热回收水源热泵工作原理介绍

热回收水源热泵工作原理

热回收型水源热泵冷热水机组主机部分由制冷压缩机、热回收换热器、冷

凝器、蒸发器、四通阀、热力膨胀阀等部件组成,空调的制冷或制热主要由四通

阀切换制冷剂走向改变冷凝器及蒸发器功能从而得到制冷或制热功能。热回收换

热器在压缩机的高温排气管管路上,不管冬天或夏天,热回收型热泵空调机组都

有热水供应。

温湿度控制解决方案专业制造商本泽制冷

热水收制冷模式

制冷压缩机排出的高温制冷剂在热回收换热器中散出部分热量给热水收水箱中的热

水加热,从热回收换热器出来的高温制冷剂通过四通换向阀进入冷凝器散热,热量将由室

外冷却塔排走;从冷凝器出来的低温制冷剂通过过滤器进入膨胀阀节流变成低温制冷剂,

低温制冷剂进入蒸发器蒸发吸热,将水降温给室内风机盘管提供冷水,室内风机盘管吹出

温湿度控制解决方案专业制造商本泽制冷

冷气。

热水收暖气模式

制冷压缩机排出的高温制冷剂在热回收换热器中散出部分热量给热水收水箱中的热

水加热,从热回收换热器出来的高温制冷剂通过四通换向阀进入蒸发器散热,热量给室内

风机排管提供热水,室内风机盘管吹出暖气;从蒸发器出来的低温制冷剂通过膨胀阀节流

变成低温制冷剂,低温制冷剂进入冷凝器蒸发吸热,给室内风机盘管提供热量,从冷凝器

温湿度控制解决方案专业制造商本泽制冷

出来的冷水从室外冷却塔吸热,给冷凝器提供常温水。

温湿度控制解决方案专业制造商本泽制冷

水源热泵技术介绍及工作原理

水源热泵技术介绍及工作原理 水源热泵技术是利用地球表面浅层水源中吸收的太阳能和地热能而形成的低温低位热能资源,并采用热泵原理,通过少量的高位电能输入,实现低位热能向高位热能转移的一种技术。 地球表面浅层水源(地下水、河流、湖泊、海洋等)中吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵中央空调系统是由末端系统,水源热泵中央空调主机系统和水源热泵水系统三部分组成。冬季为用户供热时,水源热泵中央空调系统从水源中提取低品位热能,通过电能驱动的水源热泵中央空调主机(热泵)“泵”送到高温热源,以空气或水作为载冷剂提升温度后送到建筑物中满足用户供热需求。夏季为用户供冷时,水源热泵中央空调系统将用户室内的余热通过水源中央空调主机(制冷)转移到水源水中,由于水源温度低,所以可以高效地带走热量,以满足用户制冷需求。通常水源热泵消耗1kW的能量,用户可以得到4kW以上的热量或冷量。 水源热泵的特点及优势 属于可再生能源利用技术 水源热泵是利用了地球水体所储藏的太阳能资源作为冷热源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说水源热泵是一种清洁的可再生能源的技术。 高效节能 水源热泵机组可利用的水体温度冬季为12-22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体为18-35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。

冷水机组的工作原理

冷水机组得工作原理 1、冷水机组得分类及优、缺点冷水机组得分类: 分类方式 种类 分类方式 种类 按压缩机形式分 活塞式螺杆式离心式 按燃料种类 燃油型(柴油、重油)燃气型(煤油、天然气) 按冷凝器冷却方式 水冷式风冷式 按能量利用形式 单冷型热泵型热回收型单冷、冰蓄冷双功能型 按冷水出水温度 空调型(7度、10度、13度、15度) 低温型(-5度~-30度) 按密封方式 开式半封闭式全封闭式 按载冷剂分 水盐水乙二醇 按能量补偿不同分 电力补偿(压缩式)热能补偿(吸收式) 按制冷剂分 R22R123 R134a 按热源不同(吸收式) 热水型蒸汽型直燃型 各种冷水机组得优缺点 名称 优点 缺点 活塞式冷水机组 1、用材简单,可用一般金属材料,加工容易,造价低 2、系统装置简单,润滑容易,不需要排气装置 3、采用多机头,高速多缸,性能可得到改善 1、零部件多,易损件多,维修复杂,频繁,维护费用高 2、压缩比低,单机制冷量小 3、单机头部分负荷下调节性能差,卸缸调节,不能无级调节 4、属上下往复运动,振动较大 5、单位制冷量重量指标较大 螺杆式冷水机组 1、结构简单,运动部件少,易损件少,仅就是活塞式得1/10,故障率低,寿命长 2、圆周运动平稳,低负荷运转时无“喘振"现象,噪音低,振动小 3、压缩比可高达20,EER值高

