振动。因此研究交流励磁电机的电力谐波问题是此项新型发电技术实用化的关键。 交流励磁电机输出电力谐波问题已引起国内研究的注意,文献[3]对此作了很好的分析,但是仅讨论6脉波交-交变频器供电励磁情况,对谐波转矩的计

变频器的谐波及常用解决方法

变频器的谐波及常用解决方法 摘要: 随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。本文从谐波的概念入手,结合变频器内部相关知识,分析谐波的产生及其危害,并在此基础上结合本人多年工作实践提出抑制谐波的几种常用方法。 关键词:变频器;谐波;抑制;干扰 由于变频器逆变电路的开关特性,对于其供电电源形成了一个典型的非线性负载,变频器输出侧电压、电流、非正弦或非完全正弦波含有丰富的谐波。由于变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其它邻近电气设备。 1 谐波的含义 谐波产生的根本原因是由于非线性负载所致,当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整数倍。 2 变频器谐波产生机理 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥式不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。 输入侧产生谐波机理:在整流回路中,输出电压,电流都将产生因其非线性引起的谐波。以三相桥式整流回路为例,交流电网电压为正弦波,交流输入电流的波形为矩形波,对于此方波,按傅立叶级数可分解为基波和各次谐波,通常含有6x+1(x=l,2,3….)次谐波。其中的高次谐波将干扰输入供电系统,单个基波和几个高次谐波组合在一起称作畸波。 输出侧产生谐波机理:在逆变输出回路中,输出电压和电流均有谐波。对于PWM控制的变频器,只要是电压型变频器,不管是何种PWM控制,其输出电压波形为矩形波。其中谐波频率的高低是与变频器调制频率有关,调制频率低(如1~2KHz),人耳听得见高次谐波频率产生的电磁噪声(尖叫声)。若调制频率高(如IGBT变频器可达20KHz),人耳听不见,但高频信号是客观存在。从电压方波及电流正弦锯齿波,用傅立叶级数不难分析出各次谐波的含量。所以,输出回路电流信号也可分解为只含正弦波的基波和其它各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 3 谐波干扰的危害 一般来讲,变频器对容量相对较大的电力系统影响不是很明显,而对容量较小的系统,谐波产生的干扰是不可忽视的,谐波的出现是对电网的一种污染,它使用电设备所处的环境恶化,给周边的通讯带来危害。 4 谐波研究的意义 正因为谐波有如此大的危害,所以我们要研究它。各种谐波源产生谐波给电力系统造成巨大的污染,影响到整个电力系统的运行环境、包括系统中的广大用户,而且其污染影响的范围很广,距离很远。 研究谐波的意义,还在于其对电力电子技术自身发展的影响。谐波是电力电子技术发展的产物,而它的出现已经成为阻碍电子技术发展的重大障碍,它迫使电子领域的人员必须对谐波问题进行更加有效的研究。

变频器谐波干扰的解决方法

变频器谐波干扰的解决方法 变频器以其节能显著,保护完善,控制性能好,使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流,怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成为我们关注的焦点。 近年来,随着我厂变频器投用量增多,变频设备干扰引起故障也在增多,电气设备出现的谐波干扰问题主要表现有以下几方面:(1)谐波干扰导致电力系统无功功率增大,造成功率因数明显降低;(2)现场电机受到变频谐波干扰引起电机噪声与振动增大,温度升高;(3)谐波干扰造成系统电缆故障率增多,绝缘老化,引起电缆对地故障;(4)谐波干扰引起断路器工作不稳定,引起开关误动作;(5)谐波干扰对通讯电路的干扰,引起联锁电路误动作等。 一、变频器的基本原理和电路组成 变频器有主回路和辅助控制电路组成,其中主回路有整流模块、平波电容、滤波电容、逆变电路、限流电阻和接触器等元器件组成;辅助控制电路由驱动电路、保护信号检测电路、控制电路脉冲发生及信号处理电路等组成,如下为变频器逆变电路图。这种电

