流体力学与流体机械Ⅰ主要公式及方程

流体力学与流体机械Ⅰ主要公式及方程
流体力学与流体机械Ⅰ主要公式及方程

《流体力学与流体机械》(下)主要公式及方程式

1.流体力学常用准数: (1) 雷诺准数 μρl

u =

Re (2) 欧拉准数 2Eu u p ρ= (3) 牛顿准数 2

2Ne l u F ρ= (4) 付鲁德准数 l

g u 2

Fr = (5) 马赫准数 a u =M (6) 斯特罗哈准数 l u τ=St

(7) 阿基米德准数 T T

u l g ?=2Ar (8) 格拉晓夫准数2

3Gr νβt l g ?= (9) 韦伯准数 σρl u 2We =

2.气体等压比热和等容比热计算式:1p -=k R

k C ; 1

v -=k R C 3.完全气体比焓定义式:T C RT e p

e i p =+=+

4.完全气体状态方程式:T R p ρ= 状态方程微分式:

T

T p p d d d +

=ρρ 5.完全气体等熵过程方程式:

C p

=k

ρ

等熵过程方程微分式:

ρ

ρ

d d k

p p = 气体压力p 、密度ρ和温度T 之间的等熵关系:1k k

12k 1212)()(-==T T

p p ρρ

6.气体熵增计算式:)]()ln[(ln ln 2

11k k

121212p 12p p

T T R p p R T T C s s -=-=-

7.热力学第一定律的能量方程式:w

e u z g p q e u z g p ++++=++++22

2

222121111

2

2ρρ 可压缩理想流体绝热流动能量方程式: 02

2

22112

2i u i u i =+=+ 以温度和流速表述: 0p 2

2

2p 211p 2

2T C u T C u T C =+=+ 以温度和流速表述:

02

222111

2121T R k k u T R k k u T R k k -=+-=+-

以压力、密度和流速表述: 00

2

222211112121ρρρp k k u p k k u p k k -=

+-=+- 以音速和流速表述: 1

2121202

2

222121-=+-=+-k a u k a u k a 8.完全气体的音速公式:T R k p

k p a ===

ρ

ρd d 9.理想流体一维稳定流动连续性方程式:C uA G ==ρ 连续性方程微分式:

0d d d =++

A

A u u ρ

ρ

10.欧拉运动方程的积分式:

C u z g p

=++?

2

d 2

ρ 或简化为 C u p

=+?

2

d 2

ρ 欧拉运动方程的微分式:

0d d d =++u u z g p

ρ

或简化为

0d d =+u u p

ρ

11.理想流体稳定流动的动量方程式: ??

?

??-=∑-=∑-=∑)()()(z1z2z y1y2y x1x2x u u Q F u u Q F u u Q F ρρρ

一维稳定流动动量方程微分式:

0d d x

=+

+A

R u u p

ρδρ

12.气体极限速度及临界速度计算式:1

20max -=

k T kR u ; 120*+=k k R T

u

13.流动参量与滞止参量间的关系:20211M k T T -+=; 1

k k

20)211(--+=M k p p 1

k 1

20)2

11(--+=M k ρρ; 2120)211(M k a a -+= 14.无因次速度Λ与马赫数M 间的关系: 2

2

2

)1()1(2ΛΛ--+=k k M

15.流速的计算式: ])(1[12k

1

k 0

0---=

p p

RT k k u ; 或 ])

(1[12k

1k 0

00---=p p

p k k u ρ

无因次速度计算式:

k

1

k 0

0max

)

(11--=-=

p p T T u u

16.质量流量的计算式: ])()[(12k

1

k 0

k 2

000+--=p p

p p p k k A

G ρ

1)

2(k 1

k 200)

2

11(-+--+=M k M p k A G ρ 最大质量流量计算式:00*1)

2(k 1

k max

)1

2(ρp k A k G -++= 或 0

0*1)2(k 1

k max )12(T P A k R k G -++= 17.喷管出口马赫数计算式: ]1)[(12

k 1

k e

0e --=

-p p k M 18.正激波在静止气体中传播速度计算式: 1

2

1212w ρρρρ?

--=

p p u 19.正激波后气流速度计算式: 2

11212)

()(ρρρρ--=

p p u

20.正激波前后速度关系式: 2

*21a u u =

21.正激波前后马赫数间的关系式: )1(2)1(22

21121212

12

1

22---+=

-

-+

=k M k M k M k M k M 22.正激波前后气流参量比与波前M 1数的关系式:

2

12121

2

1

12)1(2)1(2

121M k M k M M k -++=

++=ρρ

1

1122112+--+=k k M k k p p

]1)1(2)[112()11(2121212+---+-=M k M k k k k T T

1

1

)1(22

112+-++=k k M k u u

1k 1

211k k

212101

02

)1

1

12(

])1(2)1([--+--+-++=k k M k k M k M k p p

23.范诺流极限管长计算式: ])1(2)1(ln 21

1[2

1

212121max

M k M k k k M k M D L -++++-=λ

24.范诺流参量变化关系式:2*)1(21M k k T T -++=; 2

1

2

2*])1(2)1([M

k M k u u -++= 21

22*])1()1(2[M

k M k +-+=ρρ; 212

*])1(21

[1M k k M p p -++= 1)

