人教版八年级下册数学《期中考试卷》及答案
人教版八年级下册数学《期中考试试卷》含答案

故选D.
【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
4.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()
A.变小B.不变C.变大D.无法判断
7.下列命题是假命题的为()
A. 直角三角形中两条直角边的平方和等于斜边的平方
B. 一组对边相等,一组对角相等的四边形是平行四边形
C. 三角形 中位线平行于三角形的第三边
D. 对角线相等且互相平分的四边形是矩形
8.如图,在▱ABCD中,AB=3,AD=5,∠ABC的平分线交AD于E,交CD的延长线于点F,则DF=()
(3)若点P在射线OA上运动,恰好使得∠OEF=30°时,猜想此时线段CF,AE,OE之间有怎样 数量关系,直接写出结论不必证明.
答案与解析
一.选择题
1.下列二次根式中,是最简二次根式的是()
A. B. C. D.
【答案】D
【解析】
【分析】
利用最简二次根式的定义判断即可.
【详解】A、 =3,不合题意,
13.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC的长为_____cm.
14.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.
27.如图,在矩形ABCD中,AB=5,BC=4,将矩形ABCD翻折,使得点B落在CD边上 点E处,折痕AF交BC于点F,求FC的长.
人教版八年级数学下册期中考试卷及答案【可打印】

人教版八年级数学下册期中考试卷及答案【可打印】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.若()(1)x m x +-的计算结果中不含x 的一次项,则m 的值是( )A .1B .-1C .2D .-2.3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .1257.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.因式分解:2218x -=__________.32|1|0a b -++=,则2020()a b +=_________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b>kx+6的解集是_________.5.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,在ABC 中,点D 是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.已知:如图所示,AD平分BAC,M是BC的中点,MF//AD,分别交CA延长线,AB于F、E.求证:BE=CF.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、C5、A6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、2(x +3)(x ﹣3).3、14、x >3.5、186、20三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、22mm -+ 1. 3、(1)见解析;(2)经过,理由见解析4、略(2)∠EBC=25°5、略.6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
人教版八年级下册数学期中考试卷及答案【完整版】

1 / 6 人教版八年级下册数学期中考试卷及答案【完整版】 班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分) 1.若分式211xx的值为0,则x的值为( ) A.0 B.1 C.﹣1 D.±1 2.矩形具有而平行四边形不一定具有的性质是( ) A.对边相等 B.对角相等 C.对角线相等 D.对角线互相平分 3.下列长度的三条线段,能组成三角形的是( ) A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 4.若关于x的方程333xmmxx=3的解为正数,则m的取值范围是( )
A.m<92 B.m<92且m≠32 C.m>﹣94 D.m>﹣94且m≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( ) A.九边形 B.八边形 C.七边形 D.六边形 6.下列长度的三条线段能组成直角三角形的是( ) A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.下列说法中错误的是( ) A.12是0.25的一个平方根 B.正数a的两个平方根的和为0
C.916的平方根是34 D.当0x时,2x没有平方根 8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E, 2 / 6
90C,45A,30D,则12等于( ) A.150 B.180 C.210 D.270 9.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )
A.1个 B.2个 C.3个 D.4个 10.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是( )