路特点是,电源采用三相电流全波整流,中间直流环节的储能单元采用大容量电容作为储能元件,负载的无功功率将由它来缓冲。由于大电容的作用,主电路的直流电压比较平稳。然后经过6个功率管IGBT进行信号调制,产生电动机端的电压为方波或波电流。故称为电压型变频器。现在普遍应用的都是电压型变频器。 二、变频器应用中的谐波干扰问题及危害 谈到变频器的谐波干扰问题,首先要了解干扰的来源,变频器本身就是一种谐波干扰源,变频器谐波是由交流电整流电路和直流电转换为交流过程中产生的。当电子元件IGBT工作于开关模式作高速切换时,产生大量耦合性电磁电流。 因此变频器对电气系统内其它电子、电气设备来说是一个电磁干扰源。在现实工作中,变频器产生的谐波电流从输出端经过电缆传导到电动机定子绕组上,造成电机铜损、铁损大幅增加。致使电机无功损耗增大,温度升高,严重影响电机的运转特性;另一方面变频器输入回路产生的3次谐波经过电源电缆影响到电力系统,它可在变压器内形成环流,造成变压器内部温度升高,影响变压器的使用效率;谐波干扰还会引起断路器保护电路检测产生误差,导致断路器

完整版电能质量对电动机经济运行的影响及改善措施

电能质量对电动机经济运行的影响及改善措施 2006年04月04日来源:不详作者:未知访问次数:83 Tags:电能质量电动机经济运行 【发表评论】【打印此文】【收藏此文】 感应电动机是工农业生产中应用最广泛的一种电动机。根据统计,在电网的总负载 中动力负载约占59%而感应电动机则占总动力负载的85%电力系统中感应电动机的励磁 与涡流消耗无功占系统无功负载的80%左右。由此可见,感应电动机在电力系统中占有重 要地位因而电动机能否经济运行,直接影响着电网的社会效益,电能质量对电动机经济运行 有很大影响。 1电动机对电能质量的要求 电能质量可用频率,电压质量,供电可靠性和电网电压正弦波形畸变率来表征。电动机对 电能质量的要求是 (1) 额定频率时电压偏差小于正负5% (2) 在额定电压时频率偏差小于正负1% (3) 电压正弦波形畸变率小于正负5% (4) 对三相电压平衡度要求电压的负序分量与正序分量之比在长期运行时小于正负 1%。在短时运行时小于正负1.5%,对于零序电压分量,不得超过正序电压分量的1%。 电能质量取决于电力系统供电质量,但电能质量与供电部门对用户用电管理也有直接关系。如用户大量采用并投入单相负荷,则三相间电压对称性就要变差。此外由于生产技术 的发展,用户大量使用非线性设备,如硅整流设备、电弧炉、轧钢及交流调压装置等投 入电网。会向电网注入高次谐波电流,给电网造成污染,导致电网波形畸变,电网三相 电压不平衡及波形畸变会增加损耗,影响电网经济运行。 目前电网电力生产基建与改造以及用户的供电系统都注意配备无功补偿设备,和采 用有载调压变压器。且考虑了电源可靠性,由于加强了系统负荷平衡的调度电网频率基本稳定。因而电能质量有很大提高,但对于系统的电压来说,由于白天高负荷时无功不足, 夜间轻负荷时无功过剩,造成系统白天电压偏低夜间,电压偏高,有些供电区由于系统 一次电压偏高。变压器额定参数不当,分接头调压范围窄,导致配电电压高于标准值。 其次大量非线性设备投入电网运行,使得电网高次谐波含量大大增加,所以当前电能质量 问题主要是电压质量与高次谐波的影响。 2电压质量对电动机运行的影响 电动机在轻负荷下为节电一般采用降压运行如把接改为Y接运行电机在高于额定电压下运行时由于铁芯饱和无功励磁电流增大导致电网功率因数降低损耗增大铁芯发热 并使电机寿命缩短故经济效益差反之电动机在低于额定负荷下运行时转矩等特性下降 电流增大导致电机发热出力降低同样也不经济电压平衡度也是电压质量标准之一不

