电磁场与电磁波课后习题及答案--第四章习题解答

合集下载

工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波丁君版答案第四章习题答案第四章习题4-1解:选柱坐标系,在所求无源区内电位函数满足:02=?φφ只和r 相关0=???φ0=??z φ方程化为 0)(1=????rr r r φ21ln C r C +=φ为常数21,C C 由 006.0==φ时r 501.0-==φ时r得 88.27588.9721=-=C C88.275ln 88.97+-=r φr a rE ?188.97=-?=φ4—2:解:图一依据边界条件:?????====021R R R R U φφ0可得:???????--=-=00UR R R B U R R R R A 1211221 ∴()120212021R R U R R R R U R R ---=φ(2) ()R R a RR R U R R a R E ?1?212021?-=??-=-?=φφ (1) 如图一,依据题意可知:电位函数φ满足拉普拉斯方程。

接受球坐标系:2=?φ0=??θφ0=???φR 相关只于φ,方程化为: 0)(122=????R R R R φφ积分得:B RA +?=1φ(3) ()R R R aR R R U R E D ?12102001-?===εε内表 S S d D s Sρ=??内表S S D s ρ=内表∴)(12102R R R U R D s -==ερ内表4—3:解:选择直角坐标如图,由恒定电场的泊松方程可得:xy设两板间距离为d,代入边界条件?????====000U dz z φφ???????+=+==?ερερ22002021d d U d d U C C ∴)2()2(2002ερερφερερφd d U z E zdd U z +-=-?=++-=4—4:解:选择柱坐标系,依据恒定电磁场的拉普拉斯方程,(1) 02=?m φ,m φ只在?方向上有变化,所以:B A r m m+==???φ?φ:,01222积分得由 0=?时:0,0==B m 得φ∴?φA m = l m m a dld Hφφ-=-?=l d H d m?-=φ??-=?-=ππφ2020I l d H d m0,0,2=??=??-=?xy φφερφ方程可化为:,22ερφ-=??z2122:C z C z ++-=ερφ积分得B A I m m+=-==?φφπ?代入,2π2?=-A I π2I A -= ?πφ2Im -= (2) ??π?φφφa rI a d d r a dl d H m l m m21==-=-?=可见,利用拉普拉斯方程与安培环路定理求出来的结果一样。

高中物理第4章电磁振荡与电磁波2电磁场与电磁波课后习题新人教版选择性

高中物理第4章电磁振荡与电磁波2电磁场与电磁波课后习题新人教版选择性

2电磁场与电磁波课后·训练提升基础巩固一、选择题(第1~3题为单选题,第4~6题为多选题)1.电磁波由真空进入介质中时,其波速变为原来的一半,则波长变为原来的()A.一半B.两倍C.不变D.无法判断,频率不变。

由v=λf知v减半,则λ减半。

2.在真空中传播的电磁波,当它的频率增大时,它的传播速度及其波长的变化情况是()A.速度不变,波长减小B.速度不变,波长增大C.速度减小,波长变大D.速度增大,波长不变3×108m/s,与频率无关;由c=λf,波速不变,频率增大,波长减小,故选项A正确,B、C、D错误。

3.下列关于电磁波的说法正确的是()A.电磁波必须依赖介质传播B.电磁波可以发生衍射现象C.电磁波不会发生偏振现象D.电磁波无法携带信息传播,可以发生衍射现象,故选项B正确。

电磁波是横波,能发生偏振现象,故选项C错误。

电磁波能携带信息传播,且传播不依赖介质,在真空中也可以传播,故选项A、D错误。

4.下列说法正确的是()A.电荷的周围一定有电场,也一定有磁场B.均匀变化的电场在其周围空间一定产生磁场C.任何变化的电场在其周围空间一定产生变化的磁场D.正弦交变的电场在其周围空间一定产生同频率交变的磁场,不产生磁场,运动的电荷周围的电场是变化的,所以产生磁场,选项A错误。

由麦克斯韦理论判断选项B、D正确,C错误。

5.按照麦克斯韦的电磁场理论,以下说法正确的是()A.恒定的电场周围产生恒定的磁场,恒定的磁场周围产生恒定的电场B.变化的电场周围产生磁场,变化的磁场周围产生电场C.均匀变化的电场周围产生均匀变化的磁场,均匀变化的磁场周围产生均匀变化的电场D.均匀变化的电场周围产生稳定的磁场,均匀变化的磁场周围产生稳定的电场:变化的电场产生磁场,变化的磁场产生电场。