4、调节方便,可在10%~100%范围内无级调节,部分负荷时效率高,节电显著 5、体积小,重量轻,可做成立式全封闭大容量机组 6、对湿冲程不敏感 7、属正压运行,不存在外气侵入腐蚀问题 1、价格比活塞式高 2、单机容量比离心式小,转速比离心式低 3、润滑油系统较复杂,耗油量大 4、大容量机组噪声比离心式高 5、要求加工精度与装配精度高 离心式冷水机组 1、叶轮转速高,输气量大,单机容量大 2、易损件少,工作可靠,结构紧凑,运转平稳,振动小,噪声低 3、单位制冷量重量指标小 4、制冷剂中不混有润滑油,蒸发器与冷凝器得传热性能好 5、EER值高,理论值可达 6、99 6、调节方便,在10%~100%内可无级调节 1、单级压缩机在低负荷时会出现“喘振"现象,在满负荷运转平稳 2、对材料强度,加工精度与制造质量要求严格 3、当运行工况偏离设计工况时效率下降较快,制冷量随蒸发温度降低而减少幅度比活塞式快 4、离心负压系统,外气易侵入,有产生化学变化腐蚀管路得危险 模块化冷水机组 1、系活塞式与螺杆式得改良型,它就是由多个冷水单元组合而成 2、机组体积小,重量轻,高度低,占地小 3、安装简单,无需预留安装孔洞,现场组合方便,特别适用于改造工程 1、价格较贵 2、模块片数一般不宜超过8片 水源热泵机组 1、节约能源,在冬季运行时,可回收热量 2、无需冷冻机房,不要大得通风管道与循环水管,可不保温,降低造价 3、便于计量 4、安装便利,维修费低 5、应用灵活,调节方便 1、在过度季节不能最大限度利用新风 2、机组噪声较大 3、机组多数暗装于吊顶内,给维修带来一定难度 溴化锂吸收式冷水机组(蒸汽,热水与直燃型) 1、运动部件少,故障率低,运动平稳,振动小,噪声低 2、加工简单,操作方便,可实现10%~100%无级调节 3、溴化锂溶液无毒,对臭氧层无破坏作用 4、可利用余热。废热及其她低品位热能 5、运行费用少,安全性好 6、以热能为动力,电能耗用少 1、使用寿命比压缩式短

污水源热泵系统介绍.

污水源热泵系统介绍 供热空调的能源消耗占社会总能耗的比例大达30%,而环境污染的20%也是由供热空调燃煤引起的。因此,采用热泵技术,开发低位的、可再生的清洁能源用于建筑物的供热空调意义重大,是建筑节能减排的有效途径之一。这些能源包括:大气、土壤、地下水、地表水、工业余热及城市污水等等。其中污水在数量(水量)、质量(水温)及分布规律上(地理位置)具有明显优势。预计2010年我国污水排放量达720亿t/a,水温全年在10-25℃之间,按开发50%的水量计算,可供热空调的面积至少在5亿㎡以上。另外,原生污水均匀地分布在城市地下空间,为因地制宜地有效利用及建设分散式的热泵供热空调系统创造了有利条件。而地表水源在南方水源丰富的地区以及沿海城市更具有广阔的应用前景。 1 热泵原理 各类低位的清洁能源利用是通过热泵技术实现的。热泵空调技术是根据逆卡诺循环原理,将低温热源或低位能源(如城市污水、地下水等)中的低品位热能进行回收,转换为高品位热能的一种节能与环保性技术,利用这项技术的逆过程同时还可以达到制冷的目的,是以存在合适的低位能源为必要条件的。 3-膨胀阀 图1 热泵工作原理示意图

图1示意了一种水源热泵向建筑物供热的工作原理。所谓水源热泵,就是指以环 境中的水(污水、地表水、地下水等)作为热源。热泵工质(例如氟利昂)在压缩机1的驱动下,在压缩机1、冷凝器2、膨胀装置3、蒸发器4几个主要部件中循环运动。工质的热力性质决定了蒸发器中的工质温度可以保持在例如2℃(称为蒸发温度)左右,而冷凝器中则为60℃(称为冷凝温度)左右。这里的水源虽然在冬季可能仅为11℃,但却可以作为热泵系统的热源,因为当将它引入温度为2℃的蒸发器时,它必然要把自身中的热能(称为内能)交给机组,变为例如6℃排放出去。获取了水源热能的工质被压缩机压缩到例如60℃,在冷凝器中加热来自建筑物的系统循环水,由该水将热量带到建筑物的散热设备中。 总的来看,热泵能够从常温或低温(11℃)的环境中提取热量,以较高的温度(50℃)向建筑物供热。过程中机组每消耗1份高位能源(例如电能),能够从环境中提取3份以上的温差热量,建筑物实际可以得到的热量则为4份以上。 然而热泵技术应用的关键问题已不是热泵机组的效率有多高,而是需要有合适的低位能源或低温热源,以及整个系统的全面高效低能耗运行,以保证节能性。 2 污水源热泵 污水热泵是以污水(包括地表水)作为低温热源,利用热泵技术回收或提取污水中的低温热能,其中污水包括市政管网中未处理的原生污水、污水处理厂已处理污水,地表水包括江河湖水、海水及污水处理后的再生水。 由于污水及地表水的水质条件较差,利用过程中又是开式循环,悬浮物和杂质成迅速的累积过程,因此提取热量时需要解决防堵、防垢及低能耗运行等一系列可能影响到系统的运行效果、运行维护、投资、运行费的相关问题。 2.1 污水特性 2.1.1 污水源流量特性—量大且稳定

水源热泵方案及节能说明

水源热泵设计方案说明 一、工程概况: 本项目位于江苏省无锡市,建筑面积23729平方米,总空调面积约14290M2,其中一至二层为超市;三至四层为餐饮部,五到十层全部为客房,有热水需求。根据客户提供情况,从节能环保角度考虑,采用中央空调提供制冷,主机采用水源热泵机组。 二、设计依据 1、甲方提供的相关图纸及文件; 2、《采暖通风与空气调节设计规范》; 3、《通风与空调工程施工及验收规范》; 4、《实用供热空调设计手册》及国家其它有关规范。 三、设计参数 1、室外主要气象参数:夏季计算干球温度T g= 33.4 ℃,湿球温度T S= 28.4 ℃。 2、室内空气设计参数:夏季温度为:T=24-28℃,冬季16-20℃ 四、设备选型与计算 主要技术指标