变频器谐波污染及治理

变频器谐波污染及治理 变频调速在工业生产中具有十分重要的意义,但是由于变频器在输入回路中产生的高次谐波电流,对供电系统,负载及其他邻近电气设备产生干扰;尤其是在高精度仪器|仪表、微电子控制系统等应用中,谐波干扰问题尤为突出。本文从变频器工程实际应用出发,从隔离、滤波和接地三个方面全面阐述了抑制和消除干扰的方法,对提高变频器等工业设备运行的可靠性和安全性提供参考。 一、 变频器谐波产生机理 凡是在电源|稳压器侧有整流回路的,都将因其非线性而产生高次谐波。变频器的主电路一般为交-直-交组成,外部输入380V/50HZ的工频电源经晶闸管三相桥路整流成直流,经电容器滤波后逆变为频率可变的交流电。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和高次谐波,谐波次数通常为6N±1(N为自然常数)。如果电源侧电抗充分小、换流重叠μ可以忽略,那么第K次高次谐波电流的有效值为基波电流的1/K。 二、 高次谐波危害 谐波问题由来已久,近年来这一问题因由于两个因素的共同作用变得更加严重。这两个因素是:工业界为提高生产效率和可靠性而广泛使用变频器等电力电子装置,使得与晶闸管相关设备的使用迅猛增长,并伴随着谐波源的同步增加和放大;电力用户为改善功率因数而大量增加使用电容器组,并联电容器以谐振的方式加重了谐波的危害。 非线形负荷产生的谐波电流注入电网,使变压器低压侧谐波电压升高,低压侧负荷由于谐波干扰而影响正常工作,另一方面谐波电压又通过供电变压器传递到高压侧干扰其它用户。 在三相回路中,三的整数倍次谐波电流是零序电流,零序电流在中性线中是相互叠加的。零序谐波电流主要是由三相四线制非线性设备产生的,使供电系统中的中性线电流很大。当中性线上有较大的谐波电流时,中性导线的阻抗在谐波下能产生大的中性线电压降,此中性线电压降以共模干扰形式干扰计算机和各种微电子系统的正常工作,使控制设备和精密仪器工作不可靠,故障率高。 高次谐波的危害具体表现在以下几个方面。 变压器 谐波电流和谐波电压将增加变压器铜损和铁损,结果使变压器温度上升,影响绝缘能力,造成容量裕度减小。谐波还能产生共振及噪声。 感应电动机

变频器谐波的产生与抑制

变频器谐波的产生与抑制 ?时间:07-08-08 09:21:35 来源:进入论坛 ?【字体大小:大中小】 本文从变频器的内部结构入手,分析了变频器谐波产生的原因和危害,在此基础上提出了抑制谐波常用方法。 1:前言 采用变频器驱动的电动机系统因其节能效果明显,调节方便维护简单,网络化等优点,而被越来越多的应用,但它的非线性,冲击性用电的工作方式,带来的干扰问题亦倍受关注。对于一台变频器来讲,它的输入端和输出端都会产生高次谐波,输入端的谐波会通过输入电源线对公用电网产生影响。 什么是谐波 谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。 谐波频率是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率、幅度与相角。谐波可以区分为偶次谐波与奇次谐波,第3、5、7次编号的为奇次谐波,而2、4、6、8等为偶次谐波,如基波为50Hz时,2次谐波为100Hz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n次谐波,例如5、7、11、13、17、19等,变频器主要产生5、7次谐波。谐波定义示意图如图1所示。 一、谐波的产生 从结构来看,变频器可分为间接变频和直接变频两大类。间接变频将工频电流通过整流器变成直流,然后再经过逆变器将直流变换成可控频率的交流。直接变频器则将工频交流变换成可控频率的交流,没有中间的直流环节。它的每相都是一个两组晶闸管整流装置反并联的可逆线路。正反两组按一定周期相互切换,在负荷上就获得了交变输出的电压U0,U0的幅值决定于各整流装置的控制角,频率决定于两组整流装置的切换频率。目前应用较多的还是间接变频器。 间接变频有三种不同的结构形式:(1)用可控整流器变压,用逆变器变频,调压和调频分别是在两个环节上进行,两者要在控制电路上协调配合。(2)用不控整流器整流斩波器变压、逆变器变频,这种变频器整流环节用斩波器,用脉宽调压(3)用不控整流器整流,PWM逆变器同时变频,这种变频器只有采用可控关断的全控式器件(如IGBT等)输出波形才会非常逼真的正弦波。