A. B.
C. D. 二、填空题(本大题共6小题,每小题3分,共18分) 1.已知直角三角形的两边长分别为3、4.则第三边长为________. 2.若n边形的内角和是它的外角和的2倍,则n=__________. 3.若关于x的分式方程2222xmmxx有增根,则m的值为_______. 4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________ 3 / 6
人教版数学八年级下册期中考试试卷及答案

人教版数学八年级下册期中考试试题一、单选题1.若在实数范围内有意义,则x 的取值范围是()A .x >0B .x >-1C .x≥-1D .任意实数2.下列各组数作为三角形的三边,能组成直角三角形的一组数是()A .2、3、4B .3、4、5C .1D .、3.下列各式计算正确的是()AB C .=2D .01)-=04.直角三角形ABC 的两条直角边的长分别为1、2,则它的斜边长为()A B C .2D .35.菱形的边长为5,它的一条对角线的长为6,则菱形的另一条对角线的长为为()A .8B .6C .5D .46.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A .AB =BC ,CD =DA B .AB ∥CD ,AD =BC C .AB ∥CD ,∠A =∠CD .∠A =∠B ,∠C =∠D7.下列命题的逆命题是真命题的是()A .对顶角相等B .菱形是一条对角线平分一组对角的四边形C .等边三角形的三个角都等于60°D .平行四边形的一组对边相等8.已知矩形ABCD 如图,AB =3,BC =4,AE 平分∠BAD 交BC 于点E ,点F 、G 分别为AD 、AE 的中点,则FG =()A .52B .2C .2D .1029.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A .42B .43C .56D .5710.如图,在矩形ABCD 中,AB=2,BC=4,P 为边AD 上一动点,连接BP ,把△ABP 沿BP 折叠,使A 落在A′处,当△A′DC 为等腰三角形时,AP 的长为()A .2B .233C .2或233D .2或433二、填空题11.请写出一个与3是同类二次根式的最简二次根式:_________.12.已知□ABCD ,∠A :∠B =1:3,则∠C =________度.13.已知矩形ABCD 如图,AB =4,BC =,点P 是矩形内一点,则ABP CDP S S ∆∆+=______________.14.如图,在菱形ABCD 中,AB=6cm ,∠A=60°,点E 以1cm/s 的速度沿AB 边由A 向B 匀速运动,同时点F 以2cm/s 的速度沿CB 边由C 向B 运动,F 到达点B 时两点同时停止运动.设运动时间为t 秒,当△DEF 为等边三角形时,t 的值为_________.15.已知由(a-b)2≥0可得a2+b2≥2ab,当a=b时,a2+b2=2ab成立.运用上述结论解决问题:对于正数x,代数式x+1+9x的最小值为_________.16.如图,四边形ABCD,AB∥CD,∠ABC=∠BCD=90°,点E为边BC上一点,连接AE、DE,AE=DE,AE⊥DE,若AB=1,CD=3,则线段BC=_____三、解答题17-18.如图,□ABCD的对角线相交于点O,过O的直线分别交AD、BC于点M、N,求证:OM=ON.19.如图,CD是△ABC的高,已知AD=4,BD=1,CD=2,判断△ABC的形状,并说明理由.20.如图,四边形ABCD为等腰梯形,AD∥BC,连结AC、BD.在平面内将△DBC沿BC 翻折得到△EBC.(1)求证:四边形ABEC是平行四边形.(2)若AD=CD=6,∠ADC=120°,求四边形ABEC的面积.21.如图,已知:AB ⊥BC ,DC ⊥BC ,AB=4,CD=2,BC=8,P 是BC 上的一个动点,设BP=x .(1)用关于x 的代数式表示PA+PD ;(2)求出PA+PD 的最小值;(3)仿(22211+245x x x +-+的最小值;(4()22+(243)9x x ++-+的最小值.22.如图,在矩形ABCD 中,点E 为CD 上一点,将△BCE 沿BE 翻折后点C 恰好落在AD 边上的点F 处,过F 作FH ⊥BC 于H ,交BE 于G ,连接CG .(1)求证:四边形CEFG 是菱形;(2)若AB=8,BC=10,求四边形CEFG 的面积.23.在矩形ABCD 中,点P 在AD 上,3,AP=1.