1、总冷负荷为:Q = 2186KW ,考虑将来同时最大使用系数和适应无锡夏季空调负荷日变化较大等因素。故选用“宏星”牌水冷螺杆式水源热泵机组40STD-E645HS 1 台和“宏星”水冷螺杆式热回收水源热泵机组:40STD-E540HSB 2台(用于制取热水);40STD-E645HS制冷量:645.4KW 双压缩机,输入功率105.8 KW;40STD-E540HSB制热量:542.9KW热回收量:162.9Kw,输入功率89 KW; 五、能量调节与控制 主要控制设备 1、空调主机:采用40STD-E645HS 40STD-E540HSB的“宏星”牌主机,该系列的机组为我司最成熟的机种之一,机组配备微电脑控制系统,具有故障显示、运行情况显示;装配缺相逆相保护、电机过载保护、防冻保护、高低压压力保护等多项保护措施;压缩机共有6级能量卸载,0%、

水源热泵工作原理及特点.

热泵是一种将低温热源的热能转移到高温热源的装置。通常用于热泵装置的低温热源改是我们周围的介质——空气、河水、海水,或者是从工业生产设备中排出助工质,这些工质常与周围介质具有相接近的温度。热泵装置的工作原理与压缩式制冷机是一致的;在小型空调器中,为了充分发挥它的效能,在夏季空调降温或在冬季取暖,都是使用同一套设备来完成的。在冬季取暖时,将空温器中的蒸发器与冷凝器通过一个换向阀来调换工作,见图2一17。 热泵工作原理图 [1] 由图2—17中可看出,在夏季空调降温时,按制冷工况运行,由压缩机排出的高压蒸汽,经换向阀(又称四通阀进入冷凝器,制冷剂蒸汽被冷凝成液体,经节流装置进入蒸发器,并在蒸发器中吸热,将室内空气冷却,蒸发后的制冷剂蒸汽,经换向阀后被压缩机吸入,这样周而复始,实现制冷循环。在冬季取暖时,先将换向阀转向热泵工作位置,于是由压缩机排出的高压制冷剂蒸汽,经换向阀后流入室内蒸发器(作冷凝器用,制冷剂蒸汽冷凝时放出的潜热,将室内空气加热,达到室内取暖目的,冷凝后的液态制冷剂,从反向流过节流装置进入冷凝器(作蒸发器用,吸收外界热量而蒸发,蒸发后的蒸汽经过换向阀后被压缩机吸入,完成制热循环。这样,将外界空气(或循环水中的热量“泵”入温度较高的室内,故称为“热泵”。上海冰箱厂生产的CKT 一3A 型窗式空调器,就是一种热泵式空调器。在图2—17的热泵循环中,从低温热源(室外空气或循环水,其温度均高于蒸发温度to 中取得Q 。kcal/h的热量,消耗了机械功ALkcal/h,而向高温热源(室内取暖系统供应了Qlkcal/h的热量,这些热量之间的关系是符合热力学第一定律的,即Q1=Q0十AL kcal/h

热回收技术应用原理

热回收技术应用原理 一、热回收原理 制冷机组经冷凝器放出的热量通常被冷却塔或冷却风机排向周围环境中,对需要用热的场所如宾馆、工厂、医院等是一种巨大的浪费,同时给周围环境也带来一定的废热污染。 热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。 制冷压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物质),再经过冷凝器和膨胀阀,在蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,返回压缩机。图中热回收器便是热量回收的载体,起着热量回收和转移的作用。根据热力学第一定律可以得到如下关系式φ?k′+φ?R=φ0′+P?in′式中,P?in′—压缩机吸收并压缩制冷剂消耗的功率; φ0′—制冷剂在蒸发器吸收的热量,即制冷量; φ?R—制冷剂在热回收器中放出的热量,即热回收量; φ?k′—制冷剂在冷凝器中冷凝(或过冷)放出的热量。 雷诺威机房空调,雷诺威精密空调 二、热回收类别 针对热回收器回收热量的多少,热回收又可以分为部分热回收和全热回收。其中,部分热回收只能回收冷水机组排放的部分热量,全热回收基本回收了系统排入环境中的全部热量。 三、热回收器形式 根据使用场所的不同和用户终端的具体需求,热回收器可以采用多种不同的形式,如管壳式、板式、翅片管式、套管式等。 四、热回收技术在冷水机组上的一般应用 根据冷水机组通常的使用场所,一般以水作为热量回收的媒介,在此以制取免费卫生热水为例展开讨论。 五、热回收技术原理 热回收器里通过的是高温高压的气态制冷剂(温度约70℃—85℃),在高温高压制冷剂通过热回收器的同时,利用循环水泵将常温的水送入热回收器,在热回收器里水与高温制冷剂蒸气进行热交换,制冷剂被冷凝的同时将水温升高,然后返回热水储存箱,水泵再次从储存箱中将水送入热回收器进行循环加热,使热水温度进一步升高。储存箱中的水经热回收器多次热交换,最终达到客户要求的水温(55℃-60℃左右)。当热水温度达到设定值时,循环水泵停止工作。 通过热水阀自储存箱中提取卫生热水,一旦水箱中水位降低,补水装置自动补水,此时水温开始下降,当水温降到低于设定值时,热水循环泵自行启动运转,再次通过热回收器对储存箱的水进行循环加热(前提是冷水机组在运行中),这样就确保储存箱中的热水温度维持在相对恒定的范围内。