对此理论全面正确理解为:不变化的电场周围不产生磁场;变化的电场可以产生变化的磁场,也可产生不变化的磁场;均匀变化的电场产生稳定的磁场;周期性变化的电场产生同频率的周期性变化的磁场。

电磁场与电磁波 课后答案(冯恩信 著)

电磁场与电磁波 课后答案(冯恩信 著)

第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。

解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。

第四章第2节电磁场与电磁波练习(word版含答案)

第四章第2节电磁场与电磁波练习(word版含答案)

2021-2022学年人教版(2019)选择性必修第二册第四章第2节电磁场与电磁波过关演练一、单选题1.下列关于电磁波的说法,正确的是()A.只要有电场和磁场就能产生电磁波B.电场随时间变化时一定能产生电磁波C.要想产生持续的电磁波,变化的电场(或磁场)产生的磁场(或电场)必须是均匀变化的D.振荡电流能在空间中产生电磁波2.对于电磁波的发现过程,下列说法正确的是()A.麦克斯韦通过实验证实了电磁波的存在B.麦克斯韦预言了电磁波的存在C.赫兹根据自然规律的统一性,提出变化的电场产生磁场D.电磁波在任何介质中的传播速度均为8310m/s3.关于电磁波的形成机理,一些认识,正确的是()A.电磁波由赫兹预言提出,并指出光也属于电磁波B.磁场能产生电场,电场也能产生磁场C.变化的磁场能产生电场,所产生的这个电场还能继续产生磁场D.变化的电场能产生磁场,所产生的这个磁场不一定还能继续产生电场4.如图所示是我国500m口径球面射电望远镜(F AST),它可以接收来自宇宙深处的电磁波。

关于电磁波,下列说法正确的是()A.赫兹预言了电磁波的存在B.麦克斯韦通过实验捕捉到电磁波C.频率越高的电磁波,波长越长D.电磁波可以传递信息和能量5.以下有关电磁场理论,正确的是()A.稳定的电场周围产生稳定的磁场B.有磁场就有电场C.变化的电场周围产生变化的电场D.周期性变化的磁场产生周期性变化的电场6.关于电磁场和电磁波,下列叙述中不正确的是()A.均匀变化电场在它的周围产生均匀变化的磁场B.振荡电场在它的周围产生同频振荡的磁场C.电磁波从一种介质进入另一种介质,频率不变,传播速度与波长发生变化D.电磁波能产生干涉和衍射现象7.下列说法正确的是()A.电磁波在真空中的传播速度与电磁波的频率有关B.电磁波可以由电磁振荡产生,若波源的电磁振荡停止,空间的电磁波随即消失C.声波从空气进入水中时,其波速增大,波长变长D.均匀变化的磁场产生变化的电场,均匀变化的电场产生变化的磁场E.当波源与观察者相向运动时,波源自身的频率变大8.关于电磁波理论,下列说法正确的是()A.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场B.均匀变化的电场周围一定产生均匀变化的磁场C.做非匀变速运动的电荷可以产生电磁波D.麦克斯韦第一次用实验证实了电磁波的存在9.下列说法正确的是()A.电场随时间变化时一定产生电磁波B.X射线和 射线的波长比较短,穿透力比较弱C.太阳光通过三棱镜形成彩色光谱,这是光衍射的结果D.在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景物清晰10.真空中所有电磁波都有相同的()A.频率B.波长C.波速D.能量二、多选题11.以下叙述正确的是()A.法拉第发现了电磁感应现象B.电磁感应现象即电流产生磁场的现象C.只要闭合线圈在磁场中做切割磁感线的运动,线圈内部便会有感应电流D.感应电流遵从楞次定律所描述的方向,这是能量守恒的必然结果12.下列说法正确的是()A.波的衍射现象必须具备一定的条件,否则不可能发生衍射现象B.要观察到水波明显的衍射现象,必须使狭缝的宽度远大于水波波长C.波长越长的波,越容易发生明显的衍射现象D.只有波才有衍射现象13.间距为L=1m的导轨固定在水平面上,如图甲所示,导轨的左端接有阻值为R=10Ω的定值电阻,长度为L=1m、阻值为r=10Ω的金属棒PQ放在水平导轨上,与导轨有良好的接触,现在空间施加一垂直导轨平面的磁场,磁感应强度随时间的变化规律如图乙所示,已知磁场的方向如图甲所示,且0~0.2s的时间内金属棒始终处于静止状态,其他电阻不计。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

