数轴线段动点问题

合集下载

最好的数轴上的线段与动点问题

最好的数轴上的线段与动点问题

1、已知线段AB =12,CD =6,线段CD 在直线AB 上运动,(A 在B 的左侧,C 在D 的左侧) (1)M 、N 分别是线段AC 、BD 的中点,若BC =4,求MN 。

(2)当CD 运动到D 点与B 点重合时,P 是线段AB 的延长线上一点,下列两个结论:○1 PA + PB PC 是定值,○2 PA - PBPC是定值。

其中有一个正确,请你作出正确的选择,并求出其定值。

2、如图,已知数轴上有三点A 、B 、C ,AB = 12AC ,点C 对应的数是200。

(1)若BC =300,求A 点所对应的数;(2)在(1)的条件下,动点P 、Q 分别从A 、C 两点同时出发向左运动,同时动点R 从A 点出发向右运动,点P 、Q 、R 的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M 为线段PR 的中点,点N 为线段RQ 的中点,多少秒时恰好满足MR =4RN (不考虑点R 与点Q 相遇之后的情形)(3)在(1)的条件下,若点E 、D 对应的数分别为-800、0,动点P 、Q 分别从E 、D 两点同时出发向左运动,P 、Q 的速度分别为10单位长度每秒、5单位长度每秒,点M 为线段PQ 的中点,点Q 在从点D 运动到点A 的过程中,32 QC -AM 的值是否发生变化?若不变,求其值;若变化,说明理由。

3、数轴上A 点对应的数为-5,B 点在A 点右边,电子蚂蚁甲、乙在B 分别以2个单位/秒、1个单位/秒的速度C B A R Q P C A 200-800D C向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动。

(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数;(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t 值;若不存在,说明理由。

七年级数轴上的动点问题诀窍

七年级数轴上的动点问题诀窍

七年级数轴上的动点问题诀窍
七年级数轴上的动点问题是一个常见的数学问题,它涉及到数轴上点的运动和坐标的变化。

解决这类问题的诀窍在于掌握以下几点:
1.理解数轴的基本概念:数轴是一条直线,规定了正方向、原点、单位长度等基本要素。

在数轴上,每个点都有一个唯一的坐标,坐标的变化反映了点的运动。

2.掌握点的坐标变化规律:当点在数轴上沿正方向或负方向移动时,其坐标会相应地增加
或减少。

具体地,如果点向右移动,则坐标增加;如果点向左移动,则坐标减少。

3.运用数形结合的思想:将数轴上的动点问题与代数表达式相结合,通过代数方法解决几
何问题。

例如,设动点的坐标为变量,根据题意建立方程或不等式,通过解方程或不等式找到动点的坐标或运动规律。

4.掌握常见的动点问题类型和解题方法:七年级数轴上的动点问题常涉及相遇问题、追及
问题、距离最短问题等类型。

对于每种类型的问题,都有相应的解题方法和技巧。

例如,相遇问题可以通过建立方程求解,追及问题可以通过比较速度和时间求解,距离最短问题可以通过建立函数表达式求解。

数轴上的动点问题

数轴上的动点问题

数轴上的动点问题以微课堂公益课堂,奥数国家级教练与四位特级教师联手执教。

数形结合化繁为简数轴是数形结合的产物,分析数轴上点的运动要结合图形来进行分析,点在数轴上运动形成的路径可以看作数轴上线段和差关系。

处理数轴上的动点问题,我们要了解数轴上点的平移规律和如何表示两点的距离。

1、数轴上一个动点如何字母来表示?如图,数轴上有一个表示—1的点A,它向右平移2个单位后表示的数为1。

若点A向右平移t个单位,它表示的数为:(-1+t)。

归纳:一个点表示的数为a,向左运动b(b>0)个单位后表示的数为a-b;若向右运动c(c>0)个单位后所表示的数为a+c。

2、数轴上两点之间的距离如何表示?如图,数轴上B、C的距离为1,A、C的距离为:1—(—1)=2。

归纳:已知数轴上有两个点A和B,若A表示的数学为a,B表示的数为b,则数轴上两点间的距离AB=|b-a|=b-a(若b>a);即数轴上两点间的距离=右边点表示的数—左边点表示的数);解析:(1)由题意得a=-1,b=1,c=5(2) t秒后,点A表示的数为(-1-t),点B的数为(1+t),点C表示的数为(5+3t).AC=(5+3t)-(-1-t)=4t+6;AB=(1+t)-(-1-t)=2t+2BC=(5+3t)-(1+t)=2t+4BC-AB=(2t+4)-(2t+2)=2故BC-AB的值不变,且为2。