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

水源热泵系统设计

水源热泵系统设计 一、水源热泵设备选型 ⒈一般情况下按空调冷负荷确定机组型号,对于热负荷高的地区要校核采暖负荷。 传统的系统——用较大的热负荷或冷负荷选择系统。以出水温度35℃的制冷量或以出水温度18℃的 制热量作为选择水源热泵机组的依据。 ⒉无锅炉系统——用冷负荷选择水源热泵机组,房间的热损耗需用足够能量的电加热型加热器加以抵 消。 ⒊水系统进水温度选定原则:一般制冷为15~35℃,制热为10~32℃,国标规定制造商参数标定按制冷进出水温度30/35℃,热泵制热进出水温度20℃。 ⒋水量及风量确定原则:一般每KW的水流量为0.19m3/h,风量为140~250m3/h。 ⒌实际制冷量及制热量会因室内设计干、湿球温度的不同而有所变化,应根据室内设计干、湿球温度进 行修正。 二、循环水系统设计 水环系统通常有冷却塔、换热器、蓄热箱、辅助加热器、泵及相应管路组成。水环水温控制范围一般为15~35℃,在此温度范围内,一般不需要开冷却塔或辅助加热器。 三、系统水流量设计 水源热泵系统夏季需冷量的计算方法与其它系统相同。根据需冷量和所需的冷却水温差,各台水源热泵装置的循环水量即可求出,在考虑到装置的同时使用系数,即可得到整个系统所要求的夏季总冷却循环水量。 一般来说,单一性质的建筑同时使用系数较高,综合性建筑则低一些。另水源热泵装置的数量越多,同时使用系数越小,反之则越大。同时使用系数可按以下原则来确定: ⒈循环水量小于36 m3/h时,同时使用系数取0.85~0.9 ⒉循环水量为36~54 m3/h时,同时使用系数取0.85~0.85 ⒊循环水量大于54 m3/h时,同时使用系数取0.75~0.8 以上原则中所提到的循环水量是指各装置所需水量的累计值,把此值乘以同时使用系数即可得到系统实际所需的总循环水量,并以此作为循环水泵、冷却塔的选型参数以及循环水总管径确定的依据。 四、系统形式 水源热泵水路系统通常采用一次泵系统,运行简单、管理也比较方便。考虑到整个系统的运行可靠,系统中必须设置备用泵。 水系统的循环泵建议多台并联。 为保证每一台水源热泵机组都得到所需水流量,其水系统一般建议采用同程式;每一个分支

水源热泵工作原理

水源热泵工作原理 地下水井系统,即水源热泵。它以水为介质来提取能量实现制热和制冷的一个或一组系统。针对水源热泵机组,就是通过消耗少量高品位能量,将地表水中不可直接利用的低品味热量提取出来,变成可以直接利用的高品位能源的装置。水源热泵是利用太阳能和地热能来制冷、供热,应该说其属热泵中“地源热泵”的一种。经过严格测试及不同地区热泵的应用实例测算,。水源热泵制热的性能系数在3.1–4.7之间,制冷的性能系数在3.5–6.7之间。 地球表面浅层水源(如深度在1000米以内的地下水、地表的河流、湖泊和海洋)吸收了太阳进入地球的辐射能量,这些水源的温度一般都十分稳定。 水源热泵机组工作原理就是在夏季将建筑物中的热量转移到水源中,由于水源温度低,所以可以高效地带走热量,而冬季,则从水源中提取能量,由热泵原理通过空气或水作为制冷剂提升温度后送到建筑物中,通常水源热泵水泵消耗1kw的能量,用户可以得到4kw 以上的热量或冷量。水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热盘管,该组盘管一般水平或垂直埋于湖水或海水中,通过与湖水或海水换热来实现能量转移(该组盘管直接埋于土壤中的系统称为土壤源热泵,也是地源热泵的一种);开式系统是指从地下或地表中抽水后经过换热器直接排放的系统。 水源热泵无论是在制热还是制冷过程中均以水为热源和冷却介质,即用切换工质回路来实现制热和制冷的运行。然而,更为方便的是由水回路中的三通阀来完成。虽然在水源热泵系统中水源直接进入蒸发器(制冷时为冷凝器),在某些场合,为避免污染封闭的冷水系统(通常是处理过的),需间接地用一个换热器来供水;另一种方法是利用封闭回路的冷凝器水系统,水作为热泵制热、制冷过程的介质,满足以下两个条件即可利用:一是水的温度在7℃~30℃之间,二是水量要充足。水源水可以是各种工业用废水、生活用水、海水、江、河水等,甚至是各种工业余热。 提取水中的热(冷)量比较简单易行的方式是打井,利用井泵提取地下水作为循环介质。冬季时,以地下水为“热源”,源源不断的将7℃以上的地下水通过热泵机组的蒸发器提出大约4℃以上的热量,使其降至3℃再注回地下,水在地下渗流过程中又吸收地下热量,温度又升至7℃以上,然后又被提升上来,如此不断循环,机组吸收的热量再被机组的冷凝器释放出来,用以加热供暖的水系统,使供水温度可达55℃以上,此温度称为空调供暖(国家标准45℃)的最佳温度,;夏季时,利用地下水(水温低于14℃)做冷却水,而常规制冷设备是利用冷却塔循环冷却,水温一般都在30℃~40℃,夏季的地下水只有14℃~18℃,