人教版高中物理选择性必修第二册课后习题 第4章 电磁振荡与电磁波 2.电磁场与电磁波

人教版高中物理选择性必修第二册课后习题 第4章 电磁振荡与电磁波 2.电磁场与电磁波

2.电磁场与电磁波课后训练巩固提升一、基础巩固1.关于电磁场理论,下列说法正确的是( )A.在电场周围一定产生磁场,磁场周围一定产生电场B.在变化的电场周围一定产生变化的磁场,变化的磁场周围一定产生变化的电场C.均匀变化的电场周围一定产生均匀变化的磁场D.正弦交变的电场在其周围空间一定产生同频率交变的磁场,只有变化的电场才产生磁场,均匀变化的电场产生稳定的磁场,非均匀变化的电场产生变化的磁场,周期性变化的电场周围一定产生同频率变化的磁场。

本题考查麦克斯韦电磁场理论,提高学生的理解和分析能力,培养科学思维。

2.建立完整的电磁场理论,并首先预言电磁波存在的科学家是( )A.法拉第B.奥斯特C.赫兹D.麦克斯韦,赫兹用实验证明了电磁波的存在。

3.电磁波在传播时,不变的物理量是( )A.振幅B.频率C.波速D.波长,振幅越小。

电磁波在不同介质中的波速不一样,波长也不一样,但频率不变。

4.下列关于电磁波的说法正确的是( )A.电磁波必须依赖介质传播B.电磁波可以发生衍射现象C.电磁波不会发生偏振现象D.电磁波无法携带信息传播,可以发生衍射现象,故B正确。

电磁波是横波,能发生偏振现象,故C错误。

电磁波能携带信息传播,且传播不依赖介质,在真空中也可以传播,故A、D错误。

本题考查电磁波的特点,提高学生的辨析能力,培养科学思维。

5.某电路中电场强度随时间变化的关系图像如图所示,能发射电磁波的是( ),当空间出现恒定的电场时(如A图),由于它不激发磁场,故无电磁波产生;当出现均匀变化的电场时(如B图、C图),会激发出磁场,但磁场恒定,不会在较远处激发出电场,故也不会产生电磁波;只有周期性变化的电场(如D图),才会激发出周期性变化的磁场,它又激发出周期性变化的电场……如此交替的产生磁场和电场,便会形成电磁波,故D正确。