2(k 1

k 2*00)

1

112(1-++-++=M k k k M p p 25.瑞利流参量变化关系式:

2*11M k k p p ++=; 222

*)11(M

k k M T T ++= )11(12

2*k M k M ++=ρρ; )11(22*M k k M u u ++= ]1)1(2[)11(222

2

*00+-+++=k M k M

k k M T T 1

k k 22

*00]1

)1(2[11-+-+++=k M k M k k p p 26.瑞利流能量方程式: 2

222

2211u i q u i +=++ 27.等温流能量方程式: 0201i q i =+ 或 2

22

2

21u q u =+ 28.等温流压降计算式:)ln

2(1212

112221D

l u u p u p p λρ+=- 等温流压降近似计算式:211211211M k D

l

p T R u D l p p λλ

-=-= 29.等温流质量流量计算式:)(16222152p p T

R l D G -=

λπ 30.等温流极限管长计算式: )]ln(1[212

1

21max

M k M k M k D L +-=λ 31.等温流参量变化关系式:

M k u u =?; M

k p p 1==??ρρ; T R u =?

32.等温流可能的最小压力: 11min M p k p p ==? 33.紊流射流主要参量计算式:

35.阿基米德准数:对圆截面射流a 0200Ar T T u R g ?=

,对平面射流a

2

00Ar T T u B g ?=。 36.旋流片式旋流器旋流数Sn 的计算式: ?tg ])

(1)(1[

3

2

Sn 22

13

21r r r r

--= 37.两种流体在混合前后的能量损失计算式: 2

)(2

212121321u u G G G G E E E E -+=-+=?

38.完整喷射器的喷射方程: 2

2

222333322113

3

3042

1)1(21)(u K u u G u G u G G u p p k

ρρηρ+-+-+=

- 39.完整喷射器的效率计算式: )]()(2

1[]2

1)[(142

421112

42042p p u u Q u p p Q ---+

-=

ρρη

40.烟囱的理论抽力计算式: H t t H p H )11(

)(g

0g a 0

a g a 2m βγβγγγ+-+=-=-=理

41.烟囱的实际抽力计算式: 32w 2g 22

3g 23j g a )22()(-?----=p g

u g u H H γγγγ抽

42.泵与风机的压头(风压)计算式:g

v v z z p p H 2)(2

12

2121

2-+-+-=

γ

2

)

()()(21221212v v z z p p p -+-+-=ργ

43.泵或风机有效功率计算式: Q p Q H N e ==γ 44.泵或风机效率计算式: N

Q

p N Q H N N e ===

γη 45.叶轮进、出口圆周速度计算式: 60

60

2211n

D u n

D u ππ=

=

46.叶轮进、出口径向分速度计算式: 2

222r 1

111r b D Q

c b D Q

c πεπε=

=

叶轮出口切向分速度计算式: 2222cot βr u c u c -= 47.离心式泵与风机理论压头计算式:)(1

1122∞∞∞∞∞-=

T u T T u T T c u c u g

H 对于风机理论全风压计算式:)(1122∞∞∞∞∞-=T u T T u T T c u c u p ρ 当(进口无预旋)进口工作角α1=90°时: 221

u T c u g

H =

; 22u T c u p ρ= 48.叶轮反作用度定义式: 2

u2T d T st 211u c

H H H H -=-==

τ 49.泵与风机机械效率计算式: N

Q H N N T

T T m γη==

容积效率计算式:T T T Q Q Q q Q =

-=

v η 水力效率计算式:T

T T H H

H H H =

?-=

H η 总效率与分效率关系式:H v m ηηηη==

N N e

50.泵与风机相似律关系式:

3

22)()(m

p m

p m p D D n n Q Q =;

2222

)(

)(

m

p m

p m

p D D n n H H =

2

222)()()(

m

p m p m p m

p D D n n p p ρρ=; 5223)()()(m p m p m p m p D D n n N N ρρ= 51.比转数的定义式(无因次量): 4

31)(gH Q n n s =

' 工程简化计算式(有因次量): 432

1H

Q n n s =

我国规定水泵的比转数计算式: 432

165.3H

Q n n s =

我国规定机的比转数计算式: 4

30

154

.5p Q n n s =

52.泵的允许安装高度:w s g h g

v H H --=2][][21 或 w v

g h h p p H -?--=][][0

γ 53.泵的气蚀比转数定义式: 4

/32

/1c ]