水源热泵设备选型

水源热泵设备选型 ⒈一般情况下按空调冷负荷确定机组型号,对于热负荷高的地区要校核采暖负荷。 传统的系统——用较大的热负荷或冷负荷选择系统。以出水温度35℃的制冷量或以出水温度18℃的 制热量作为选择水源热泵机组的依据。 ⒉无锅炉系统——用冷负荷选择水源热泵机组,房间的热损耗需用足够能量的电加热型加热器加以抵 消。 ⒊水系统进水温度选定原则:一般制冷为15~35℃,制热为10~32℃,国标规定制造商参数标定按制 冷进出水温度30/35℃,热泵制热进出水温度20℃。 ⒋水量及风量确定原则:一般每KW的水流量为0.19m3/h,风量为140~250m3/h。 ⒌实际制冷量及制热量会因室内设计干、湿球温度的不同而有所变化,应根据室内设计干、湿球温度进 行修正。 二、循环水系统设计 水环系统通常有冷却塔、换热器、蓄热箱、辅助加热器、泵及相应管路组成。水环水温控制范围一般为15~35℃,在此温度范围内,一般不需要开冷却塔或辅助加热器。 三、系统水流量设计 水源热泵系统夏季需冷量的计算方法与其它系统相同。根据需冷量和所需的冷却水温差,各台水源热泵装置的循环水量即可求出,在考虑到装置的同时使用系数,即可得到整个系统所要求的夏季总冷却循环水量。 一般来说,单一性质的建筑同时使用系数较高,综合性建筑则低一些。另水源热泵装置的数量越多,同时使用系数越小,反之则越大。同时使用系数可按以下原则来确定: ⒈循环水量小于36 m3/h时,同时使用系数取0.85~0.9 ⒉循环水量为36~54 m3/h时,同时使用系数取0.85~0.85 ⒊循环水量大于54 m3/h时,同时使用系数取0.75~0.8 以上原则中所提到的循环水量是指各装置所需水量的累计值,把此值乘以同时使用系数即可得到系统实际所需的总循环水量,并以此作为循环水泵、冷却塔的选型参数以及循环水总管径确定的依据。 四、系统形式 水源热泵水路系统通常采用一次泵系统,运行简单、管理也比较方便。考虑到整个系统的运行可靠,系统中必须设置备用泵。 水系统的循环泵建议多台并联。 为保证每一台水源热泵机组都得到所需水流量,其水系统一般建议采用同程式;每一个分支管路上最好加上平衡阀。考虑到建筑物的特点,为了配管方便,有时也可采取直接回水的异程式方案。 五、循环水管设计 ⒈确定循环水管的管径时,需要保证能输送设计水流量,使摩擦损失和水流噪音最小,以获得经济合理的效果。 ⒉循环管径越小,流速越高,相应摩擦损阻力变大,水流噪音也大。 ⒊当确定管径时,对于50mm直径的水管,极限水流速度为1.5~2 m/s,在极限水流速以下

热回收技术原理及其在冷水机组上的应用

热回收技术原理及其在冷水机组上的应用 1.前言 本世纪头二十年,我国经济将继续保持平稳较快的增长态势,然而能源的相对短缺已越来越成为制约我国经济持续健康发展的瓶颈,这一矛盾在今后相当长的时期内将长期存在,并且有愈加明显的趋势,同时,经济的高速发展也是以牺牲环境为代价的,如今人们赖以生存的环境已不堪重负。为此,国家确立了“节约与开发并重,节约优先”的能源方针,并提出“科学发展观”,“构建社会主义和谐社会”的全新发展理念。随着生活水平的不断提高和生产条件的日益改善,人们对生产生活环境也提出了更加严格的要求,如今,各类冷水机组已成为重要的实现方式,但伴随的却是巨大的能源消耗。因此,节能降耗理应成为全社会共同的责任,更是摆在每一家空调制造企业面前重大的课题。 2.单级蒸气压缩式制冷循环 压缩机吸收来自蒸发器的低温低压气态制冷剂,压缩成高温高压的制冷剂蒸气排入冷凝器,冷凝为中温(30℃—50℃)高压的制冷剂液体,经膨胀阀节流降压为低温低压的液态制冷剂(实际为气液混合物),进入蒸发器吸收被冷却介质的热量,成为低温低压的气态制冷剂,回到压缩机,完成一个制冷循环。 由热力学第一定律可知,φk=φ0+Pin 式中,Pin—压缩机吸收并压缩制冷剂消耗的功率; φ0—制冷剂在蒸发器吸收的热量,即制冷量; φk—系统通过冷凝器放出的热量。 3.热回收技术 3.1热回收原理 机组经冷凝器放出的热量通常被冷却塔或冷却风机排向周围环境中,对需要用热的场所如宾馆、工厂、医院等是一种巨大的浪费,同时给周围环境也带来一定的废热污染。 热回收技术就是通过一定的方式将冷水机组运行过程中排向外界的大量废热回收再利用,作为用户的最终热源或初级热源。 压缩机排出的高温高压气态制冷剂先进入热回收器,放出热量加热生活用水(或其它气液态物