将直角尺的顶点放在P 处,直角尺的两边分别交AB ,BC 于点E ,F ,连接EF (如图).(1)当点E与点B重合时,点F恰好与点C重合(如图),则PC的长为;(2)将直角尺从如图中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,从开始到停止,线段EF的中点所经过的路径(线段)长为.24.如图,矩形OABC的顶点A、C分别在x轴和y轴上,顶点B的坐标为(n,2),点E 是AB的中点,在OA上取一点D,将△BAD沿BD翻折,点A刚好落在BC边上的F处,BD、EF交于点P(1)直接写出点E、F的坐标;(2)若OD=1,求P点的坐标;(3)动点Q从P点出发,依次经过F,y轴上的点M,x轴上的点N,然后返回到P点:①若要使Q点运动一周的路径最短,试确定M、N的位置;②若n=3,求最短路径的四边形PFMN的周长.参考答案1.C【解析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【详解】根据题意得:x+1≥0,即x≥-1时,二次根式有意义.故选C.【点睛】a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.B【解析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A、∵22+32=13≠16=42,∴此三角形不是直角三角形,不合题意;B、32+42=52,∴此三角形是直角三角形,符合题意;C、12+)2≠)2,∴此三角形不是直角三角形,不合题意;D)2+2≠2,∴此三角形不是直角三角形,符合题意.故选B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B【解析】【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确.【详解】不能合并,故选项A错误;,故选项B正确∵,故选项C错误;∵)01-=1,故选项D错误.故选B.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.4.B【解析】【分析】根据勾股定理进行计算,即可求得结果.【详解】直角三角形的两条直角边的长分别为1,2,则斜边长.故选B.【点睛】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.5.A【解析】【分析】根据菱形的对角线互相垂直平分的性质和勾股定理,求出另一条对角线的长.【详解】∵一条对角线长是6cm,∴这条对角线的一半长是3cm ,由勾股定理得,另一条对角线的一半长4cm ,∴另一条对角线的长为8cm ,故选A .【点睛】本题主要利用菱形的对角线互相垂直平分及勾股定理来解决.6.C 【解析】【分析】根据平行四边形的判定定理(①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形)进行判断即可.【详解】解:A.,AB BC CD DA ==,两组邻边相等,不能推出四边形ABCD 是平行四边形,故本选项错误;B.//AB CD AD BC ,=,一组对边平行,另外一组对边相等,不能推出四边形ABCD 是平行四边形,故本选项错误;C.//AB CD A C ∠∠,=,可以推出四边形ABCD 是平行四边形,故本选项正确;D.∠A =∠B ,∠C =∠D ,本选项错误;理由:∵∠A=∠B ,∠C=∠D ,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB ∥CD ,但不能推出其它条件,即不能推出四边形ABCD 是平行四边形,故本选项错误;故选C.【点睛】本题考查对平行四边形的判定定理的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.7.C【解析】【分析】分别写出四格命题的逆命题:相等的角为对顶角;一条对角线平分一组对角的四边形是菱形;三个角都是60°的三角形为等边三角形;一组对边相等的四边形是平行四边形;然后再分别根据根据对顶角的定义对第一个进行判断;菱形的判定对第二个进行判断;根据等边三角形的判定方法对第三个进行判断;根据平行四边形的判定对第四个进行判断.【详解】A、“对顶角相等”的逆命题为“相等的角为对顶角等”,此逆命题为假命题,所以A选项错误;B、“菱形是一条对角线平分一组对角的四边形”的逆命题为“一条对角线平分一组对角的四边形是菱形”,此逆命题为假命题,所以B选项错误;C、“等边三角形的三个角都是60°”的逆命题为“三个角都是60°的三角形为等边三角形”,此逆命题为真命题,所以C选项正确;D、“平行四边形的一组对边相等”的逆命题为“一组对边相等的四边形是平行四边形”,此逆命题为假命题,所以D选项错误.