[62.5h nQ n ?=

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

流体力学与流体机械习题参考答案

高 等 学 校 教 学 用 书 流体力学与流体机械 习题参考答案 主讲:陈庆光 中国矿业大学出版社 张景松编.流体力学与流体机械, 徐州:中国矿业大学出版社,(重印) 删掉的题目:1-14、2-6、2-9、2-11、2-17、3-10、3-19、4-5、4-13 《流体力学与流体机械之流体力学》 第一章 流体及其物理性质 1-8 3m 的容器中装满了油。已知油的重量为12591N 。求油的重度γ和密度ρ。 解:312591856.5kg/m 9.8 1.5 m V ρ= ==?;38394N/m g γρ== 1-11 面积20.5m A =的平板水平放在厚度10mm h =的油膜上。用 4.8N F =的水平力拉它以0.8m/s U =速度移动(图1-6)。若油的密度3856kg/m ρ=。求油的动力粘度和运动粘度。 解:29.6N/m F A τ==,U h τμ=, 所以,0.12Pa s h U τμ==g ,42/0.12/856 1.410m /s νμρ-===? 1-12 重量20N G =、面积20.12m A =的平板置于斜面上。其间充满粘度0.65Pa s μ=g 的油液(图1-7)。当油液厚度8mm h =时。问匀速下滑时平板的速度是多少。 解:sin 20 6.84F G N ==o ,57Pa s F A τ==g , 因为U h τμ =,所以570.0080.7m/s 0.65h U τμ?=== 1-13 直径50mm d =的轴颈同心地在50.1mm D =的轴承中转动(图1-8)。间隙中润滑油的粘度0.45Pa s μ=g 。 当转速950r/min n =时,求因油膜摩擦而附加的阻

流体力学与流体机械习题参考答案

高等学校教学用书 流体力学与流体机械 习题参考答案 主讲:陈庆光 中国矿业大学出版社 张景松编.流体力学与流体机械, 徐州:中国矿业大学出版社,2001.6(2005.1重印)

删掉的题目:1-14、2-6、2-9、2-11、2-17、3-10、3-19、4-5、4-13 《流体力学与流体机械之流体力学》 第一章 流体及其物理性质 1-8 1.53m 的容器中装满了油。已知油的重量为12591N 。求油的重度γ和密度ρ。 解:312591 856.5kg/m 9.8 1.5 m V ρ= ==?;38394N/m g γρ== 1-11 面积20.5m A =的平板水平放在厚度10mm h =的油膜上。用 4.8N F =的水平力拉它以0.8m/s U =速度移动(图1-6)。若油的密度3856kg/m ρ=。求油的动力粘度和运动粘度。 解:29.6N/m F A τ= =,U h τμ=, 所以,0.12Pa s h U τμ==g ,42/0.12/856 1.410m /s νμρ-===? 1-12 重量20N G =、面积20.12m A =的平板置于斜面上。其间充满粘度0.65Pa s μ=g 的油液(图1-7)。当油液厚度8mm h =时。问匀速下滑时平板的速度是多少。

解:sin 20 6.84F G N ==o ,57Pa s F A τ==g , 因为U h τμ =,所以570.0080.7m/s 0.65h U τμ?=== 1-13 直径50mm d =的轴颈同心地在50.1mm D =的轴承中转动(图1-8)。间隙中润滑油的粘度0.45Pa s μ=g 。当转速950r/min n =时,求因油膜摩擦而附加的阻力矩M 。 解:将接触面沿圆柱展开,可得接触面的面积为: 20.050.10.016m A dL ππ==??= 接触面上的相对速度为:2 2.49m/s 2260d d n u πω=== 接触面间的距离为:0.05mm 2D d δ-== 接触面之间的作用力:358.44N du F A A dy u δ μμ=== 则油膜的附加阻力矩为:8.9N m 2 d M F ==g 1-14 直径为D 的圆盘水平地放在厚度为h 的油膜上。当驱动圆盘以转速n 旋转时,试证明油的动力粘度μ与驱动力矩M 的关系为: 24 960hM nD μπ= 证明:26030n n ππω= = ,30 nr v r πω== 2dA rdr π=,2215v nr dr dF dA h h μπμ== ,2315nr dr dM dFr h μπ== /2 2324 15960D nr dr nD h M h μπμπ= =? 所以:24 960hM nD μπ=

流体力学基本公式

1流体中稳定流动和均匀流动的区别 (1)①根据当地加速度是否为0,即流体运动要素是否随时间变化,流体分为 稳定流动和不稳定流动。 ②根据迁移加速度是否为0,即流体运动要素是否随空间参数变化,流体 分为均匀流和非均匀流。(非均匀流又分为缓变流和急变流) (2)稳定流动是流场中流体质点通过空间点时所有的运动要素都不随时间改变 的流动。 (3)均匀流动是指流场中同一直线上的各流体质点的运动要素沿程不变(不随 空间参数变化)的流动。 (4)稳定流的流线可以为曲线。均匀流的流线不能为曲线,只能是一元流动。 2迹线方程最后是写成多个还是整合成一个? 答:如果迹线方程可以合并为一个,尽量合并为一个,并且尽量消掉参数t 。如果不能合并,就不用合并。理论上说都是可以的,但是从考试的答案来说,基本上都是合并的。 流体力学基本公式 1.牛顿内摩擦定律 (1)表达式: dy du μτ±=。 (2)内摩擦定律与三个因素相关,粘性切应力与流体粘度和速度梯度有关,与 压力的大小关系不大。 (3)适用条件:牛顿流体的层流运动。 2.欧拉平衡微分方程 (1)01=??-x p X ρ,01=??-y p Y ρ,01=??-z p Z ρ (2)适用于绝对静止状态和相对静止状态,可压缩流体和不可压缩流体。 3.静力学基本方程式 (1) g p z g p z ρρ2 211+=+ (2)适用条件:重力作用下、静止的、连通的、均质流体。 (3)几何意义:静止流体中,各点的测压管水头为常数。 (4)物理意义:静止流体中,各点的总比能为常数。 4.连续性方程