解析:(1)由题意知,a=-4,b=1,c=6;(2)t秒后,A表示的数:-4-3t,B表示的数为:1-2t,C表示的数为:6+t(3)AB=(1-2t)-(-4-3t)=t+5;BC=(6+t)-(1-2t)=3t+53AB-BC=3(t+5)-(3t+5)=10故3AB-BC的值不变,且为10。

《以微课堂》,由江苏省数学名师、数学奥林匹克国家一级教练员,联手四名特级教师共同打造。

七年级数学数轴上的动点问题

七年级数学数轴上的动点问题

七年级数学数轴上的动点问题
数轴上的动点问题是七年级数学的一个重要内容,主要涉及到动点在数轴上的运动。

解决这类问题,需要通过运动点的初始位置,运动时间t,运动速度v,计算出运动点将会到达哪个坐标。

例如,假设有一个电子蚂蚁P从点A出发,以2单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以1单位长度/秒的度数向右运动,求经过多长时间两只电子蚂蚁在数轴上到原点的距离相等。

解决这个问题的方法如下:
P、Q在原点左右两侧,此时P、Q表示的数为相反数,即有-6+2t+2+t=0,得t=4/3
P、Q重合,此时P、Q表示的数相等,即有-6+2t=2+t得t=8
综上,经过8秒或4/3秒时,P、Q到原点的距离相等。

这只是一个例子,具体的问题可能会有所不同,但是解题的基本思路是一样的。

数轴上的动点问题

数轴上的动点问题

数轴上的运动问题在讲这个问题之前,我们先来看一道行程问题。

【题 1】甲乙两地相距 200 米,小明从甲地步行到乙地,用时 3 分钟,小明的平均速度为多少米每秒?【分析】这个问题的本质,就是把实际生活中的问题剥离出来,抽象成了简单的数学问题,很多学生都会解;初学时,老师会画线段图,用线段的长度来将两点间的距离具象化,如下:小明 甲地 乙地【解法一】直接利用:速度=路程÷时间解决。

200 ÷180 = 10(米/秒)9 【解法二】用方程解。

设速度为 x 米/ 秒,根据路程=时间×速度,得: 200 = 180x ,解得 x = 10。

9如果在线段图上,用一个具体的数来表示甲地和乙地,从甲往乙的方向规定为正方向建立数轴,这个问题就转化为数轴上的运动问题了。

【题 2】如图,数轴上有两点 A 、B ,点 A 表示的数为0 ,点 B 表示的数为 200 ,一只电子蚂蚁 P 从 A 出发,以1个单位每秒的速度由 A 往 B 运动,到 B 点运动停止。

设运动时间为 t 。

(1) 用含 t 的代数式表示电子蚂蚁 P 运动的距离;(2) 用含 t 的代数式表示电子蚂蚁 P 表示的数;(3) 用含 t 的代数式表示电子蚂蚁 P 到数 B 的距离。

(4) 当电子蚂蚁运动多少时间后,点 P 为线段 AB 的三等分点?【分析】引入数轴后,其本质是把线段图换成了带方向带单位长度的直线,将有限的实际距离推广到了无限的距离问题。

所以,对于运动的点,处理的核心思想依然是路程=速度×时间。

其余的点的距离,利用数 轴上两点间距离公式解决。

(1) 根据路程=速度×时间,有: AP = t ;(2) AP = t ,故点 P 表示的数为t ;(3) 点 B 表示的数为 200,点 P 表示的数为t ,且 P 在 B 左边,故 PB = 200 - t 。

(4) 若 P 为 AB 的三等分点,有两种情况: ①AP=2PB ,即: t = 2 ⨯ (200 - t ),解得t =400 秒;3 ②2AP=PB ,即: 2t = 200 - t ,解得t = 200 秒;3 现在,我们将【题 2】一般化,线段 AB 一般化为在数轴上的一条定长线段,便得到如下的题:【题 3】如图,数轴上有两点 A 、B ,点 A 表示的数为 a ,点 B 表示的数为b ,且数 A 和数 B 的距离为 200 个单位长度,一只电子蚂蚁 P 从 A 出发,以1个单位每秒的速度由 A 往 B 运动,到 B 点运动停止。

