排列组合问题拟编_左

合集下载

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学内容1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合的各种方法

排列组合的各种方法

排列组合是组合数学中的一个重要概念,用于描述从一组元素中选择若干个元素进行组合的方法。

在实际生活和数学问题中,排列组合的应用广泛,例如在统计学、概率论、计算机算法等领域都有着重要的作用。

本文将介绍排列组合的几种常见方法。

首先,我们来介绍排列的概念。

排列是指从一组元素中按照一定顺序选择若干个元素进行组合的方法。

在排列中,每个元素只能使用一次,并且顺序不同被视为不同的排列。

例如,从元素集合{A,B,C}中选择2个元素进行排列,可能有6种不同的排列方式:AB,AC,BA,BC,CA,CB。

排列的计算公式为P(n, k) = n! / (n-k)!,其中n为元素总数,k为需要选择的元素数。

接下来,我们介绍组合的概念。

组合是指从一组元素中选择若干个元素进行组合的方法,与排列不同的是,组合中元素的顺序不重要。

例如,从元素集合{A,B,C}中选择2个元素进行组合,可能有3种不同的组合方式:AB,AC,BC。

组合的计算公式为C(n, k) = n! / (k! * (n-k)!),其中n为元素总数,k为需要选择的元素数。

在实际问题中,排列组合可以应用于很多方面。

以组合为例,我们可以使用组合的思想来解决选课问题。

例如,一个学校有10门选修课,每个学生需要选择3门选修课,那么可以计算出有多少种不同的选课组合方式,即C(10, 3) = 120种。

在统计学中,排列组合也有着重要的应用。

例如,在一场抽奖活动中,有100个人参与抽奖,每人仅能中奖一次。

假设有10个奖品需要分配给这100个人,可以计算出有多少种不同的中奖组合方式,即P(100, 10) = 3,628,800种。

在计算机算法中,排列组合也经常被用到。

例如,在编写程序时需要对一组数据进行全排列操作,可以使用递归算法实现。

另外,在搜索算法中,也可以使用排列组合的思想进行状态空间的搜索。

综上所述,排列组合是组合数学中的一个重要概念,应用广泛且在实际问题中有着重要的作用。

(推荐)排列组合问题之插板法

(推荐)排列组合问题之插板法

排列组合问题之插板法:插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢?例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?【解析】:题目中球的分法共三类:第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。

其分法种数为C37=35。

第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。

其分法种数2*C27=42。

第三类:有1个班分到4个球,其余的6个班每班分到1个球。

其分法种数C17=7。

所以,10个球分给7个班,每班至少一个球的分法种数为84:。

由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。

将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。

由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。

由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以下3个条件:①所要分的元素必须完全相同;②所要分的元素必须分完,决不允许有剩余;③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。

下面再给各位看一道例题:例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。

2015高考复习--模考试题题型归类---排列组合

2015高考复习--模考试题题型归类---排列组合
【解法二】10块相同的巧克力中,产生9个空,每个空是否插人隔板,都有2种可能,故共有 种插法,且每一种插法都对应着一个吃法,故共有 =512种不同的吃法.
【作业】
求方程X+Y+Z=10的正整数解的个数。
提示:将10个1排成一排,1与1之间形成9个空隙,将两个隔板插入这些空隙中(每空至多插一块隔板),规定由隔板分成的左、中、右三部分的数字之和分别为x、y、z之值。则隔法与解的个数之间建立了一一对立关系,故解的个数为 =36个。
我们知道,从9个“空”任取5个插人5块“隔板”,共有 =126种方法.又每一种插法都对应着一种名额分配方案,故共有126种不同的分配方案.
2.元素减少型增加(至少分配的元素超过一个)
例2.某校25个三好学生名额拟分配到高三年级6个班,每班至少3个名额,试问共有多少种不同的分配方案?
【分析】
使用“隔板”法:每个单位分配的元素至少是1个,而此题为3个。为此,分两步解决我们先给每班分配2个名额(一种方法),这样共用掉12个名额。第二步:剩余l3个三好学生名额分配到高三年级6个班,每班至少1个名额(转化为第一种方法),可知共有 ==792种不同的分配方案.
二、相邻问题---捆绑法,不邻问题---插空法
对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
例1.一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?
【分析】
首先,从题中之3个节目固定,固有四个空。所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有: =4×2=8种方法。二、两个节目不相邻的时候:此时将两个节目直接插空有: =12种方法。共有12+8=20种。