(1)适用于系统的质量守恒定律在控制体上的应用。 (2)三种形式:一般形式,恒定流,不可压缩流。 ①一般形式:0)()()(=??+??+??+??z u y u x u t z y x ρρρρ ②恒定流:0)()()(=??+??+??z u y u x u z y x ρρρ ③不可压缩流体:0=??+??+??z u y u x u z y x 5.欧拉运动方程 (1) dt du z p Z dt du y p Y dt du x p X z y x =??-=??-=??-ρρρ1,1,1 (2)适用条件:所有理想流体。 6.理想流体的伯努利方程 (1)2211221222p u p u z z g g g g ρρ++=++ (2)适用条件:理想流体;不可压缩流体;质量力只有重力;沿稳定流的流线 或微小流束。 (3)几何意义:沿流线总水头为常数。 (4)物理意义:沿流线总比能为常数。 7.实际流体总流的伯努利方程 (1)221112221222w p v p v z z h g g g g ααρρ++=+++ (2)适用条件:实际流体稳定流;不可压缩流体;质量力只有重力;所取断面 为缓变流断面。 (3)动能修正系数α:总流有效断面上的实际动能与按平均流速算出的假想动 能的比值。1α>,由断面上的速度分布不均匀引起,不均匀性越大,α越大。 8.动量方程 (1)() 21=Q F v v ρ-∑

流体力学与流体机械习题参考答案

高等学校教学用书 流体力学与流体机械 习题参考答案 主讲:陈庆光 中国矿业大学出版社 张景松编 . 流体力学与流体机械 , 徐州:中国矿业大学出版社, (重印) 删掉的题目: 1-14 、2-6 、 2-9 、 2-11 、2-17、3-10、3-19、4-5、4-13 《流体力学与流体机械之流体力学》 第一章 流体及其物理性质 m 3 的容器中装满了油。已知油的重量为 12591N 。求油的重度 和密度 度是多少 1-8 解: 12591 856.5kg/m 3 ; 9.8 1.5 3 g 8394N/m 3 1-11 面积 A 0.5m 2 的平板水平放在厚度 h 10mm 的油膜上。用 F 4.8N 的水 平力拉它以 U 0.8m/s 速度移动(图 1-6 )。若油的密度 856kg/m 3 。求油的动 力粘度和运动粘度。 解: F 9.6N/m 2 , A U h 0.12Pags , 所以, U , h , / 0.12 /856 1.4 10 4m 2/s 1-12 重量 G 20N 、 面积 A 0.12m 2 的 平板置于 斜面 上。其间 充满 粘度 0.65Pags 的油液(图 1-7)。 当油液厚度 h 8mm 时。问匀速下滑时平板的速 解: F G sin 20o 6.84N , F A 57Pags , 因为 U ,所以 U h 57 0.008 h 0.65 0.7m/s 1- 13 直径 d 50mm 的轴颈同心地在 D 50.1mm 的轴承中转动(图 1-8 )。间隙 中润滑油的粘度 0.45Pags 。当转速 n 950r/min 时,求因油膜摩擦而附加的阻

第1章流体力学的基本概念

第1章 流体力学的基本概念 流体力学是研究流体的运动规律及其与物体相互作用的机理的一门专门学科。本章叙述在以后章节中经常用到的一些基础知识,对于其它基础内容在本科的流体力学或水力学中已作介绍,这里不再叙述。 连续介质与流体物理量 连续介质 流体和任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。例如,常温下每立方厘米水中约含有3×1022 个水分子,相邻分子间距离约为3×10-8 厘米。因而,从微观结构上说,流体是有空隙的、不连续的介质。 但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大量分子“集体”所显示的特性,也就是所谓的宏观特性或宏观量,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的“质点”。从而认为,流体就是由这样的一个紧挨着一个的连续的质点所组成的,没有任何空隙的连续体,即所谓的“连续介质”。同时认为,流体的物理力学性质,例如密度、速度、压强和能量等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。因此,不再从那些永远运动的分子出发,而是在宏观上从质点出发来研究流体的运动规律,从而可以利用连续函数的分析方法。长期的实践和科学实验证明,利用连续介质假定所得出的有关流体运动规律的基本理论与客观实际是符合的。 所谓流体质点,是指微小体积内所有流体分子的总体,而该微小体积是几何尺寸很小(但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大量分子的统计平均特性,且具有确定性。 流体物理量 根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。流体的物理量是指反映流体宏观特性的物理量,如密度、速度、压强、温度和能量等。对于流体物理量,如流体质点的密度,可以地定义为微小特征体积内大量数目分子的统计质量除以该特征体积所得的平均值,即 V M V V ??=?→?'lim ρ (1-1) 式中,M ?表示体积V ?中所含流体的质量。 按数学的定义,空间一点的流体密度为 V M V ??=→?0 lim ρ (1-2)