数轴上的动点问题

数轴上的动点问题

数轴上的动点问题1、如图,点A、B在数轴上表示的数分别是60、一80(单位厘米) .甲蜗牛从点A出发,沿着射线A0一直以每分钟a厘米的速度爬行,乙蜗牛从点B出发,沿着射线B0一直匀速爬行,乙蜗牛的速度是甲蜗牛速度的一半多1厘米,两只蜗牛同时出发,同时停止运动。

(1)若甲、乙蜗牛爬行20分钟后,求甲、乙蜗牛所在的位置对应的数分别是多少? (用含a式子表示)(2)若a=2厘米/分,经过多长时间,两只蜗牛相距30厘米?2、如图,A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.①请写出与A、B两点距离相等的点M所对应的数;②现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?③当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?…新起点单元测试卷3、如图,点A在数轴上表示有理数-26,将点A向右平移16个单位得到点B①求点B表示的有理数②点C表示的有理数为m,m=2015(a+b)+()+2e,其中a、b互为相反数,c、d 互为倒数,e为最小的正整数,求m的值③在②的条件下,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?写出此时点Q在数轴上表示的有理数。

A B C-26 0 ……金阶梯4、已知数轴上A、B两点所表示的数分别为a和b.(1)如图,a=﹣1,b=7时①求线段AB的长;②若点P为数轴上与A、B不重合的动点,M为PA的中点,N为PB的中点,当点P在数轴上运动时,MN的长度是否发生改变?若不变,并求出线段MN的长;若改变,请说明理由.(2)不相等的有理数a、b、c在数轴上的对应点分别为A、B、,如果|a﹣c|﹣|b﹣c|=|a﹣b|,那么,点应在什么位置?请说明理由.……网络5、已知:如图数轴上两动点A、B原始位置所对应的数分别为-3、1,(1)若点P是线段AB的中点,点P对应的数记为a,请直接写出a的值;(2)若点A以每秒钟4个单位向右运动,同时点B以每秒钟2个单位长度也向右运动,求点A和点B相遇时的位置所表示的数b的值;(3)当另一动点以每秒钟1个单位长度的速度从原点O向右运动时,同时点A以每秒钟4个单位长度向右运动,点B以每秒钟2个单位长度向右运动,问几秒钟后QA=2QB?……网络6、已知:如图①,点O为所给数轴的原点,表示的数为0,点A、B分别在原点的两侧,且点A所表示的数为+8,点A与点B之间的距离为18个单位长度.⑴直接写出点B所表示的数是;⑵点C、点D在数轴的位置如图②所示,点C到点B的距离与点D到点A的距离相等,且C、D两点之间的距离为10个单位长度,设点C所表示的数为a,点D所表示的数为b,求丨2a-b丨的值;⑶在⑵的条件下,点E是点C右侧的一点,动点P从点C出发,向终点E匀速运动,同时动点Q从点E出发,向终点C匀速运动,当运动时间为1秒和2秒时,点P与点Q之间的距离均为2个单位长度,求点E所表示的数。

数轴动点问题6题型

数轴动点问题6题型数轴动点问题是数学中常见的问题之一,通过给定的条件,我们需要确定数轴上的某个点在未来的某个时刻的位置。

数轴动点问题可以分为六个不同的题型,包括直线匀速运动、自由落体运动、匀加速直线运动、正弦运动、周期性运动和复合运动。

一、直线匀速运动直线匀速运动是最简单的一个题型,其特点是物体在数轴上做匀速运动,即运动速度保持恒定。

在这种情况下,我们可以通过已知物体的初始位置和速度,以及经过的时间来确定物体在某个时刻的位置。

例如,已知小明从A点出发,以每小时30公里的速度向B点行进,经过2小时后,我们需要确定小明在这个时刻的位置。

解题思路如下:设小明从A点出发,以每小时30公里的速度向B点行进,经过2小时后小明行驶的距离为x公里。

根据速度的定义,速度等于位移与时间的比值,即速度=位移/时间。

因为小明的速度是恒定的,所以我们可以得到以下等式:30km/h = x km/2 h将等式化简,得到:x = 60 km因此,在经过2小时后,小明的位置在B点的60公里处。