变频器的谐波干扰与抑制及参数设定

变频器的谐波干扰与抑制 变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其他邻近电气设备。在实际使用过程中,经常遇到变频器谐波干扰问题,下面简单介绍谐波产生的机理、传播途径及有效抑制干扰的方法。 1.变频器谐波产生机理 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率逆变元件,其PWM的载波频率为2~3kHz,而IGBT大功率逆变元件的PWM最高载频可达15kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 2.抑制谐波干扰常用的方法 谐波的传播途径是传导和辐射,解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离;解决辐射干扰就是对辐射源或被干扰的线路进行屏蔽。具体常用方法:(1)变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流。(2)在变频器输入侧与输出侧串接合适的电抗器,或安装谐波滤波器,滤波器的组成必须是LC型,吸收谐波和增大电源或负载的阻抗,达到抑制谐波的目的。(3)电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,并与其他弱电信号在不同的电缆沟分别敷设,避免辐射干扰。(4)信号线采用屏蔽线,且布线时与变频器主回路控制线错开一定距离(至少20cm以上),切断辐射干扰。(5)变频器使用专用接地线,且用粗短线接地,邻近其他电器设备的地线必须与变频器配线分开,使用短线。这样能有效抑制电流谐波对邻近设备的辐射干扰。 3.抑制谐波干扰实例 例1,某变频切换控制系统,变频器启动运行正常,而邻近液位计读数偏高,一次表输入4mA时,液位显示不是下限值;液位未到设定上限值时,液位计却显示上限,致使变频器接收停机指令,迫使变频器停止运行。 这显然是变频器的高次谐波干扰液位计,干扰传播途径是液位计的电源回路或信号线。解决办法:将液位计的供电电源取自另一供电变压器,谐波干扰减弱,再将信号线穿入钢管敷设,并与变频器主回路线隔开一定距离,经这样处理后,谐波干扰基本抑制,液位计工作恢复正常。 例2,某变频控制液位显示系统,液位计与变频器在同一个柜体安装,变频器工作正常,而液位计显示不准且不稳,起初我们怀凝一次表、二次表、信号线及流体介质有问题,更换所有这些仪表、信号电缆,并改善流体特性,故障依然存在,而这故障就是变频器的高次谐波电流通过输出回路电缆向外辐射,传递到信号电缆,引起干扰。 解决办法:液位计信号线及其控制线与变频器的控制线及主回路线分开一定距离,且柜体外信号线穿入钢管敷设,外壳良好接地,故障排除。 例3,某变频控制系统,由两台变频器组成,且在同一柜体内,变频器调频方式均为电位器手调方式,运行某一台变频器时,工作正常,两台同时运行时,频率互相干扰,即调节一台变频器的电位器对另一台变频器的频率有影响,反过来也一样。开始我们认为是电位器及控制线故障,排除这种可能后,断定是谐波干扰引起。 解决办法:把其中一只电位器移到其他柜体固定,且引线用屏蔽信号线,结果干扰减弱。为了彻底抑制干扰,重新加工一个电控柜,并与原柜体一定距离放置,把其中的一台变频器移到该电控柜,相应的接