(完整word版)流体力学与流体机械习题(含答案)参考答案

高等学校教学用书 主讲:张明辉

中国矿业大学出版社 张景松编.流体力学与流体机械, 徐州:中国矿业大学出版社,2001.6 (2005.1重印) 删掉的题目:1-14、2-6、2-9、2-11、2-17、3-10、3-19、4-5、4-13 《流体力学与流体机械之流体力学》 第一章 流体及其物理性质 1-8 1.53m 的容器中装满了油。已知油的重量为12591N 。求油的重度γ和密度ρ。 解:312591 856.5kg/m 9.8 1.5 m V ρ= ==?;38394N/m g γρ== 1-11 面积20.5m A =的平板水平放在厚度10mm h =的油膜上。用平力拉它以0.8m/s U =速度移动(图1-6)。若油的密度3856kg/m ρ=。求油的动力粘度和运动粘度。 解:29.6N/m F A τ= =,U h τμ=, 所以,0.12Pa s h U τμ==g ,42/0.12/856 1.410m /s νμρ-===? 1-12 重量20N G =、面积20.12m A =的平板置于斜面上。其间充满粘度 0.65Pa s μ=g 的油液(图1-7)。当油液厚度8mm h =时。问匀速下滑时平板的速度是多少。

解:sin 20 6.84F G N ==o ,57Pa s F A τ==g , 因为U h τμ =,所以570.0080.7m/s 0.65h U τμ?=== 1-13 直径50mm d =的轴颈同心地在50.1mm D =的轴承中转动(图1-8)。间隙中润滑油的粘度0.45Pa s μ=g 。当转速950r/min n =时,求因油膜摩擦而附加的阻力矩M 。 解:将接触面沿圆柱展开,可得接触面的面积为: 20.050.10.016m A dL ππ==??= 接触面上的相对速度为:2 2.49m/s 2260d d n u πω=== 接触面间的距离为:0.05mm 2D d δ-== 接触面之间的作用力:358.44N du F A A dy u δ μμ=== 则油膜的附加阻力矩为:8.9N m 2 d M F ==g 1-14 直径为D 的圆盘水平地放在厚度为h 的油膜上。当驱动圆盘以转速n 旋转时,试证明油的动力粘度μ与驱动力矩M 的关系为: 24 960hM nD μπ= 证明:26030n n ππω= = ,30 nr v r πω==

《流体力学与流体机械》试题库(1)

《流体力学与流体机械》试题库(一) 一、选择题(每小题2分,共30分) 1、小切应力作用于静止流体时,流体( ) A.粘度大时仍可保持静止 B.即刻开始流动 C.在过一定时间后才开始流动 D.是否流动还要看其他条件。 2、流体处于平衡状态的必要条件是( ) A.流体无粘性 B.流体粘度大 C.体积力有势 D.流体正压 3、当某点处存在真空时,该点的压强不可能的情况是( ) A.绝对压强为正值. B.相对压强为正值。 C.绝对压强小于当地大气压强。 D.相对压强为负值。 4、静水中斜置平面壁的形心淹深h c 与压力中心淹深h D 的关系为( ) A.h c >h D B.h c =h D C .h c

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

流体力学计算公式

1、单位质量力:m F f B B = 2、流体的运动粘度:ρ μ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dp d dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dT d dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+= 7、静水总压力: )h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ== 8、元流伯努利方程;'2221112w h g p z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,g p ρ为测压管高度或压强水头,g u ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C g p p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h g v g p z g v g p z +++=++222 221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42 122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:g v d l h f 22 λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)

《流体力学与流体机械》试题库(7)

《流体力学与流体机械》试题库(七) 一、选择题(每小题2分,共20分) 1、在研究流体运动时,按照是否考虑流体的粘性,可将流体分为( ) A.牛顿流体及非牛顿流体 B.可压缩流体与不可压缩流体 C.均质流体与非均质流体 D .理想流体与实际流体 2、压力表的读值是( ) A .绝对压强 B .绝对压强减去当地大气压 C .绝对压强加当地大气压 D .当地大气压减去绝对压强。 3、若流动是一个坐标量的函数,又是时间t 的函数,则流动为 A .一元流动; B .二元流动; C .一元非恒定流动 D .一元恒定流动。 4、沿流线成立的伯努利方程的限制条件不包含( ) A .不可压缩流体 B .无粘流体 C .恒定流动 D .无旋流动 5、公式gRJ ρτ=适用于( ) A .均匀流; B .急变流 C .层流 D .紊流 6、圆管内满流时,管道的几何直径d 与水流的水力半径R 的关系为( ) A. d=R B. d=2R C . d=4R D. d=8R 7、速度势函数存在于( )流动中。 A .不可压缩流体 B .平面连续 C .所有无旋 D .任意平面 8、在安排管道阀门阻力试验时,首先考虑要满足的相似准则是( ) A .雷诺数Re B.弗鲁德数Fr C.斯特罗哈数St D.欧拉数Eu 9、水泵的几个性能参数之间的关系是在( )一定的情况下,其他各参数随Q 变化而变化, 水泵厂通常用特性曲线表示。 A .N B. H C .η D .n 10、不同叶型对风机的影响是不同的,下列说法中不正确的是( ) A .前向叶型时,β2>900 B .前向叶型的风机容易超载。 C .前向叶型的风机效率高。 D .前向叶型的风机能获得更大的理论扬程。