二、自由落体运动自由落体运动是物体在重力作用下做垂直向下的运动。

在这种情况下,物体的初速度通常为0,所以我们只需考虑物体下落的距离和经过的时间。

例如,已知一个物体从高处下落,2秒后触地,我们需要确定物体下落的高度。

解题思路如下:设物体下落的高度为h米。

根据自由落体运动的公式:h = (1/2) * g * t^2其中,g为重力加速度,取9.8米/秒^2,t为时间,取2秒。

将这些数值代入公式中,我们可以计算出物体下落的高度:h = (1/2) * 9.8 * 2^2 = 19.6米因此,物体下落的高度为19.6米。

三、匀加速直线运动匀加速直线运动是物体在数轴上做匀加速运动,即运动的加速度保持恒定。

在这种情况下,我们需要根据已知的初始速度、加速度和时间来确定物体在某个时刻的位置。

例如,已知小车以每小时20公里的速度匀速行驶,并在10秒内加速到每小时60公里的速度,我们需要确定小车在这个时刻的位置。

数轴上动点问题

数轴上动点问题例1、定义:已知A.B.C为数轴上任意三点,若点C到A的距离是它到点B的距离的2倍,则称点C是[A,B]的2倍点。

例如:如图1,点C是[A,B]的2 倍点,点D不是[A,B]的2倍点,但点D是[B,A]的2倍点,根据这个定义解决下面问题:(1)在图1中,点A 是的2倍点,点B是的2倍点;(选用A.B.C.D表示,不能添加其他字母);(2)如图2,M、N为数轴上两点,点M表示的数是−2,点N表示的数是4,若点E是[M,N]的2倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,且PQ=m,一动点H从点Q出发,以每秒2个单位长度的速度沿数轴向左运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的2倍点?(用含m的代数式表示)变式1、若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点。

例如,如图①,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点。

【知识运用】如图②,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数所表示的点是(M,N)的优点;(2)如图③,A.B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B 出发,以4个单位每秒的速度向左运动,到达点A停止。

当t为何值时,P、A和B中恰有一个点为其余两点的优点?例2、(成华区期末)如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为-10,点B在原点的右边,且BO=3AO,点M以每秒3个单位长度的速度从点A出发向右运动,点N以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是_____,点B到点A的距离是_____;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等.、变式1、如图:A、B、C三点在数轴上,A表示的数为−10,B表示的数为14,点C在点A与点B之间,且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动,甲的速度是1个单位长度/s,乙的速度是2个单位长度/s,求相遇点D对应的数。

人教版七年级数学上册 线段的中点和数轴上动点问题培优备考

人教版七年级数学上册数轴上的动点问题培优备考解题方法:1.总体来讲,解决数轴上的动点问题分为两步:(1)用未知数表示动点;(2)结合数轴,列方程.2.具体来讲,要注意以下几个问题:(1)表示动点:用未知数表示动点,常常把运动时间设为t,把握动点的出发点,运动方向和运动速度,这三个条件,例如:点A从表示1的点M出发,向右运动,速度是3个单位长度每秒,则动点A表示为:1 +3t; . 点B从表示-2的点N出发,向左运动,速度是2个单位长度每秒,则动点B表示为:-2-2t;(2)求中点:利用中点公式即可;(3)求距离:数轴上,表示两点的距离常常用右边的数减去左边的数,例如,上题动点A和B 之间的距离是:(1 +3t)-( -2-2t) =5t+3;(4)列方程:常见等量关系:一是行程中的相遇追及问题,二是线段间的和差倍分关系;(5)易错点:注意动点问题的分类讨论.例1:已知A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是【A,B】的好点。

如图1,点A表示的数为-1,点B表示的数为2。

表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;表示0的点D到点A的距离是1,到点B的距离是2,是【B,A】的好点。

知识运用:如图2,M、N为数轴上两点,点M所表示的数为-2,点N所表示的数为4。

(1)数_____________所表示的点是【M,N】的好点;(2)如图3,点A所表示的数为-20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止。