高考数学高三模拟试卷试题压轴押题排列组合典型题大全

高考数学高三模拟试卷试题压轴押题排列组合典型题大全

高考数学高三模拟试卷试题压轴押题排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种 (D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

第一轮复习自己整理绝对经典排列组合第一轮

第一轮复习自己整理绝对经典排列组合第一轮

排列组合常见题型总结(2015版)排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.【知识要点】一、分类加法原理与分布乘法计数原理1.加法原理:完成一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。

2.乘法原理:完成一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。

二、排列与组合1.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)=)!(!m n n ,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,n n A =n! 。

2.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。

从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m 个元素的组合数,用m n C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--= 规定:1C 0=n 组合数的基本性质:(1)m n n m n C C -=; (2)11--+=n n m n m n C C C ;一、 可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数。

排列组合问题的基本解法

排列组合问题的基本解法1. 排列问题排列问题指的是从n个元素中选取m个元素,按照一定的顺序进行排列。

这里的元素可以是数字、字母、符号等任何类型的数据。

例如,从1, 2, 3, 4中选取3个数字进行排列,共有4种排列方式:(1, 2, 3)、(1, 2, 4)、(1, 3, 4)、(2, 3, 4)。

排列问题的基本解法是使用乘法原理,即将每个位置的可能性相乘。

例如,从n个元素中选取m个元素进行排列,首先在第一个位置有n种选择,第二个位置只有n-1种选择(因为第一个位置已经选了一个),以此类推,直到最后一个位置只有n-m+1种选择。

因此,总的排列数为:n*(n-1)*(n-2)*...*(n-m+1)=n!/(n-m)!。

2. 组合问题组合问题指的是从n个元素中选取m个元素,不考虑它们的排列顺序。

例如,从1, 2, 3, 4中选取3个数字进行组合,只有4种组合方式:(1, 2, 3)、(1, 2, 4)、(1, 3, 4)、(2, 3, 4)。

组合问题的基本解法是使用组合公式,即C(n, m)=n!/m!(n-m)!。

这个公式的含义是,在排列问题中,每个组合有m!种排列方式,因此要除以m!,而同一组合中的元素可以以任意顺序出现,因此要除以(n-m)!。

3. 组合与排列混合问题有些问题既涉及到组合,又涉及到排列,例如从n个元素中选取m 个元素进行排列,或者从n个元素中选取m个元素,再选取p个元素进行排列。

这样的问题可以分解成两个步骤:先从n个元素中选取m个元素,再对这m个元素进行排列。

这种问题的基本解法是先用组合公式求出C(n, m),然后用排列公式求出A(m, p)。

两者相乘就得到了最终的结果,即排列与组合混合问题的解法公式为:C(n, m)*A(m, p)=n!/(m!(n-m)!)*m!/(m-p)!=n!/((n-m)!(n-p)!)。

排列组合n个球放入m个盒子m问题总结

排列组合n个球放⼊m个盒⼦m问题总结求,盒⼦都可以分成是否不能区分,和能区分,还能分成是否能有空箱⼦,所以⼀共是8种情况,我们现在来⼀⼀讨论。

1.球同,盒不同,⽆空箱C(n-1,m-1), n>=m0, n<m使⽤插板法:n个球中间有n-1个间隙,现在要分成m个盒⼦,⽽且不能有空箱⼦,所以只要在n-1个间隙选出m-1个间隙即可2.球同,盒不同,允许空箱C(n+m-1,m-1)我们在第1类情况下继续讨论,我们可以先假设m个盒⼦⾥都放好了1个球,所以说⽩了就是,现在有m+n个相同的球,要放⼊m个不同的箱⼦,没有空箱。

也就是第1种情况3.球不同,盒相同,⽆空箱第⼆类斯特林数dp[n][m]dp[n][m]=m*dp[n-1][m]+dp[n-1][m-1],1<=m<ndp[k][k]=1,k>=0dp[k][0]=0,k>=10,n<m这种情况就是第⼆类斯特林数,我们来理解⼀下这个转移⽅程。