故选C.【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.8.D【解析】【分析】由AE平分∠BAD得∠BAE=∠DAE,根据矩形ABCD可得△ABE是等腰直角三角形,所以BE=AB=3,从而可求EC=1,连接DE,由勾股定理得DE的长,再根据三角形中位线定理可求FG的长.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=3,∵BC=AD=4,∴EC=1,连接DE,如图,∴=,∵点F、G分别为AD、AE的中点,∴FG=110 22 DE=.故选D.【点睛】本题考查了矩形的性质以及三角形中位线定理,熟记性质与定理是解题关键.9.B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.10.C【解析】【分析】根据△A′DC为等腰三角形,分三种情况进行讨论:①A'D=A'C,②A'D=DC,③CA'=CD,分别求得AP的长,并判断是否符合题意.【详解】①如图,当A′D=A′C时,过A′作EF⊥AD,交DC于E,交AB于F,则EF垂直平分CD,EF垂直平分AB∴A'A=A'B由折叠得,AB=A'B,∠ABP=∠A'BP∴△ABA'是等边三角形∴∠ABP=30°==;∴AP=②如图,当A'D=DC时,A'D=2由折叠得,A'B=AB=2∴A'B+A'D=2+2=4连接BD,则Rt△ABD中,=∴A'B+A'D<BD(不合题意)故这种情况不存在;③如图,当CD=CA'时,CA'=2由折叠得,A'B=AB=2∴A'B+A'C=2+2=4∴点A'落在BC上的中点处此时,∠ABP=12∠ABA'=45°∴AP=AB=2.综上所述,当△A′DC为等腰三角形时,AP的长为或2.故选C.【点睛】本题以折叠问题为背景,主要考查了等腰三角形的性质,解决问题的关键是画出图形进行分类讨论,分类时注意不能重复,不能遗漏.11.答案不唯一,如【解析】试题分析:同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式.答案不唯一,如考点:同类二次根式的定义点评:本题属于基础应用题,只需学生熟练掌握同类二次根式的定义,即可完成. 12.45【解析】【分析】根据平行四边形邻角互补的性质可求解.【详解】如图,∵四边形ABCD是平行四边形∴∠A+∠B=180°而∠A:∠B=1:3∴∠A=∠C=45°故答案为45.【点睛】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.83【解析】【分析】根据三角形的面积公式求出△APD和△BPC的面积,相加即可得出答案.【详解】过点P作MN∥AD,交AB于点N,交CD于点M.如图,∴AB∥CD,AD∥BC,AD=BC=43AB=CD=4,∴S△APB +S△DPC=12×AB×PN+12CD×PM=12×4×PN+12×4×PM=12×4×(PM+PN)=12×4×4383.故答案为:83.【点睛】本题考查了矩形的性质和三角形的面积公式,主要考查学生的计算能力和观察图象的能力.14.2【解析】【分析】连接BD .当AE=BF 时,易证△ADE ≌△BDF ,即可推出△DEF 是等边三角形,列出方程即可解决问题.【详解】连接BD .∵四边形ABCD 是菱形,∠A=60°,∴△ADB ,△BDC 都是等边三角形,当AE=BF 时,易证△ADE ≌△BDF ,∴DE=DF ,∠ADE=∠BDF ,∴∠EDF=∠ADB=60°,∴△DEF 是等边三角形,由AE=BF ,得到t=6-2t ,t=2时,△DEF 是等边三角形,故答案为:2.【点睛】本题考查菱形的性质、等边三角形的判定和性质、一元一次方程等知识,解题的关键是利用全等三角形解决问题15.7【解析】【分析】根据探究方法中的结论,代入数据即可得出结论【详解】当x >0时,x+9x +1≥21=6+1=7,故代数式x +1+9x有最小值为7.故答案为:7.【点睛】像这样的阅读形题,只要读懂题意仿照例题给定方法,套入数据即可得出结论,为此应加强这方面的练习.16.4【解析】【分析】根据等角的余角相等求出∠1=∠3,再利用“角角边”证明△ABE 和△ECD 全等,然后根据全等三角形对应边相等可得AB=CE ,BE=CD ,再根据BC=BE+CE 代入数据计算即可得解.