当t为何值时,P、A和B中恰有一个点为其余两点的好点?例2:数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM-BM=OM,求AB的值.OM例3: 如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动,2 秒后,两点相距16个单位长度.已知点B的速度是点A的速度的3倍.(速度单位:单位长度/秒)(1)求出点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动2秒时的位置;(2)若A、B两点从(1)中标出的位置开始,仍以原来的速度同时沿数轴向左运动,经过几秒,点A、B之间相距4个单位长度?(3)若表示数0的点记为0,A、B两点分别从(1)中标出的位置同时沿数轴向左运动,经过多长时间,0B=20A.例4: 已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为90.(1)请写出与AB两点距离相等的M点对应的数;(2)现在有一只电子蚂蚁P从B点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以2个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以3个单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A点出发,以2个单位/秒的速度向右运动,经过多长的时间两只电子蚂蚁在数轴.上相距35个单位长度?例5: 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3| +(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前:①的值不变;②2BM-BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.P A+P BP C学以致用练习:1.如图,已知A、B、C是数轴上三点,点C表示的数为6,BC=4,AB=12.(1)写出数轴.上点A、B表示的数;(2)动点P、Q分别从A、C同时出发,点P以每秒6个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,M为AP的中点,点N在线段CQ上,且CQ,设运动时间为t(t>0)秒.CN=13①求数轴上点M、N表示的数(用含t的式子表示);②t为何值时,原点0恰为线段PQ的中点。