流体力学与流体机械习题参考答案

~ 高等学校教学用书 》 流体力学与流体机械习题参考答案 : 主讲:张明辉 中国矿业大学出版社 &

张景松编.流体力学与流体机械, 徐州:中国矿业大学出版社,(重印) 删掉的题目:1-14、2-6、2-9、2-11、2-17、3-10、3-19、4-5、4-13 《流体力学与流体机械之流体力学》 第一章 流体及其物理性质 1-8 3m 的容器中装满了油。已知油的重量为12591N 。求油的重度γ和密度ρ。 解:312591 856.5kg/m 9.8 1.5 m V ρ= ==?;38394N/m g γρ== 1-11 面积20.5m A =的平板水平放在厚度10mm h =的油膜上。用 4.8N F =的水平力拉它以0.8m/s U =速度移动(图1-6)。若油的密度3856kg/m ρ=。求油的动力粘度和运动粘度。 . 解:29.6N/m F A τ= =,U h τμ=, 所以,0.12Pa s h U τμ==,42/0.12/856 1.410m /s νμρ-===? 1-12 重量20N G =、面积20.12m A =的平板置于斜面上。其间充满粘度0.65Pa s μ=的油液(图1-7)。当油液厚度8mm h =时。问匀速下滑时平板的速度是多少。

解:sin 20 6.84F G N ==,57Pa s F A τ==, 因为U h τμ =,所以570.0080.7m/s 0.65h U τμ?=== 1-13 直径50mm d =的轴颈同心地在50.1mm D =的轴承中转动(图1-8)。间隙中润滑油的粘度0.45Pa s μ=。当转速950r/min n =时,求因油膜摩擦而附加的阻力矩M 。 / 解:将接触面沿圆柱展开,可得接触面的面积为: 20.050.10.016m A dL ππ==??= 接触面上的相对速度为:2 2.49m/s 2260d d n u πω=== 接触面间的距离为:0.05mm 2D d δ-== 接触面之间的作用力:358.44N du F A A dy u δ μμ=== 则油膜的附加阻力矩为:8.9N m 2 d M F == 1-14 直径为D 的圆盘水平地放在厚度为h 的油膜上。当驱动圆盘以转速n 旋转时,试证明油的动力粘度μ与驱动力矩M 的关系为: — 24 960hM nD μπ= 证明:26030n n ππω==,30 nr v r πω== 2dA rdr π=,2215v nr dr dF dA h h μπμ== ,2315nr dr dM dFr h μπ== /2 2324 15960D nr dr nD h M h μπμπ= =?

流体力学与流体机械大题

3.某流体在管内作层流流动,若体积流量不变,而输送管路的管径增加一倍,求因摩擦损失而引起的压力降有何变化? 【解】根据伯氏方程:-△p=32uμl/d2以及: (π/4)d12u1=(π/4)d22u2=Vs 已知:d2=2d1 则:u1/u2=d22/d12=(2d1)2/d12=4 即:u2=u1/4 原工况:-△p1=32u1μ1l1/d12 现工况:-△p2=32u2μ2l2/d22 ∵μ2=μ1 l2=l1 u2=u1/4 d2=2d1 将上述各项代入并比较: 现/原:△p2/△p1=[32×(1/4)u1×μ2×l2/(2d1)2 ]/ [32×u1×μ1×l1/d12]=1/16 因摩擦而引起的压降只有原来的1/16 5.某厂如图所示的输液系统将某种料液由敞口高位槽A输送至一敞口搅拌反应槽B中,输液管为φ38×2.5mm的铜管,已知料液在管中的流速为u m/s,系统的Σh f=20.6u2/2 [J/kg ],因扩大生产,须再建一套同样的系统, 所用输液管直径不变,而要求的输液量须增加30%,问新系统所设的高位槽的液面需要比原系统增高多少? 【解】∵u1≈0≈u2 p1=p2 于是gZ1=gZ2+Σh f g(Z1-Z2)=Σh f =20.6u2/2 u=[2g(Z2-Z2)/20.6]0.5 =(2×9.81×6/20.6)0.5 =2.39m/s Z1′=Z2+20.6u′2/2g =5+20.6(1.3×2.39)2/(2×9.81) =15.14m 增高为:Z1′-Z1=15.14-11=4.14m 6.用离心泵将水由水槽送至水洗塔中,水洗塔内的表压为9.807×104N/m2,水槽液面恒定,其上方通大气,水槽液面与输送管出口端的垂直距离为20m,在某送液量下,泵对水作的功为31 7.7 J/kg,管内摩擦系数为0.018,吸入和压出管路总长为110m(包括管件及入口的当量长度,但不包括出口的当量长度)输送管尺寸为φ108×4mm,水的密度为1000kg/m3。求输水量为多少m3/h。

流体力学三大方程的推导(优选.)