对于第n个球,如果前⾯的n-1个球已经放在了m个箱⼦⾥,那么现在第n个球放在哪个箱⼦都是可以的,所以m*dp[n-1][m];如果前n-1个球已经放在了m-1个箱⼦⾥,那么现在第n个球必须要新开⼀个箱⼦来存放,所以dp[n-1][m-1]其他的都没法转移过来4.球不同,盒相同,允许空箱sigma dp[n][i],0<=i<=m,dp[n][m]为情况3的第⼆类斯特林数这种情况就是在第3种情况的前提下,去枚举使⽤的箱⼦的个数5.球不同,盒不同,⽆空箱dp[n][m]*fact[m],dp[n][m]为情况3的第⼆类斯特林数,fact[m]为m的阶乘因为球是不同的,所以dp[n][m]得到的盒⼦相同的情况,只要再给盒⼦定义顺序,就等于现在的答案了6.球不同,盒不同,允许空箱power(m,n) 表⽰m的n次⽅每个球都有m种选择,所以就等于m^n7.球同,盒同,允许空箱dp[n][m]=dp[n][m-1]+dp[n-m][m], n>=mdp[n][m]=dp[n][m-1], n<m边界dp[k][1]=1,dp[1][k]=1,dp[0][k]=1现在有n个球,和m个箱⼦,我可以选择在所有箱⼦⾥⾯都放上1个球,也可以不选择这个操作。