例说数轴上的动点问题

例说数轴上的动点问题 数轴上的动点问题,往往使学生感到棘手.实际上,如果将动点问题“代数化”,“三招”就可轻松解决常见的问题.第一招:平移规律若数轴上点A 表示的数是a ,则当点A 向左平移t 个单位长度时表示的数为a t -;当点A 向右平移t 个单位长度时表示的数为a t +.简记为:左减右加.第二招:距离公式若数轴上,A B 两点表示的数分别是,a b ,则,A B 两点的距离AB a b =-.如果已知,A B 两点的位置关系,比如点A 在点B 的左边,则AB b a =-.第三招:中点公式若数轴上,A B 两点表示的数分别是,a b ,则线段AB 的中点表示的数是2a b +. 解决此类问题的关键是确定动点表示的数,以及动点的运动方向.以下分为三类问题进行解析:一、方向不变例1 如图1,数轴上点B 表示的数是30,,P Q 两点分别从,O B 两点同时出发,分别以3单位/秒和2单位/秒的速度向右运动,运动时间为t 秒, M 为线段BP 上一点,且13PM PB =,N 为QM 的中点. (1)若12PB BQ =,求t 的值; (2)当t 的值变化时, NQ 的值是否发生变化?为什么?解析 (1)由第一招,点P 表示的数为3t ,点Q 表示的数是302t +;由第二招,330,2PB t BQ t =-=.∵12PB BQ =, ∴133022t t -=⨯, 330t t ∴-=,或330t t -=-,15t ∴=,或7.5t =.(2)NQ 的值不变,理由如下:如图2,当点P 在点B 左侧时,303PB t =-. ∵13PM PB =, ∴10PM t =-,点M 表示的数为310210t t t +-=+.如图3,当点P 在点B 右侧时,330PB t =-.∵13PM PB =, ∴10PM t =-, 点M 表示的数为3(10)210t t t --=+.综上所述,点M 表示的数是210t +.∵N 是QM 的中点,所以由第三招点N 表示的数是(302)(210)2022t t t +++=+, (302)(202)10NQ t t ∴=+-+=.例2 已知数轴上两点,A B 对应的数为-1 ,3,点P 为数轴上一动点,其对应的数为x .(1)数轴上是否存在点P ,使5PA PB +=?若存在,请求出x 的值;若不存在,请说明理 由.(2)当点P 以每分钟1个单位长度的速度从O 点向右运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向右运动.在运动的过程中,,M N 分别是,AP OB 的中点, AB OP MN-的值是否改变,为什么? 解析 (1)存在.理由如下:如图4,当1x <-时,1,3PA x PB x =--=-.依题意得(1)(3)5x x --+-=,解得 1.5x =-;如图5,当13x -≤≤时, 45PA PB AB +==≠;如图6,当3x >时, 1,3PA x PB x =+=-.依题意,得(1)(3)5x x ++-=,解得 3.5x =.综上所述,x 的值为-1. 5或3. 5.(2)不变.理由如下:设运动时间是t 分钟,则点A 对应的数是15t --,点B 对应的数是320t +,点P 对应的数是t .所以,(320)(15)254AB t t t =+---=+,OP t =.又因为,M N 分别是,AP OB 的中点,所以点M 对应的数是154122t t t --+--=; 点N 对应的数是3202t +. 3204112222t t MN t +--∴=-=+, (254)122AB OP t t MN t -+-∴=+ 2442122t t +==+ 二、方向不定例3 如图7点,,A B C 在数轴上表示的数是-6,-2和24.若数轴上有三个动点,,M N P ,分别从点,,A B C 开始同时出发,在数轴上运动,速度分别为每秒1个单位长度、7个单位长度、3个单位长度.其中点P 向左运动,点N 先向左运动,遇到点M 后回头再向右运动,遇到点P 后回头向左运动…这样,直到点P 遇到点M 时三点都停止运动,求点N 所走的路程.解析 点N 运动时间为点P 与点M 相遇所用的时间.设运动时间是t 秒,则动点P 表示的数是243t -.点M 的运动方向不确定,可以向右,也可以向左.①当M 向右运动时,点M 表示的数是6t -+,点P 遇到点M 时,它们表示的数相同,6243t t ∴-+=-,解得152t =, ∴点N 所走的路程为15105722⨯=. ②当M 向左运动时,点M 表示的数是6t --,点P 遇到点M 时,6243t t --=-,解得15t =,∴点N 所走的路程为715105⨯=.三、方向改变 例4 如图8,数轴上点,,A B C 对应的数分别为-4,-3和1.(1)点,A B 沿数轴同时出发向右匀速运动,点A 速度为2个单位长度/秒,点B 速度为1个单位长度/秒.若运动时间为t 秒,运动过程中,当,A B 两点到原点O 的距离相等时,求t 的值.(2)在(1)的条件下,若点B 运动到点C 处后立即以原速返回,到达自己的出发点后停止运动,点A 运动至点C 处后又以原速返回,到达自己的出发点后又折返向点C 运动.如此反复,当点B 停止运动时,点A 随之停止运动,求在此运动过程中,,A B 两点同时到达的点在数轴上表示的数.解析 (1)点A 表示的数是42t -+,点B 表示的数是3t -+,当,A B 两点到原点O 的距离相等时,有423t t -+=-+,423t t ∴-+=-+,或423t t -+=-,1t ∴=或73t =. (2)动点A 运动方向改变的时间临界点是2. 5秒,5秒和7. 5秒,动点B 运动方向改变的时间临界点是4秒和8秒,因此可以将运动时间划分为如下5段(如图9):①当0t 2.5≤≤时,点A 表示的数是42t -+,点B 表示的数是3t -+,依题意得342t t -+=-+,解得1t =,此时,A B 两点同时到达的点在数轴上表示的数为-3+1=-2. ②当2.5t 4<≤时,如图10,点A 到达点C 后返回运动了(25)t -个单位长度,点A 表示的数为1(25)62t t --=-点1(25)62t t --=-表示的数仍为3t -+,依题意得623t t -=-+,解得t =3,此时,A B 两点同时到达的点在数轴上表示的数为-3 +3=0.③当4t 5<≤时,点A 仍在从C 返回出发点的途中,所以点A 表示的数仍为62t -,如图11,点B 在到达点C 后返回运动了(4)t -个单位长度,点B 表示的数是1(4)5t t --=-,依题意得625t t -=-,解得1t =,不合题意,舍去.④当5t 7.5<≤时,如图12,点A 到达原出发点后又向点C 运动了(210)t -个单位长度,∴点A 表示的数是210214t t t -+-=-,点B 仍在从C 返回原出发点的途中,其表示的数仍为5t -,依题意得2145t t -=-,解得193t =,此时,A B 两点同时到达的点在数轴上表示的数为194533-=-;⑤当7.5t 8<≤时,如图13,点A 经历了从A C A C →→→,此时正从点C 返回原出发点的途中,返回运动了(215)t -个单位长度,∴点A 表示的数为1(215)162t t --=-,点B 表示的数仍为5t -,依题意得1625t t -=-,解得11t =,不合题意,舍去.综上所述,,A B 两点同时到达的点在数轴上表示的数为-2,0或43-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴、线段上的动点问题
数轴上A点表示的数为-12,B点表示的数为24.
(1) 若C在A、B中间,且AC=BC,求C对应的值;
(2) 若C在A、B中间,且AC=2BC,求C对应的值;

(3) 若AC=12AB,求C对应的值;
(4) 若AC-AB=20,求C对应的值;
(5) 若A、B都向负方向运动,A运动速度为2单位长度每秒,B运动速度为5
单位长度每秒,求它们相遇在数轴上的什么地方?
(6) 若A、B两点相向运动,A运动速度为2单位长度每秒,B运动速度为3
单位长度每秒,它们什么时间相距10个单位长度?