微分形式的连续性方程

连续方程是流体力学的基本方程之一,流体运动的连续方程,反映流体运动和流体质量分布的关系,它是在质量守恒定律在流体力学中的应用。 重点讨论不同表现形式的流体连续方程。

用一个微六面体元控制体建立微分形式的连续性方程。 设在流场中取一固定不动的微平行六面体(控制体),在直角坐标系oxyz 中,六面体的边长取为dx ,dy ,dz 。 先看x 轴方向的流动,流体从ABCD 面流入六面体,从EFGH 面流出。 在x 轴方向流出与流入质量之差 ()()[]x x x x u u u dx dydzdt u dydzdt dxdydzdt x x ρρρρ??+-=??

用同样的方法,可得在y 轴方向和z 轴方向的流出与流入 质量之差分别为 ()y u dxdydzdt y ρ??() z u dxdydzdt z ρ??这样,在dt 时间内通过六面体的全部六个面净流出的质量为: ()()()[]y x z u u u dxdydzdt x x x ρρρ???++???

在dt 的时间内,六面体内的质量减少了 , 根据质量守恒定律,净流出六面体的质量必等于六面体内所减少的质量 ()dxdydzdt t ρ?-?()()()[]y x z u u u dxdydzdt dxdydzdt x y z t ρρρρ ????++=-????()()()0y x z u u u x y z t ρρρρ ????+++=????这就是直角坐标系中流体运动的微分形式的连续性方程。 这就是直角坐标系中流体运动的微分形式的连续性方程。 代表单位时间内,单位体积的质量变化 代表单位时间内,单位体积内质量的净流出

流体力学公式总结

工程流体力学公式总结 第二章 流体的主要物理性质 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: 12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 第三章 流体静力学 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力: 重力ΔW = Δmg 、 直线运动惯性力ΔFI = Δm·a 离心惯性力ΔFR = Δm·r ω2 . T V V ??=1αp V V ??-=1κV P V K ??-=κ1n A F d d υμ=dn d v μτ±=n v d /d τμ=

2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即:p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 单位质量流体的力平衡方程为: 5.压强差公式(欧拉平衡微分方程式综合形式) 6.质量力的势函数 7.重力场中平衡流体的质量力势函数 z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??-=ρ0 1=??-x p f x ρ10y p f y ??-=ρ01=??-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (??+??+??=++ρ) d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ??????=++++=-

流体力学与流体机械习题

习题 一、填空题 (一) 1.为提高U 形压差计的灵敏度较高,在选择指示液时,应使指示液和被测流体的密度差的值(B) A、偏大; B、偏小; C、越大越好 2.在相同管径的圆形管道中,分别流动着粘油和清水,若雷诺数相等,二者的密度相差不大,而粘度相差很大,则油速(A) 水速。 A、大于; B、小于; C、等于 3.一设备表压为460 mmHg,另一设备的真空表读数为300mmHg,两设备的压强差为()kPa(当地大气压为101.3 kPa)。 A、760; B、101.3; C、160; D、21.3 4.液体的温度升高粘度();气体的温度升高粘度()。 A、不变; B、减小; C、增大; D、不定 5.液体的密度与压力(),温度升高液体密度()。 A、无关; B、增大; C、减小; D、不定 6.压力增加气体密度(),温度升高气体密度()。 A、不定; B、增大; C、减小; D、不变 7.设备内表压为350kPa,其绝压为()kPa(当地大气压为100 kPa)。 A、450; B、250; C、460; D、-450 8.流体的粘度越大,流体内部质点之间的内摩擦力()。 A、不变; B、越大; C、越小; D、不定 9.对不可压缩流体,当体积流量一定时,流速与管径的2次方成反比;若体积流量不变,管径减小一倍,管内流体流速为原来的( )倍。 A、4; B、5; C、2; D、1.75 10.流体的流量不变,将管径增加一倍,则雷诺数为原来的( ) 倍。 A、1/2; B、2; C、4; D、1/4 11.流体的流量不变,仅将管长增加一倍,则流动阻力为原来的( ) 倍。 A、1/2; B、2; C、4; D、1/4 12.当雷诺数Re<2000时,流体的流动型态为( ) ;当雷诺数Re>4000时,流体的流动型态为( )。 A、层流; B、定态流动; C、湍流; D、非定态流动 16.流体在圆形管内作层流流动时,管中心处的流体质点流速为管内平均流速的( ) 倍。 A、1/2; B、1; C、2; D、2.5 17.若保持流量、密度和粘度不变,将管长增加一倍,雷诺数为原来的( )倍。 A、1/2; B、1; C、2; D、2.5 18.层流流动时,保持流量不变,将管径减小一倍(管内仍为层流),阻力为原来的( )倍;当摩擦系数为常数时,保持流量不变,管径减小一倍,相对粗糙度不变,阻力为原来的( )倍。 A、2; B、4; C、8; D、16 40.用U 型压差计测量压强差时,压强差的大小() A、与读数有关,与密度差有关,与U 形管粗细无关; B、与读数无关,与密度差无关,与U 形管粗细有关;