6.电磁波与机械波具有的共同性质是( )A.都能在真空中传播B.都能传输能量C.都有横波和纵波D.都需要介质传播,而机械波不能在真空中传播,故A错误。

电磁场与电磁波第5版王家礼答案

电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。

它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。

1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。

1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。

它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。

第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。

2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。

2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。

2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。

第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。

3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。

3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。

3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。

第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。

4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。

《电磁场与电磁波》(第四版)习题集:第4章 时变电磁场

以上分析表明电磁能量是电磁场传输的,导体仅起着定向引导电磁能流的作用。当导体的电导率为有限值时,进入导体中的功率全部被导体所吸收,成为导体中的焦耳热损耗功率。
4. 4惟一性定理
在分析有界区域的时变电磁场问题时,常常需要在给定的初始条件和边界条件下,求解麦克斯韦方程。那么,在什么定解条件下,有界区域中的麦克斯韦方程的解才是惟一的呢?这就是麦克斯韦方程的解的惟一问题。
电磁能量一如其它能量服从能量守恒原理,本章将讨论电磁场的能流和表征电磁场能量守恒关系的坡印廷定理。
本章在最后讨论了随时间按正弦函数变化的时变电磁场,这种时变电磁场称为时谐电磁场或正弦电磁场。
4. 1波动方程
由麦克斯韦方程可以建立电磁场的波动方程,揭示了时变电磁场的运动规律,即电磁场的波动性。下面建立无源空间中电磁场的波动方程。
第4章 时变电磁场
在时变的情况下,电场和磁场相互激励,在空间形成电磁波,时变电磁场的能量以电磁波的形式进行传播。电磁场的波动方程描述了电磁场的波动性,本章首先对电磁场的波动方程进行讨论。
在时变电磁场的情况下,也可以引入辅助位函数来描述电磁场,使一些复杂问题的分析求解过程得以简化。本章对时变电磁场的位函数及其微分方程进行了讨论。
惟一性定理指出:在以闭曲面 为边界的有界区域 内,如果给定 时刻的电场强度 和磁场强度 的初始值,并且在 时,给定边界面 上的电场强度 的切向分量或磁场强度 的切向分量,那么,在 时,区域 内的电磁场由麦克斯韦方程惟一地确定。
下面利用反证法对惟一性定理给予证明。假设区域 内的解不是惟一的,那么至少存在两组解 、 和 、 满足同样的麦克斯韦方程,且具有相同的初始条件和边界条件。令
电磁能量一如其它能量服从能量守恒原理。下面将讨论表征电磁场能量守恒关系的坡印廷定理,以及描述电磁能量流动的坡印廷矢量的表达式。

电磁场与电磁波第四版课后答案

的表达式。
3
答案: A = ax Ax + ay Ay + az Az
其中, Ax = (
2x2 + x3z + xy2 z + xz3 ) x2 + y2
(x2 + y2 + z2)2 ;
Ay = (
2xy + x2 yz + y3z + yz3) x2 + y2
(x2 + y2 + z2)2 ;
⎤ ⎥ ⎥
=
⎡ sin θ ⎢⎢cosθ
cosϕ cosϕ
⎢⎣ Aiϕ ⎥⎦ ⎢⎣ − sin ϕ
sinθ sinϕ cosθ sinϕ
cosϕ
cosθ ⎤ ⎡ Aix ⎤

sin
θ
⎥ ⎥
⎢ ⎢
Aiy
⎥ ⎥

0 ⎥⎦ ⎢⎣ Aiz ⎥⎦
而 Aix = Ri sinθi cosϕi , Aiy = Ri sinθi sin ϕi , Aiz = Ri cosϕi 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
为 ε = 2.56ε0 ,μ = μ0 , σ = 3.5 ×10−5 S/m,两极板间施加直流电压U0 = 50 V 。求

电磁场与电磁波第三版课后答案 谢处方

第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A BC 和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。

解 (1)23A x y z+-===e e e A a ee e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e⨯=A B 123041x y z-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题解答如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。

解 根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布 两平行无限大导体平面,距离为,其间有一极薄的导体片由到。

上板和薄片保持电位,下板保持零电位,求板间电位的解。

设在薄片平面上,从到,电位线性变化,。

解 应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ① ② ③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。

并按定出边缘电容。

解 在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。

题图题 图解 根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为 一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。

求体积内的电位。

解 在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。

由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。

求板间的电位函数。

解 由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。

而在的分界面上,可利用函数将线电荷表示成电荷面密度。

电位的边界条件为①②③ 由条件①和②,可设电位函数的通解为题 图题图由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。

求槽内的电位函数。

解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。

而在的分界面上,可利用函数将线电荷表示成电荷面密度,电位的边界条件为①,②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故若以为界将场空间分割为和两个区域,则可类似地得到题图如题图所示,在均匀电场中垂直于电场方向放置一根无限长导体圆柱,圆柱的半径为。