已知方程5m-6=4m的解也是关于x的方程2(x-3)-n=4的解。
(1)求m,n的值;

(2)已知线段AB=m,在直线AB是取一点P,恰好使
AP
PB
=n,点Q为PB的中

点,求线段AQ的长。

如图,点A、B为数轴上的两点(A点在负半轴,用数a表示;B点在正半轴,用
数b表示)

(1)若|b-a|=|3a|,试求a,b的关系式;
(2)在(1)的条件下,Q是线段OB上一点,且AQ-BQ=OQ,求OQ:AB的值;
(3)在线段AO上有一点C,OC=4,在线段OB上有一动点D(OD>4),M、N分
别是OD、CD的中点,下列结论:①OM-ON的值不变;②OM+ON的值不变,其中
只有一个结论是正确的,请你找出正确的结论,并求值。

已知:C为线段AB上一点,且AC=2BC=20.
(1)如图1,点P从A点出发,以每秒1个单位长度的速度在线段AB上向B点

运动,设运动时间为t (t<10) 秒,D为PB的中点,E为PC的中点,若CD=25 DE,
求t的值;

b
a

AOB
(2)如图2,若P从A点出发,以每秒1个单位长的速度在线段AB上向B运动,
同时点Q从B出发,以每秒56 个单位长的速度在AB的延长线上与P点同向运动,

运动时间为 t (t<30)秒,D为PB的中点,F为DQ的中点,且PE=13 PB,在P、
Q两点运动过程中,DE+DF的值是否发生改变?若不变,请求出其值;若改变,
请说明理由。

已知线段AB=12,CD=6,线段CD在直线AB上运动,(CA在B的左侧,C在D
的左侧)
(1)M、N分别是线段AC、BD的中点,若BC=4,求MN。
(2)当CD运动到D点与B点重合时,P是线段AB的延长线上一点,下列两
个结论:

○1 PA + PBPC 是定值,○
2 PA - PBPC 是定值。其中有一个正确,请你作出正确的选
择,并求出其定值。

如图,已知数轴上有三点A、B、C,AB= 12 AC,点C对应的数是200。
(1)若BC=300,求A点所对应的数;

(2)在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时
动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单
位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,
多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形)

图1
ABPEDC
图2
FDAQEPB

BA
C
(3)在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从
E、D两点同时出发向左运动,P、Q的速度分别为10单位长度每秒、5单位长度

每秒,点M为线段PQ的中点,点Q在从点D运动到点A的过程中,23QC-AM的
值是否发生变化?若不变,求其值;若变化,说明理由。

数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别
以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒
的速度向右运动。
(1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;


(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B点表示的数;


(3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t的值,使丙
到乙的距离是丙到甲的距离的2倍?若存在,求出t值;若不存在,说明理由。

如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点
A出发,以每秒6个单位长度的速度向左运动,设运动时间为t(t>0)秒。

(1)点B对应的数为________;在运动过程中点P所对应的数为_________(用
含t的式子表示);
(2)动点Q也从点A出发,以每秒1个单位长度的速度沿数轴向左运动,动点
R从点B出发,以每秒4/3个单位长度的速度沿数轴向左运动。若P、Q、R三点
同时出发,当点P追上点R后立即返回向点Q运动,遇到Q点则停止运动。问:
当点P返回遇到点Q停止运动时,P点所对应的数是多少?请说明理由。

200
PARQC
-800
200

EADC

-5
BA
-5
BA

-5
BA

8
BOA
如图,在数轴上,A点对应的数为-5,B点对应的数为15,P点从A点出发,以
每秒1个单位长度的速度向正方向运动。
(1)当PA-PB=12时,求P点运动的时间和P点对应的数。
(2)设M为PA的中点,N为PB的中点,请画出图形并回答问题:当P点在运
动时,线段MN的长度是否发生变化?若不变,请求出线段MN的长度;若变化,
请说明理由。

15
-5

AOB

相关文档
最新文档