【详解】如图,∵AE ⊥DE ,∴∠2+∠3=90°,又∵∠ABC=90°,∴∠1+∠2=90°,∴∠1=∠3,在△ABE 和△ECD 中,1390ABC BCD AE DE ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△ABE ≌△ECD (AAS ),∴AB=CE=1,BE=CD=3,∴BC=BE+CE=3+1=4.故答案为:4.【点睛】本题考查了全等三角形的判定与性质,利用等角的余角相等求出三角形全等的条件是解题的关键,利用阿拉伯数字加弧线表示角更形象直观.17.【解析】【分析】先把各二次根式化为最简二次根式,然后合并即可【详解】原式==+=【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后合并同类二次根式.18.见解析.【解析】【分析】根据平行四边形的对角线互相平分可得OA=OC ,再根据平行四边形的对边平行可得AD ∥BC ,利用两直线平行,内错角相等可得∠MAO=∠NCO ,然后利用“角边角”证明△AMO 和△CNO 全等,根据全等三角形对应边相等即可得证.【详解】证明:∵四边形ABCD 为平行四边形∴OB=OD ,MD ∥BN∴∠MDO=∠NBO在△MOD 和△NOB 中MOD NOB OB OD MDO NBO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△MOD ≌△NOB(ASA)∴OM=ON【点睛】本题考查了平行四边形的对角线互相平分,对边平行的性质,全等三角形的判定与性质,比较简单.19.△ACB 为直角三角形,见解析.【解析】【分析】利用勾股定理的逆定理即可判断.【详解】△ABC 为Rt △,理由如下:∵CD 为高,∴∠ADC=∠BDC=90°在Rt △ACD 中,由勾股定理AC ==,在Rt △BCD 中,由勾股定理BC ==,∵AC 2+BC 2=(22225AB +==∴△ACB 为直角三角形【点睛】本题考查了勾股定理和勾股定理的逆定理,正确理解定理是关键.20.(1)见解析;(2)【解析】【分析】(1)由四边形ABCD 为等腰梯形,AD ∥BC ,可得AB=DC ,AC=BD ,又由在平面内将△DBC 沿BC 翻折得到△EBC ,可得EC=DC ,DB=BE ,继而可得:EC=AB ,BE=AC ,则可证得四边形ABEC 是平行四边形;(2)利用等腰梯形的性质,求得高和BC 的长即可求得四边形ABEC 的面积=2△ABC 的面【详解】(1)证明:∵四边形ABCD 为等腰梯形,AD ∥BC ,∴AB=DC ,AC=BD ,由折叠的性质可得:EC=DC ,DB=BE ,∴EC=AB ,BE=AC ,∴四边形ABEC 是平行四边形.(2)解:如图,过点A 、D 分别作AF ⊥BC ,DG ⊥BC ,垂足分别为F 、G ,∵AD ∥BC ,∠ADC=120°,∴FG=AD=6,AF=DG ,∠ABF=60°,∵四边形ABCD 为等腰梯形,∴AB=DC=6,∴BF=12AB=3,AF=32在Rt △ABF 和Rt △CDG 中,AB DC AF DG ⎧⎨⎩==,∴Rt △ABF ≌Rt △CDG (HL ),∴BF=GC=3,∴BC=12,∴S 四边形ABEC =2S △ABC =2×12【点睛】此题考查了等腰梯形的性质、折叠的性质以及平行四边形的性质.注意掌握数形结合思想的21.(1(2)10,(3)(4)【解析】【分析】(1)根据勾股定理可直接用x表示PA+PD即可;(2)作A关于BC的对称点E,连接DE,根据轴对称确定最短路线问题,则DE就是PA+PD 的最小值,然后利用勾股定理列式计算即可得解;(3)设DC=1,AB=3,BC=6,根据(2)结论;即可得到结果;(4)设DC=2,AB=3,BC=5,PC=2+x,则BP=3-x,根据(2)结论即可得到结果.【详解】(1)∵AB⊥BC,DC⊥BC,AB=4,CD=2,BC=8,∴+=+=;(2)作A关于BC的对称点E,连接DE,则DE就是PA+PD的最小值,BE=AB=4,过E作EF∥BC交DC的延长线于F,则四边形BEFC是矩形,∴EF=BC=8,DF=2+4=6,∴=10,∴PA+PD的最小值是10;(3)设DC=1,AB=3,BC=6,则EF=6,DF=3+1=4,∴DE==;(4)设DC=2,AB=3,BC=5,PC=2+x,则BP=3-x,EF=5,DF=3+2=5,∴=5,∴的最小值是.【点睛】本题考查了利用轴对称确定最短路线问题,考虑利用几何知识求解是解题的关键,作出图形数形结合更容易理解.22.(1)证明见解析;(2)20.