高考数学总复习考点知识专题讲解8 排列与组合

高考数学总复习考点知识专题讲解专题8 排列与组合知识点一排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.知识点二排列相同的条件两个排列相同的充要条件:(1)两个排列的元素完全相同.(2)元素的排列顺序也相同.【例1】判断下列问题是否为排列问题:(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互打电话.知识点三 排列数的定义从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 知识点四 排列数公式及全排列 1.排列数公式的两种形式(1)A m n =n (n -1)(n -2)…(n -m +1),其中m ,n ∈N *,并且m ≤n .(2)A m n =n !(n -m )!. 2.全排列:把n 个不同的元素全部取出的一个排列,叫做n 个元素的一个全排列,全排列数为A n n =n !(叫做n 的阶乘).规定:0!=1. 【例2】(2023•泰州期末)678910⨯⨯⨯⨯可以表示为()A .410AB .510AC .410CD .510C【例3】(2023•莱州市开学)已知18934x x A A -=,则x 等于() A .6B .13C .6或13D .12【例4】(2023•浑南区期末)12320222232022232022M A A A A =++++,20232023N A =,则M 与N 的大小关系是()A .M N =B .M N >C .M N <D .M N …知识点五“相邻”与“不相邻”问题相邻问题捆绑法,不相邻问题插空法.【例5】3名男生,4名女生,这7个人站成一排在下列情况下,各有多少种不同的站法? (1)男、女各站在一起;(2)男生必须排在一起;(3)男生不能排在一起;(4)男生互不相邻,且女生也互不相邻.【例6】(2023•香坊区期末)加工某种产品需要5道工序,分别为A,B,C,D,E,其中工序A,B必须相邻,工序C,D不能相邻,那么有()种加工方法.A.24B.32C.48D.64【例7】(2023•沈阳模拟)甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有() A.24种B.48种C.72种D.96种知识点六定序问题用除法对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.【例8】7人站成一排.(1)甲必须在乙的前面(不一定相邻),则有多少种不同的排列方法?(2)甲、乙、丙三人自左向右的顺序不变(不一定相邻),则有多少不同的排列方法?知识点七特殊元素的“在”与“不在”问题分析法对于“在”与“不在”问题,可采用“特殊元素优先考虑,特殊位置优先安排”的原则解决.【例9】(2023•卧龙区月考)甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端、丙和丁相邻的不同排列方式有() A .24种B .36种C .48种D .144种【例10】(2023•宜宾月考)“四书”“五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为() A .622622A A A B .6262A A C .622672A A A D .622662A A A【例11】(2023•武强县期中)用数字0,1,2,3,4,5组成没有重复数字的四位数. (1)可组成多少个不同的四位数? (2)可组成多少个不同的偶数?【例12】从包括甲、乙两名同学在内的7名同学中选出5名同学排成一列,求解下列问题.(1)甲不在首位的排法有多少种?(2)甲既不在首位也不在末位的排法有多少种? (3)甲与乙既不在首位也不在末位的排法有多少种? (4)甲不在首位,同时乙不在末位的排法有多少种?同步训练(一)1.(2023•宿迁期末)下列各式中,不等于n !的是()A .n n AB .1n n A -C .1n n nA +D .11n n nA --2.(2023•宿迁月考)(1998)(1999)(2021)(2022)(n n n n n N ----∈,2022)n >可表示为()A .241998n A -B .251998n A -C .242022n A -D .252022n A -3.(2023•河南模拟)从3,5,7,11这四个质数中,每次取出两个不同的数分别为a ,b ,共可得到lga lgb -的不同值的个数是()A .6B .8C .12D .164.(2023•揭阳期末)已知甲、乙两个家庭排成一列测核酸,甲家庭是一对夫妻带1个小孩,乙家庭是一对夫妻带2个小孩.现要求2位父亲位于队伍的两端,3个小孩要排在一起,则不同的排队方式的种数为()A.288B.144C.72D.365.(2023•海淀区校级期末)某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.126.(20123•会宁县期中)用0,1,2,3,4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.7.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?知识点八组合及组合数的定义1.组合一般地,从n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号C m n表示.知识点九排列与组合的关系【例13】(1)某铁路线上有4个车站,则这条铁路线上共需准备多少种车票?(2)把5本不同的书分给5个学生,每人一本;(3)从7本不同的书中取出5本给某个学生.【例14】一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?知识点十组合数公式规定:C 0n =1.知识点十一 组合数的性质 性质1:C mn =C n -mn .性质2:C m n +1=C m n +C m -1n .【例15】(2023•朝阳区期末)已知2188m m C C -=,则m 等于() A .1B .3C .1或3D .1或4【例16】(2023•吉水县期末)计算33334562015C C C C ++++的值为()A .42015CB .32015C C .420161C -D .520151C -【例17】(2023•崂山区期末)对于伯努利数()n B n N ∈,有定义:001,(2)nk n n k k B B C B n ===∑….则()A .216B =B .4130B =C .6142B =D .230n B +=【例18】(2023•沙坪坝区模拟)某项活动安排了4个节目,每位观众都有6张相同的票,活动结束后将票全部投给喜欢的节目,一位观众最喜欢节目A,准备给该节目至少投3张,剩下的票则随机投给其余的节目,但必须要A节目的得票数是最多的,则4个节目获得该观众的票数情况有()种A.150B.72C.20D.17【例19】(2023•东湖区期末)某校举行科技文化艺术节活动,学生会准备安排6名同学到两个不同社团开展活动,要求每个社团至少安排两人,其中A,B两人不能分在同一个社团,则不同的安排方案数是()A.56B.28C.24D.12知识点十二分组、分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等,均匀分成n组,最后必须除以n!;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.1 平均分组【例20】(1)6本不同的书,分给甲、乙、丙三人,每人两本,有多少种方法?