水源热泵与地源热泵优缺点的比较

水源热泵与地源热泵优缺点的比较 一、水源热泵深井技术介绍 1、水源热泵原理 地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。 为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。 1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:

分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。 开式系统也就是通常所说的深井回灌式水源热泵系统。通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。. 水源热泵原理图:

深井回灌开式环路

地下水平式封闭环路 2.水源热泵优点 2.1高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,。4~6,实际运行为7理论计算可达到. 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温

水源热泵系统热回收技术简介

水源热泵技术作为一种有益于环境保护和可持续发展的冷热源形式越来越多引起社会的广泛关注。水源热泵是一种利用地球表面浅层水源(如地下水、河流和湖泊)或者人工再生水源(工业废水、地热尾水等)的既可供热又可制冷的高效节能空调系统,水源热泵技术利用热泵机组实现能量从低温体向高温体转移,将水体和地层蓄能作为夏季空调和冬季供暖的冷热源,在冬季,水源热泵机组将水体和地层中的能量提取出来,供给室内采暖;夏季,将室内的热量提取出来,释放到水体和地层中,实现室内的降温。 随着对水源热泵系统技术不断的研究,一些新的节能、环保的技术也不断的推出,其中冷凝热回收作为一种典型的新技术也日益得到了社会广泛的关注。 在夏季,绝大部分民用建筑既需要冷量又需要热量。房间内的空调系统需要冷量来给室内降温,以满足人们的舒适性要求,而大量的洗浴设施又需要很多热量来提供生活热水,满足人们的卫生需要。 传统技术会设置两套系统来分别提供冷量和热量,最常用的系统为主机采用水冷机组和锅炉,一方面水冷机组需要耗费大量的电能来制冷,把房间内的热量提取出来,通过冷却塔释放到空气中去,另一方面锅炉又要消耗大量珍贵的一次能源来供给热量,等于既向空气中排放了大量热量,又要从燃料中获取热量,其中向空气中排放的热能全部浪费掉了,造成了资源的大量浪费。 普通水源热泵系统会分别设置两套机组,一套机组将室内热量提取出来,释放到地下,提供给房间空调;另一套机组将水源水中的热量提取出来供给生活热水,由于需要分别设置两套机组,并且对空调系统所提取出来的热量未进行回收直接释放到地下,因此无论从初投资及运行费用来说,都不是最佳的选择。 那么是否可以采用一套水源热泵主机既提供给房间空调又将释放到水源水中的热量进行热回收并提供给生活热水,来同时满足空调和生活热水的需要呢?

水源热泵冷水机组的特点及原理

水源热泵冷水机组的特点及原理 水源热泵冷水机组凭借经济实用、环保、应用范围广等各方面优点,在生活中被广泛使用着。很多地区都将该系统运用在了建筑的配套设施之中,它符合可再生能源技术要求,响应了可持续发展的战略理念。小编现在为大家介绍下什么是水源热泵冷水机组?它与空调有什么区别? 一、什么是水源热泵冷水机组 “水源热泵”型冷水机组又称为冷暖型冷水机组,冷暖型机组可在夏季向空调系统提供冷冻水源。而在冬季可向空调系统提供空调热水水源,或直接向室内提供冷风和热风。冷水机组的热泵工作原理是利用冷水机组的蒸发器从环境中取热,经过压缩机所消耗的功(电能)起到补偿作用,冷水机组的冷凝器则向用户排热,制出所需要的热水。 二、水源热泵冷水机组与空调之间的区别 传统设计的空调系统中较多采用的是冷水机供冷、锅炉供热的方式,或者采用溴化锂机组同时提供冷水和热水。利用锅炉作为热源,存在着环境污染和运行费用高的问题,降低能源消耗;而冷水机组以热泵方式运行来供热和提供热水,使得不仅采用电力这种清洁能源,而且提高了冷水机组的综合能效比,降低了能耗。 地球表面浅层水源(一般在1000 米以内),如地下水、地表的河流、湖泊和海洋,吸收了太阳进入地球的相当的辐射能量,并且水源的温度一般都十分稳定。水源热泵技术的工作原理就是:通过输入少量高品位能源(如电能),实现低温位热能向高温位转移。水体分别作为冬季热泵供暖的热源和夏季空调的冷源,即在夏季将建筑物中的热量"取"出来,释放到水体中去,由于水源温度低,所以可以高效地带走热量,以达到夏季给建筑物室内制冷的目的;而冬季,则是通过水源热泵机组,从水源中"提取"热能,送到建筑物中采暖。 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出 20~60%,运行费用仅为普通中央空调的40~60%。

污水源热泵系统工作原理及特点优势.