【解析】【分析】(1)根据翻折的性质可得∠1=∠2,EC=EF,再根据同角的余角相等求出∠1=∠3,从而得到∠2=∠3,根据同位角相等,两直线平行可得EF∥CG,再根据垂直于同一直线的两直线平行求出FG∥CD,从而求出四边形CEFG是平行四边形,然后根据邻边相等的平行四边形是菱形证明;(2)根据翻折的性质可得BF=BC=10,然后利用勾股定理列式求出AF,从而得到DF的长,设CE=EF=x,表示出DE,在Rt△DEF中,利用勾股定理列出方程求出x的值,再根据菱形的面积公式列式计算即可得解.【详解】(1)证明:根据翻折,∠1=∠2,EC=EF,∵FH⊥BC,∴∠3+∠4=90°,又∵∠1+∠4=∠BCD=90°,∴∠1=∠3,∴∠2=∠3,∴EF∥CG,又∵FH⊥BC,∠BCD=90°,∴FG∥CD,∴四边形CEFG是平行四边形,∵EC=EF(已证),∴四边形CEFG是菱形;(2)解:根据翻折,BF=BC=10,在Rt△ABF中,AF=,∴DF=AD-AF=10-6=4,设CE=EF=x,则DE=CD-CE=8-x,在Rt△DEF中,DF2+DE2=EF2,即42+(8-x)2=x2,解得x=5,所以,四边形CEFG的面积=CE•DF=5×4=20.【点睛】本题考查了矩形的性质,菱形的判定与性质,翻折变换的性质,(1)求出四边形CEFG是邻边相等的平行四边形是证明菱形的关键,(2)根据勾股定理求出菱形的边长是解题的关键.23.(1)(2【解析】【分析】(1)如图2,先利用勾股定理计算出PB=2,再证明△APB∽△DCP,然后利用相似比可计算出PC;(2)设线段EF的中点为O,连接OP,OB,如图1,利用直角三角形斜边上的中线性质得OP=OB=12EF,则利用线段垂直平分线定理的逆定理可得O点在线段BP的垂直平分线上,再确定旋转开始和停止时EF的中点位置,然后根据三角形中位线性质确定线段EF的中点所经过的路径(线段)长.【详解】(1)如图2,在矩形ABCD 中,∠A=∠D=90°,∵AP=1,AB=3∴221(3) ,∵∠ABP+∠APB=90°,∠BPC=90°,∴∠APB+∠DPC=90°,∴∠ABP=∠DPC ,∴△APB ∽△DCP ,∴AP :CD=PB :CP ,即13=2:PC ,∴3,(2)设线段EF 的中点为O ,连接OP ,OB ,如图1,在Rt △EPF 中,OP=12EF ,在Rt △EBF 中,OB=12EF ,∴OP=OB ,∴O 点在线段BP 的垂直平分线上,如图2,当点E 与点B 重合时,点F 与点C 重合时,EF 的中点为BC 的中点O ,当点E 与点,A 重合时,EF 的中点为PB 的中点O ,∴OO′为△PBC 的中位线,∴OO′=123∴线段EF 3【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决(2)小题的关键是判断O 点在线段BP 的垂直平分线上.24.(1)E (n ,1);F (n-2,2);(2)点P 坐标为(73,43);(3)①见解析,+.【解析】【分析】(1)由翻折知四边形ABFD 是正方形,据此得DF=AB=AD=2、OD=CF=BC-BF=n-2,即可得出点F 坐标,由E 为AB 中点可得点E 的坐标;(2)OD=1知n=3,据此得出点B 、D 、E 、F 的坐标,分别求得直线BD 和直线EF 的解析式,联立方程组即可求得BD 与EF 的交点P 的坐标;(3)①作点F 关于y 轴的对称点F′、作点P 关于x 轴的对称点P′,连接F′P′交y 轴于点M 、交x 轴于点N ;②由n=3结合(2)知点P 、F 及其关于坐标轴的对称点,利用勾股定理求解可得.【详解】(1)∵B (n ,2),∴AB=OC=2、OA=BC=n ,由翻折知△DAB ≌△DFB ,∴∠DAB=∠DFB=90°、BA=BF=2,∵∠ABF=90°,∴四边形ABFD 是正方形,∴DF=AB=AD=2,∴OD=CF=BC-BF=n-2,则F (n-2,2),∵E 为AB 中点,∴AE=BE=1,∴E (n ,1);(2)若OD=1,则n-2=1,即n=3,∴B (3,2)、D (1,0)、E (3,1)、F (1,2),设BD 所在直线解析式为y=kx+b ,将点B (3,2)、D (1,0)代入,得:320k b k b +⎧⎨+⎩==,解得:11 kb⎧⎨-⎩==,∴BD所在直线解析式为y=x-1;设EF所在直线解析式为y=mx+n,将E(3,1)、F(1,2)代入,得:312 m nm n+⎧⎨+⎩==,解得:1252mn==⎧-⎪⎪⎨⎪⎪⎩,∴EF所在直线解析式为y=-12x+52;由11522y xy x-⎧⎪⎨-+⎪⎩==可得7343xy⎧⎪⎪⎨⎪⎪⎩==,所以点P坐标为(73,43);(3)①如图所示,作点F关于y轴的对称点F′、作点P关于x轴的对称点P′,连接F′P′交y轴于点M、交x轴于点N,②若n=3,由(2)知P(73,43)、F(1,2),则F′(-1,2)、P′(73,-43),∴,.∴C四边形PFMN【点睛】本题主要考查四边形的综合问题,解题的关键是掌握矩形和翻折变换的性质、正方形的判定与性质、待定系数法求函数解析式、轴对称-最短路线问题及勾股定理.。