(2)6本不同的书,分为三份,每份两本,有多少种方法?2 不平均分组【例21】(1)6本不同的书,分为三份,一份一本,一份两本,一份三本,有多少种方法?(2)6本不同的书,分给甲、乙、丙三人,一人一本,一人两本,一人三本,有多少种不同的方法?3 分配问题【例22】6本不同的书,分给甲、乙、丙三人,每人至少一本,有多少种不同的方法?【例23】(2022秋•浑南区期末)将6本不同的书分给甲、乙、丙、丁4个人,每人至少一本的不同分法共有种.(用数字作答)【例24】(2022秋•浑南区期末)某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.720【例25】(2023•云南模拟)中国空间站()ChinaSpaceStation的主体结构包括天和核心舱、问天实验舱和梦天实验舱.2022年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕.2023年,中国空间站将正式进入运营阶段.假设中国空间站要安排甲、乙等5名航天员进舱开展实验,其中“天和核心舱”安排2人,“问天实验舱”安排2人,“梦天实验舱”安排1人.若甲、乙两人不能同时在一个舱内做实验,则不同的安排方案共有()A.9种B.24种C.26种D.30种知识点十三相同元素分配问题之隔板法隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”,每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法,隔板法专门解决相同元素的分配问题.将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法,可描述为(n-1)个空中插入(m -1)块板.【例26】6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.【例27】(2023•浦东新区期末)10个相同的小球放到6个不同的盒子里,每个盒子里至少放一个小球,则不同的放法有种.【例28】(2023•海淀区期末)没有一个冬天不可逾越,没有一个春天不会来临.某街道疫情防控小组选派7名工作人员到A ,B ,C 三个小区进行调研活动,每个小区至少去1人,恰有两个小区所派人数相同,则不同的安排方式共有() A .1176B .2352C .1722D .1302【例29】(2023•多选•玄武区期末)甲、乙、丙、丁、戊共5位志愿者被安排到A ,B ,C ,D 四所山区学校参加支教活动,要求每所学校至少安排一位志愿者,且每位志愿者只能到一所学校支教,则下列结论正确的是() A .不同的安排方法共有240种 B .甲志愿者被安排到A 学校的概率是14C .若A 学校安排两名志愿者,则不同的安排方法共有120种D .在甲志愿者被安排到A 学校支教的前提下,A 学校有两名志愿者的概率是25【例30】(2023•多选•营口期末)某校的高一和高二年级各10个班级,从中选出五个班级参加活动,下列结论正确的是()A .高二六班一定参加的选法有420C 种B .高一年级恰有2个班级的选法有231010C C 种C .高一年级最多有2个班级的选法为52012C 种D .高一年级最多有2个班级的选法为231451*********C C C C C ++种【例31】(2023•福建模拟)近年来,“剧本杀”门店遍地开花.放假伊始,7名同学相约前往某“剧本杀”门店体验沉浸式角色扮演型剧本游戏,目前店中仅有可供4人组局的剧本,其中A ,B 角色各1人,C 角色2人.已知这7名同学中有4名男生,3名女生,现决定让店主从他们7人中选出4人参加游戏,其余3人观看,要求选出的4人中至少有1名女生,并且A ,B 角色不可同时为女生.则店主共有348种选择方式.【例32】(2023•和平区校级模拟)我们常常运用对同一个量算两次的方法来证明组合恒等式,如:从装有编号为1,2,3,⋯,1n +的1n +个球的口袋中取出m 个球(0m n <…,m ,)n N ∈,共有1m n C +种取法.在1m n C +种取法中,不取1号球有m n C 种取法;取1号球有1m n C -种取法.所以11m m m n n n C C C -++=.试运用此方法,写出如下等式的结果:323232323142241n n n n n C C C C C C C C ----+⋅+⋅++⋅+=.同步训练(二)8.(多选)下列问题是组合问题的有()A .10个朋友聚会,每两人握手一次,一共握手多少次B .平面上有2 021个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段C .集合{a 1,a 2,a 3,…,a n }中含有三个元素的子集有多少个D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法9.(2023•宣城期中)关于排列组合数,下列结论错误的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .11m m mn n n A mA A -++=10.(2023•多选•朝阳区期末)关于排列组合数,下列结论正确的是() A .m n m n n C C -=B .11m m m n n n C C C -+=+C .11m m n n A mA --=D .!()!mn n A n m =-11.课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法? (1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.12.将4个编号为1,2,3,4的小球放入4个编号为1,2,3,4的盒子中.(1)有多少种放法?(2)每盒至多1个球,有多少种放法?(3)恰好有1个空盒,有多少种放法?(4)每个盒内放1个球,并且恰好有1个球的编号与盒子的编号相同,有多少种放法?(5)把4个不同的小球换成4个相同的小球,恰有一个空盒,有多少种放法?13.(多选)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数可能为()A.1 B.2 C.3 D.414.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有的4件次品,则这样的不同测试方法数是多少?15.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?16.空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为()A.205 B.110 C.204 D.20017.4名优秀学生全部保送到3所学校去,每所学校至少去1名,则不同的保送方案有______种.18.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.(用数字作答)19.(2023•长沙期末)6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有() A .540种B .360种C .180种D .120种20.(2023•多选•罗湖区期末)在10件产品中,有7件合格品,3件不合格品,从这10件产品中任意抽出3件,则下列结论正确的有()A .抽出的3件产品中恰好有1件是不合格品的抽法有1237C C 种 B .抽出的3件产品中至少有1件是不合格品的抽法有1239C C 种 C .抽出的3件产品中至少有1件是不合格品的抽法有1221337373C C C C C ++种D .抽出的3件产品中至少有1件是不合格品的抽法有33107C C -种。