求导体圆柱外的电位和电场以及导体表面的感应电荷密度。

解 在外电场作用下,导体表面产生感应电荷,圆柱外的电位是外电场的电位与感应电荷的电位的叠加。

由于导体圆柱为无限长,所以电位与变量无关。

在圆柱面坐标系中,外电场的电位为(常数的值由参考点确定),而感应电荷的电位应与一样按变化,而且在无限远处为0。

由于导体是等位体,所以满足的边界条件为①②由此可设 由条件①,有于是得到 故圆柱外的电位为若选择导体圆柱表面为电位参考点,即,则。

导体圆柱外的电场则为导体圆柱表面的电荷面密度为在介电常数为的无限大的介质中,沿轴方向开一个半径为的圆柱形空腔。

沿轴方向外加一均匀电场,求空腔内和空腔外的电位函数。

解 在电场的作用下,介质产生极化,空腔表面形成极化电荷,空腔内、外的电场为外加电场与极化电荷的电场的叠加。

外电场的电位为而感应电荷的电位应与一样按变化,则空腔内、外的电位分别为和的边界条件为① 时,;② 时,为有限值;③ 时, ,由条件①和②,可设带入条件③,有 ,由此解得 ,所以一个半径为、无限长的薄导体圆柱面被分割成四个四分之一圆柱面,如题图所示。

第二象限和第四象限的四分之一圆柱面接地,第一象限和第三象限分别保持电位和。

求圆柱面内部的电位函数。

解 由题意可知,圆柱面内部的电位函数满足边界条件为 ① 为有限值;题图题图② ;由条件①可知,圆柱面内部的电位函数的通解为代入条件②,有由此得到故如题图所示,一无限长介质圆柱的半径为、介电常数为,在距离轴线处,有一与圆柱平行的线电荷,计算空间各部分的电位。

解 在线电荷作用下,介质圆柱产生极化,介质圆柱内外的电位均为线电荷的电位与极化电荷的电位的叠加,即。

线电荷的电位为 (1)而极化电荷的电位满足拉普拉斯方程,且是的偶函数。

介质圆柱内外的电位和满足的边界条件为分别为 ① 为有限值;② ③ 时, 由条件①和②可知,和的通解为(2) (3)将式(1)~(3)带入条件③,可得到 (4)(5)当时,将展开为级数,有 (6)带入式(5),得 (7)由式(4)和(7),有由此解得 ,故得到圆柱内、外的电位分别为(8)(9)讨论:利用式(6),可将式(8)和(9)中得第二项分别写成为其中。

因此可将和分别写成为由所得结果可知,介质圆柱内的电位与位于(0)的线电荷的电位相同,而介质圆柱外的电位相当于三根线电荷所产生,它们分别为:位于(0)的线电荷;位于的线电荷;位于的线电荷。

将上题的介质圆柱改为导体圆柱,重新计算。

题图解导体圆柱内的电位为常数,导体圆柱外的电位均为线电荷的电位与感应电荷的电位的叠加,即。

线电荷的电位为(1)而感应电荷的电位满足拉普拉斯方程,且是的偶函数。

满足的边界条件为①;②。

由于电位分布是的偶函数,并由条件①可知,的通解为(2)将式(1)和(2)带入条件②,可得到(3)将展开为级数,有(4)带入式(3),得(5)由此可得,故导体圆柱外的电为(6)讨论:利用式(4),可将式(6)中的第二项写成为其中。

因此可将写成为由此可见,导体圆柱外的电位相当于三根线电荷所产生,它们分别为:位于(0)的线电荷;位于的线电荷;位于的线电荷。

在均匀外电场中放入半径为的导体球,设(1)导体充电至;(2)导体上充有电荷。

试分别计算两种情况下球外的电位分布。

解(1)这里导体充电至应理解为未加外电场时导体球相对于无限远处的电位为,此时导体球面上的电荷密度,总电荷。

将导体球放入均匀外电场中后,在的作用下,产生感应电荷,使球面上的电荷密度发生变化,但总电荷仍保持不变,导体球仍为等位体。

设,其中是均匀外电场的电位,是导体球上的电荷产生的电位。

电位满足的边界条件为①时,;②时,,其中为常数,若适当选择的参考点,可使。

由条件①,可设代入条件②,可得到,,若使,可得到(2)导体上充电荷时,令,有题图题 图利用(1)的结果,得到如题图所示,无限大的介质中外加均匀电场,在介质中有一个半径为的球形空腔。

求空腔内、外的电场和空腔表面的极化电荷密度(介质的介电常数为)。

解 在电场的作用下,介质产生极化,空腔表面形成极化电荷,空腔内、外的电场为外加电场与极化电荷的电场的叠加。

设空腔内、外的电位分别为和,则边界条件为① 时,;② 时,为有限值;③ 时, ,由条件①和②,可设带入条件③,有, 由此解得 , 所以 空腔内、外的电场为空腔表面的极化电荷面密度为如题图所示,空心导体球壳的内、外半径分别为和,球的中心放置一个电偶极子,球壳上的电荷量为。