电流谐波分量对永磁同步电机转矩的影响

电流谐波对电机转矩的影响 对于采用正弦控制的三相永磁同步电机来说,理论上电机输入电流和电压应该是理想的正弦波,但是在实际的工程应用中电机电流与电压波形都是近似于正弦波,其中含有大量的高次谐波分量。实际上绕组采用星型连接的三相永磁同步电机对谐波有一定的抑制效果,三次以及三的倍数次谐波在电机绕组对称的情况下由中性点是可以完全抵消掉,由此,可以避免三次及三的倍数次谐波对电机的影响,但是诸如五次、七次、十一次以及十三次等高次谐波在电机绕组中是确实存在的,这些电流中的高次谐波对电机性能会有一定的影响。 引起电机电流谐波的原因很多,主要包括:永磁磁链的畸变、电机转速变化、电机定子齿槽、电机控制方式以及由电机控制器输出造成的电流畸变等。对于控制器来说,功率器件的开关频率对电机谐波的产生有着极其重要的影响,比如对于一款极对数为6,最高转速为9000rpm的电机来说,最高转速下电机频率为150Hz,电流频率为900Hz,而控制器中IGBT 的开关频率最高为10K,MOSFET的开关频率最高为100K。在电机转速为9000rpm时一个电流周期内的IGBT开关次数为11次,其一个周期内开关次数为100次与11次的电流波形如图1所示,从图1可以看出,开关次数为11次的电流波形的谐波是十分明显的。 图1电流波形 由控制器元器件开关频率造成的谐波影响在电机不同转速下是不一样的,对比电机转速从1000rpm到9000rpm对应的一个电流周期内控制器开关次数如表1所示。 表1转速&开关次数 转速(rpm)100020003000400050006000700080009000 开关次数1005033252016141211

浅谈谐波的危害及对谐波污染的治理

浅谈谐波的危害及对谐波污染的治理 摘要:本文作者通过对电力系统谐波的危害进行分析和阐述,幷说明谐波污染治理的重要性及可行性,可供同行借鉴参考! 关键词:电力系统;谐波的危害;治理; 1 引言 谐波实际上是一种干扰,注入公用电网就会使电网受到“污染”,高次谐波还会直接对用电设备产生危害,造成电缆电线过热,绝缘老化加速,线间短路和接地故障,供电系统损耗增加,系统功率因数降低,过零噪音,浪费系统容量,降低保护作用,医疗设备误动作等。近年,随着知识经济与信息时代的到来,电子计算机、微处理器、精密医疗仪器以及其它数字化电子设备应用日益普遍。而这些电气设备都对电源的谐波质量具有很高的要求。遇到高次谐波时,经常出现程序运行错误、数据错误、时间错误、死机、无故重新启动甚至导致永久性损坏。目前,发达国家均已制定了谐波限定的标准与规范等一系列法规。国际电工委员会IEC于1982年开始制定IEC955-2,明确提出对谐波限定的要求。1994年及1995年又修订为IEC-1000-3-3《额定电流不小于16A的设备在低电压系统中电压波动及闪烁的限值》,IEC-1000-3-2《每相电流小于等于16A的设备谐波电流的发射限值》。美国电子电气工程师协会IEEE于1992年制定了谐波限定标准IEEE-1100。我国也已于1993年颁布了GB/T14549-93《电能质量、公用电网谐波》的国家标准,明确规定了电网标称电压380V,电压总谐波畸变率THD限值5%以下。 2 谐波对电力行业的危害 电网的谐波主要由具有非线性特性或者对电流进行周期性开闭的电气设备产生,这类设备分为以下两种: ⑴装有电力电子器件的设备,例如变流器、变频器、交流控制器、电视机等。 ⑵具有非线性电流电压特性的设备,例如感应炉、电弧炉、气体放电灯和变压器等。 随着晶闸管电路的广泛应用,上述设备成为主要的谐波源。 2.1 谐波的增加使供电系统可能发生谐振

相关文档
最新文档