解排列组合题的两种方法

解排列组合题的两种方法一、基本计数原理与排列组合公式法基本计数原理是解排列组合题最基本的方法之一,通过分步骤求解问题中的每个小步骤,然后将结果相乘来得到最终的答案。

排列组合公式法是另一种常见的解题方法,通过应用排列组合计算公式来解决问题。

在排列组合问题中,我们经常会遇到排列数、组合数、多重集合的排列与组合等问题。

下面通过几个具体的例子来说明这两种方法的应用。

例1:有5个不同的球,将其放入3个不同的盒子中,要求每个盒子至少放一个球。

问有多少种放法?基本计数原理方法:1.第一个球有3种放置方法,放入三个盒子中的任一个;2.第二个球有3种放置方法,放入三个盒子中的任一个;3.第三个球有3种放置方法,放入三个盒子中的任一个;4.第四个球有3种放置方法,放入三个盒子中的任一个;5.第五个球有3种放置方法,放入三个盒子中的任一个。

根据基本计数原理,将每个步骤的种类数相乘,即可得到最终的答案:3×3×3×3×3=3^5=243排列组合公式法:将问题转化为将5个球放进3个盒子中,每个盒子可以为空的情况下根据排列组合公式,可以得到答案:C(5+3-1,3-1)=C(7,2)=7!/(2!×5!)=7×6/(2×1)=21例2:由4个字母A、B、C、D组成2位或3位的字母排列。

基本计数原理方法:有两种情况:1.2位字母排列:第一位字母有4种选择,第二位字母有3种选择,共有4×3=12种排列;2.3位字母排列:第一位字母有4种选择,第二位字母有3种选择,第三位字母有2种选择,共有4×3×2=24种排列。

根据基本计数原理,将每个情况的种类数相加,即可得到最终的答案:12+24=36种排列。

排列组合公式法:将问题转化为选择2位字母排列和选择3位字母排列两种情况根据排列组合公式,可以得到答案:P(4,2)+P(4,3)=4!/2!+4!/1!=12+24=36种排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合问题拟编
容斥原理:
1. 将八张卡片AABBCDEF排成一排,相同字母的卡片不许相邻的排法有多少种?

映射与配对:
2. 有m个白球排成一排,要从中取出n个染成黑色,若每两个黑球均不能相邻,问有多少
种不同的涂法?

3. 把正整数3n写成三个正整数之和,有多少种写法?
钱币问题:
4. 一元4张,一角3张,五分6张,一分4张,问可以组成多少种不同币值〔0元不计〕?
解法一:从最后币值圆角分考虑:(这种解法较好,可以较简捷的对更多不同面值问题作出
解答)

解法二:从每种面值考虑:
逆向问题:有足够多的五分、二分、一分纸币要凑齐一元,问有多少种方法?

寻求递推关系:
5. (欧拉全错位排列问题)将自然数1到n从左至右排成一排,求所有i均不在第i位的排

列数na.

解法一:先考虑递归关系.n充分大时,分为两类:其一,n在第ni位且i在第n位;其
二,n在第i位而i既不在第n位也不在第i位.第一类先从1到1n中挑出某个i放在第n位
且将i在第n位,再将剩下的2n个数全错位排列,其排列数为211nnaC.第二先将1到
1n

全错位排列,再从中挑出某个与n互易位置,其排列数为111nnaC.故而有递归关系:

211nnn
aana
,2n.显然,初始值01a,12a.递归关系可得


nnnnnnaaananaa1211122211



,继而




nkknkknnnkkannana02
1
1

!1!1!1!1!1!

,故而



nkknkna0
!

1

!
,,4,3n.

经计算,2,1n也符合该通项公式,故nkknkna0!1!.
解法二:还有另外一种方法处理递归式,即:!2!21nnaanannn,




!2!11!!2!1!2!2!2!1!2112121nanannannannnannnanan
a

nnnnnnnn


!1!1!2311122naannnn





,…也可得到答案.

解法三:用容斥原理,避开求通项:全排列-有一个在原来位置+有两个在原来位置-….即

012!1!2!10!nn

nnnn
CnCnCnC

6. (环状染色问题)把一个圆分为(3)n个扇形,用(3)k种颜料给这些扇形染色,每个
扇形用一种颜色,要求相邻的区域用不同的颜色,问不同的染色方案共有多少种?
解法一:111nnnkkaa.

解法二:1221nnnakaka.
变式题:用4种不同颜色给五角星五个顶点染色,每个顶点染一色,有的颜色也可以不
用,要求每条线段上的两个顶点染不同的颜色,则不同的染色方案有_________种.
染色问题:
7. 用三种颜色给九宫格染色,要求相邻不同色且159同色,则不同的染色方案共有____种.

几何中的问题:
8. 在正方体的8的顶点,12条棱的中点,6个面的中点及正方体的中心共27个点中,共线
的三点组的个数是多少?
可重组合问题:
9. 求从n个互异元素中允许重复的取出k个的不同组合数?

变式题:方程12(,)nxxxknkN自然数解一共有__________种.
传球问题:
10. 五个人站成一圈传球,每人只能将球传给左右相邻的一人,现在球从A开始传出(算第
一次),10次后,球回到A手中的不同传球方法有多少种?

变式题:一只青蛙从一个正六边形ABCDEF的顶点A开始每一次只能跳到与它位置相邻
的顶点,倘若它在20次之内跳到D点则在D点停下来,若不然,跳了20次也停下来,问它
从开始到停下来跳的路径共有多少种可能?

相关文档
最新文档