试计算球内、外的电位分布和球壳上的电荷分布。

解 导体球壳将空间分割为内外两个区域,电偶极子在球壳内表面上引起感应电荷分布,但内表面上的感应电荷总量为零,因此球壳外表面上电荷总量为,且均匀分布在外表面上。

球壳外的场可由高斯定理求得为外表面上的电荷面密度为设球内的电位为,其中是电偶极子的电位,是球壳内表面上的感应电荷的电位。

满足的边界条件为 ① 为有限值;② ,即,所以由条件①可知的通解为由条件②,有比较两端的系数,得到, ,题 图 最后得到球壳内表面上的感应电荷面密度为感应电荷的总量为欲在一个半径为的球上绕线圈使在球内产生均匀场,问线圈应如何绕(即求绕线的密度)?解 设球内的均匀场为,球外的场为,如题图所示。

根据边界条件,球面上的电流面密度为若令,则得到球面上的电流面密度为 这表明球面上的绕线密度正比于,则将在球内产生均匀场。

一个半径为的介质球带有均匀极化强度。

(1)证明:球内的电场是均匀的,等于;(2)证明:球外的电场与一个位于球心的偶极子产生的电场相同,。

解 (1)当介质极化后,在介质中会形成极化电荷分布,本题中所求的电场即为极化电荷所产生的场。

由于是均匀极化,介质球体内不存在极化电荷,仅在介质球面上有极化电荷面密度,球内、外的电位满足拉普拉斯方程,可用分离变量法求解。

建立如题图所示的坐标系,则介质球面上的极化电荷面密度为介质球内、外的电位和满足的边界条件为① 为有限值; ② ; ③因此,可设球内、外电位的通解为由条件③,有 ,解得 ,于是得到球内的电位故球内的电场为(2)介质球外的电位为其中为介质球的体积。

故介质球外的电场为可见介质球外的电场与一个位于球心的偶极子产生的电场相同。

半径为的接地导体球,离球心处放置一个点电荷,如题图所示。

用分离变量法求电位分布。

解 球外的电位是点电荷的电位与球面上感应电荷产生的电位的叠加,感应电荷的电位满足拉普拉斯方程。

用分离变量法求解电位分布时,将点电荷的电位在球面上按勒让德多项式展开,即可由边界条件确定通解中的系数。

设,其中题 图是点电荷的电位,是导体球上感应电荷产生的电位。

电位满足的边界条件为① 时,;② 时, 。

由条件①,可得的通解为为了确定系数,利用的球坐标展开式将在球面上展开为 代入条件②,有 比较的系数,得到故得到球外的电位为讨论:将的第二项与的球坐标展开式比较,可得到 由此可见,的第二项是位于的一个点电荷所产生的电位,此电荷正是球面上感应电荷的等效电荷,即像电荷。

一根密度为、长为2的线电荷沿轴放置,中心在原点上。

证明:对于的点,有解 线电荷产生的电位为 对于的点,有 故得到一个半径为的细导线圆环,环与平面重合,中心在原点上,环上总电荷量为,如题图所示。

证明:空间任意点电位为解 以细导线圆环所在的球面把场区分为两部分,分别写出两个场域的通解,并利用函数将细导线圆环上的线电荷表示成球面上的电荷面密度再根据边界条件确定系数。

设球面内、外的电位分别为和,则边界条件为:① 为有限值;② ③ ,根据条件①和②,可得和的通解为题 图题图题图(1)(2)代入条件③,有(3)(4)将式(4)两端同乘以,并从0到对进行积分,得(5)其中由式(3)和(5),解得 ,代入式(1)和(2),即得到一个点电荷与无限大导体平面距离为,如果把它移到无穷远处,需要作多少功?解 利用镜像法求解。

当点电荷移动到距离导体平面为的点处时,其像电荷,与导体平面相距为,如题图所示。

像电荷在点处产生的电场为所以将点电荷移到无穷远处时,电场所作的功为外力所作的功为 如题图所示,一个点电荷放在的接地导体角域内的点处。

相关文档
最新文档