污水源热泵系统工作原理及特点优势 污水源热泵系统利用污水(生活废水、工业温水、工业设备冷却水、生产工艺排放的废温水),借助制冷循环系统,通过消耗少量的电能,在冬天将水资源中的低品质能量“汲取”出来,经管网供给室内空调、采暖系统、生活热水系统;夏天,将室内的热量带走,并释放到水中,以达到夏季空调的效果。污水源热泵系统的特点与优势:我国北方地区,冬季采暖主要是依靠煤、石油、天然气等石化燃料的燃烧来获得。采暖与环保成为一对难以解决的矛盾。城市污水是北方寒冷地区不可多得的热泵冷热源。它的温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,这种温度特性使得污水源热泵系统比传统空调系统运行效率要高,节能和节省运行费用效果显著。原生污水源热泵系统以原生污水为热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能,将所取得的能量供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。它有以下特点: 1。环保效益显著原生污水源热泵系统是利用了原生污水作为冷热源,进行能量转换的供暖空调系统,污水经过换热设备后留下冷量或热量返回污水干渠,污水与其他设备或系统不接触,污水密闭循环,不污染环境与其他设备或水系统。供热时省去了燃煤、燃气、燃油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。我国年污水排放量达464亿m,可节省用煤量0.33亿吨,以全国年总能耗30亿吨标煤计算,达到了1。1%,若按暖通空调的一次能源消耗量10 亿吨标煤计算,达3.3%。同时每年可减少排放量达72万吨。 2。高效节能冬季,污水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 3。污水源参数 (1)污水水质问题城市污水包括工业废水,工业冷却水,及生活污水,而城市二级污水是经过一级物化处理和二级生化处理,去除了污水中大量的杂质,降低了污水的腐蚀度,更有利于污水中热能提取。 (2)污水水温保障城市污冬暖夏凉,常年温度稳定,污水水温在冬季比环境温度高15--20度,夏季温度比环境温度低10--15度。因此热泵具有良好的热源,污水源热泵系统利用温差在5度,因此污水源热泵空调系统完全可以在高效率运行。 (3)污水量的保证城市污水水量的变化主要是生活污水的变化,而生活污水的出水量基本保持不变。(4)污水换热器: 污水中含有大量油性污物,流经换热管时会产生挂膜现象,关闭黏结粘泥,从而增大换热热阻,影响换热效率,因此在设计污水换热时使污水走管程,同时设置自动反清洗装置,在换热器运行期间定时进行反冲洗,保证换热效率,提高热能利用 率。 4。综合分析 (1)污水源热泵系统运行稳定水体的温度一年四季相对稳定,其波动的范围远远小于空气的变动,是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵系统运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问 题。 (2)一机多用此热泵系统可供暖、空调,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。城市污水源热泵系统利用城市污水,冬季取热供暖,夏季排热制冷,全年取热供应生活热水,夏季空调

螺杆式热回收冷水机组应用的介绍

1.引言 随着经济的日益发展和人类生活水准的不断提高,空调的应用也越来越普及。而空调在适应经济发展和满足人类需求的同时,也给人类带来了巨大的能源消耗负担和其他如温室效应等负面影响,因此,减少空调的能源消耗,寻求空调可持续发展之路,已成为空调设计所面临的一个重要和首要的问题。在论述本文的内容以前,有必要对空调的能耗进行分类,并对已有的空调节能技术也作一些分类比较。 2.空调能耗的分类 空调制冷要使用电力或蒸汽;空调水、气输送要消耗电力;冬季空调要使用电力或油、煤等自然能源,不同的季节、不同的空调系统有不同的能耗。但就分类而言,可归结分为两类:电力消耗和热能消耗。而电力消耗最总仍可归结为热能消耗(自然能发电除外),因此,从环保的角度来看,空调的所有能耗均为热能消耗,都有CO2温室气体的排放代价。 具体来看,空调系统中,所有电力驱动设备,都存在电力消耗;各种锅炉、溴化锂冷水机组等则存在热能消耗,在一般情况下,夏季空调,除溴化锂制冷机组以外,均以电力消耗为主;冬季空调,则以热能消耗为主,但同时存在电力消耗。各种气源、水源、地源空调系统仅消耗电力。 3.空调节能技术分类和比较 作为对空调节能技术不断探索的回报,在空调设计中,已有很多成熟的技术和相关的产品可运用。具体可分为三种类型: 3.1 节省型:通过追求高效率,优化系统和加强自动控制的运用,来节省空调运行能耗, 减少或避免能源浪费,从而节省能源。如:选用高效率产品,优化系统配置,采用变风量或变水量、二次回风等节能系统及其他运行控制节能技术等。 就其节省的能耗而言,既节省空调动力消耗,也节省一些空调热能消耗。 3.2 自然能利用型:通过合理使用自然能,而减少空调能源消耗,如:新风供冷,冷却水供冷,气源,水源及地源供冷供热等自然能利用技术等。 自然能利用型主要节省空调热能消耗,值得注意的是,其节省的热能是相当可观的。此外,节省了空调热能消耗,也就减少了相应的CO2排放量,因而具有良好的环保优势和可持续发展特性。 3.3 热回收型:通过对热能的再回收,实现热能的二次利用,从而减少空调的能源消耗。如新排风热回收技术。根据产品的不同,又可分为:转轮式或固定板翅式全(显)热交换式热回收,盘管式热回收,热泵式热回收等方式。其他如冷水机组生活热水热回收等等。 就上述各热回收方式所节省的能耗来分析,夏季一般主要节省空调电力能耗,当采用溴化锂主机时,节省的是空调热能消耗。冬季一般主要节省空调热能消耗,当采用自然能利用型主机如气源热泵时,节省的是空调电力能耗。总之,同样具有良好的环保优势和可持续发展特性。 由于热回收型冷水机组在以前的应用中,较多采用串联型冷凝器,由于机组这样的结构设计的原因,热回收量一般最高仅为制冷负荷的30%至40%。而且,热回收量随着冷负荷的减少很快下降,不能相对稳