流体力学与流体机械复习资料全

《流体力学与流体机械》复习考试资料 仅供部学习交流使用安全131班编制 绪论: 1.流体力学是以研究流体(包括液体和气体)为研究对象,研究其平衡和运动基本规律的科学。主要研究流体在平衡和运动时的压力分布、速度分布、与固体之间的相互作用以及流动过程中的能量损失。 2.流体力学的主要研究方法:实验研究、理论分析、数值计算。第一章流体及其物理性质 1.流体:在任何微小剪切力下能产生连续变形的物质即为流体。 主要特征:流动性 2.连续介质假说:质点(而不是分子)是组成宏观流体的最小基元,质点与质点之间没有间隙其物理性质各向同性,且在空间和时间上具有连续性。 3.流体的粘性 (1)流体产生粘性的原因:流体的聚力;动量交换;流体分子和固体壁面之间的附着力。 (2)流层之间的摩擦力:带动力和阻力(一对大小相等、方向相反的作用力) (3)流体摩擦切应力:τ=μ·(du/dy) (N/m2) τ=F/A=μ·U/h (N/m2) (4)相对运动的结果使流体产生剪切变形。流体的粘性就是阻止发生剪切变形的一种特性,而摩擦力则是粘性的动力表现。

(5)粘性的度量:动力粘度μ=τ/(du/dy) (pa·s) 运动粘度ν=μ/ρ (m2/s) 温度升高时,流体的粘性降低,气体的粘性增加。 4.课后习题答案 第二章流体静力学 1.作用在流体上的力

(1)表面力:作用在被研究流体的表面上,其大小与被作用的面积成正比,如法向压力和切向摩阻力。(平衡流体不存在表面切向力,只有表面法向力) (2)质量力:作用在被研究流体的每个质点上,其大小与被研究流体的质量成正比,如重力和惯性力。质量力常用单位质量力表示,所谓单位质量力,是指作用在单位质量流体上的质量力。 2.流体静压力及其特性 流体处于平衡状态时,表面力只有压力,称其为静压力,单位面积上作用的静压力称为静压强。 静压力有两个重要特性: ①静压力垂直于作用面,并沿着作用面法线方向; ②平衡流体中任何一点的静压力大小与其作用面的方位无关,其值均相等。 3.流体平衡微分方程式(压力差公式) dp=ρ(Xdx+Ydy+Zdz) 4.等压面:平衡流体中压力相等的点所组成的平面或曲面称为等压面。等压面的两个性质:(1)平衡流体中,任一点的等压面恒与质量力正交;(2)当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 5.重力作用下流体静压力的分布规律 (1)静压强分布规律

《流体力学》Ⅰ主要公式及方程式讲解

《流体力学与流体机械》(上)主要公式及方程式 1.流体的体积压缩系数计算式:β1dρ p=-1dV Vdp=ρdp 流体的体积弹性系数计算式:E=-Vdpdp dV=ρdρ 流体的体积膨胀系数计算式:βdV T=1 VdT=-1dρ ρdT 2.等压条件下气体密度与温度的关系式:ρ0 t=ρ 1+βt,其中β=1 273。 3T=±μAdu dy 或τ=Tdu A=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631 E)?10-4 f1?p? x-ρ?x=0?fr-1?p=0? ?ρ?r?? 4.欧拉平衡微分方程式: f? y-1?p ρ?y=0??和fθ-1?p ρ=0? f1?p?r?θ ρ?z=0?? ??f1?p? z-z-ρ?z=0?? 欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0 frdr+fθrdθ+fzdz=0 6p γ+z=C 或 p1 γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2 相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz2 7p=p0+γh,其中p0为自由液面上的压力。

8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式: ax+gz=C;自由液面方程式:ax+gz=0。注意:p0为自由液面上的压力。 1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r2 2g-z);等压面方程式:ω2r2 2-gz=C;自由液面方程式:ω2r2 2-gz=0。注意:p0为自由液面上的压力。 10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)A Ixc ycA或yD-yc=Ixc ycA。当自由液面上的压力为大气压时:yD=yc+ 矩形截面的惯性矩Ixc计算式:Ixc= 圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 64 11.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。 12 ?ux?ux?ux?ux?+ux+uy+uz?τ?x?y?z???uy?uy?uy?uy?+ux+uy+uz直角坐标系:ay=? ?τ?x?y?z??u?uz?uz?uz?az=z+ux+uy+uz?τ?x?y?z??ax= ?ur?ur?ur?uruθ2ar=+ur+uθ+uz-?τ?rr?θ?zr ?u?u?u?uuu圆柱坐标系:aθ=θ+urθ+uθθ+uzθ+rθ ?τ?rr?θ?zr ?u?uz?uz?uzaz=z+ur+uθ+uz?τ?rr?θ?z????????? 流体质点的压力、密度等流动参量对时间的变化率计算式: dp?p?p?p?p=+ux+uy+uzdτ?τ?x?y?z dρ?ρ?ρ?ρ?ρ=+ux+uy+uz?τ?x?y?z dτ 13 drrdθdzdxdydz==== 及uxuyuzuruθuz2 ?ρ?(ρux)?(ρuy)?(ρuz)14.三维连续性方程式的一般式:+++=0 ?τ?x?y?z ?ρρur?(ρur)?(ρuθ)?(ρuz)++++=0 ?τr?rr?θ?z ?ux?uy?uz15.不可压缩流体的三维连续性方程式:++=0 ?x?y?z ur?ur?uθ?uz+++=0?rr?θ?z r 16M=ρ11A1=ρ22A2 对于不可压缩流体: Q=1A1=2A2

相关文档
最新文档