全热回收风冷模块机组在酒店中的应用分析

全热回收风冷模块机组在酒店中的应用分析 摘 要:本文首先阐述了全热回收风冷模块机组 的运行原理,同时简单分析了其特点,结合具体的工 程实例简述在酒店中使用全热回收风冷模块机组带来 的节能效果和经济效果,旨在为酒店的空调系统设计 提供一定的参考,实现酒店的可持续发展。 关键词:全热回收;风冷模块机组;酒店 引言:酒店作为能源消耗非常大的一类建筑,在 空调系统和热水系统中的能源消耗非常大,在空调的 热泵系统中采用冷凝热回收技术,不仅可以有效的节 约能源的消耗,同时还能有效的节约空间,不需要单 独设置热源,将其在酒店中使用具有非 意义。 一、全热回收风冷模块机组的原理 全热回收风冷模块机组是空调系统中 环节,首先增设一个热回收器,将空调系统运行过 程 中产生的大量热回收利用起来,从而增加能源的循环 利用。在系统中,热回收器是和风冷冷凝器采用并联 的方式设置的 [1] 。全热回收风冷模块机组在冬季和夏 季的工作原理是不一样的,在冬季的时候,可以选择 三种不同的运行模式,主要是通过四通换向阀来进行 切换的。全热回收常重要的现实 个重要的

风冷模块机组在冬季的运行模式如下图1 所示。三种不同的运行模式主要为制热模式、热泵热水器模式和混合模式。在制热模式中,制冷剂通过水侧热交换器C和风侧热交换器A来获取空调用的热水,这个热水的温度保持在45 度左右。在热泵热水器模式中,制冷剂则主要是通过热回收器换热器B 和风侧的热交换器A 工作,在这个模式中,水侧的交换器C 是不需要工作的,最终取得生活用的热水。在混合模式中,时间两种运行模式混合使用的一种全新的运行模式,但是需要采用一个先进的流量分配装置来实现混合运行。 在夏天,全热回收风冷模块机组的运行模式主要有两种,分别为制冷模式和制冷+热回收模式。运行的原理图如下图2 所示。如果采用制冷模式运行,则和普通的风冷热泵系统的运行是一样的,只是提供空调系统的用冷水,在节能环保方面并没有表现出优势。而在制冷+热回收模式中,又可以分为部分热回收和全热回收两种运行模式,一般在实际过程中更常使用的为全热回收模式。在这种运行模式下,制冷剂仅仅通过热回收器换热器B和水侧的热交换器C,风侧的热交换器A 水不需要工作的,如果生活热水的负荷为部分负荷,此时机组需要使用一套先进的流量分配装置对部分的热进行回收,而热交换器A 则需要根据热回收器换热器B 流量的变动来对散热量进行调整。

中国污水源热泵行业调研与投资战略分析报告

2014-2020年中国污水源热泵行业调研与投资战略分析报 告 报告目录 第一章污水源热泵行业背景综述 研究背景及方法 行业研究背景 行业研究方法 主要统计指标 专业名词解释 污水源热泵行业发展背景 污水源热泵的定义 污水源热泵行业发展有利因素 (1)国家政策方针要求 (2)污水源流量特性 (3)污水源温度特性 (4)高效低成本特性 (5)科学能源配置需求 污水热泵行业发展制约因素 污水源热泵对城市污水的要求 污水源热泵行业发展优势 环保效益 节能效益 运行稳定 应用范围广 成本较低 污水源热泵系统工作原理及特性 污水源热泵系统工作原理 污水源热泵系统工作流程 热能提取技术特性分析 山西省污水源热泵应用状况及案例分析 实施污水源热泵空调的背景 实施污水源热泵工程内容 实施污水源热泵示范工程的经济分析 实施污水源热泵工程的总量及污水处理方式 实施污水源热泵工程中的问题 城市污水源热泵的推广的优势 山西省污水源利用现状 第二章2013-2014年中国污水源热泵行业运行环境分析 2013-2014年中国宏观经济环境分析

国民经济运行情况GDP(季度更新) 消费价格指数CPI、PPI(按月度更新) 全国居民收入情况(季度更新) 恩格尔系数(年度更新) 工业发展形势(季度更新) 固定资产投资情况(季度更新) 中国汇率调整(人民币升值) 对外贸易&进出口 2013-2014年中国污水源热泵行业政策环境分析《节能环保产业发展规划》 《节能企业改造财政奖励资金管理办法》 《民用建筑节能管理条例》 《节能产品政府采购清单》 政府相关补贴政策 其他节能减排政策 2013-2014年中国污水源热泵行业社会环境分析 人口环境分析 教育环境分析 文化环境分析 生态环境分析 中国城镇化率 居民的各种消费观念和习惯 2013-2014年中国污水源热泵行业技术环境分析 国外污水源热泵技术应用分析 国内污水源热泵技术应用分析 原生污水防阻技术发展分析 污水源热泵杂物堵塞问题的解决 城市污水热能资源勘察技术与评估 第三章2013-2014年中国污水处理行业发展影响分析国内水环境现状分析 国内污水排放规模分析 国内污水处理工程建设情况 污水处理的工艺流程 污水处理行业运行分析 污水处理能力分析 第四章2013-2014年中国能源行业发展影响分析 电力市场运营情况与价格分析 煤炭市场运营情况与价格分析 燃气市场运营情况与价格分析 燃油市场运营情况与价格分析 第五章2013-2014年中国城市供热行业发展影响分析热力市场消费需求分析 热力市场集中供给分析 城市供热细分行业发展分析

相关文档
最新文档