八年级数学下册期中考试卷含答案

八年级数学下册期中考试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)11的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3B .m ≤3且m ≠2C .m <3D .m <3且m ≠25A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 7.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( ) A .1 B .2 C .3D .48.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S 四边形∆=中正确的有( )A .4个B .3个C .2个D .1个9.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DCC .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.282=_______.364________.4.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________。
八年级数学下册期中考试卷(附答案)

八年级数学下册期中考试卷(附答案)一、选择题(本大题共10小题,每小题4分,总计40分) 139x +x 的取值范围是( ) A .3x ≥-B .3x ≥-且2x ≠C .3x >-且2x ≠D .3x ≤-且2x ≠2.如图,从一个大正方形中裁去面积为6cm 2和15cm 2的两个小正方形,则留下阴影部分的面积为( )A .2610B .221cmC .2215D .263.对于任意实数x ,多项式257x x -+的值是( ) A .负数B .非正数C .正数D .无法确定正负的数4.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为( ) A .1B .0C .-1D .-25.已知ABC 的三边长分别为a ,b ,c ,且关于x 的一元二次方程2()20c b x ax c b +-+-=有两个相等的实数根,若2|5|(5)0a b -+-=,则ABC 的形状为( ) A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形6.我国南宋数学家杨辉所著的《田亩比类乘除算法》中有这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长和宽各多少步?设这块田地的宽为x 步,则所列的方程正确的是( )A .()12864x x +-=B .()12864x x ++=C .()12864x x -=D .()12864x x +=7.如图,长方形纸片ABCD 中, 点E 是CD 的中点,连接AE ; 按以下步骤作图:①分别 以点A 和E 为圆心, 以大于12AE 的等长为半径作弧,两弧相交于点M 和N ;②作直线MN ,且直线MN 刚好经过点B .若2DE =,BC 则的长度是( )A .2B 3C .23D .48.满足下列条件时,ABC 不是直角三角形的是( ) A .::3:4:5A B C ∠∠∠= B .22A B C ∠=∠=∠ C .34AB =3BC =,5AC =D .20A ∠=︒,70B ∠=︒9.将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A 的边长为4,正方形C 的边长为3,则正方形B 的面积为( )A .25B .5C .16D .1210.我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它是由四个全等的直角三角形与中间的小正方形EFGH 拼成的一个大正方形ABCD ,连接AC ,交BE 于点P ,如图所示,若正方形ABCD 的面积为28,7AE EB +=,则CFP AEP S S -的值是( )A .3B .3.5C .4D .7二、填空题(本大题共4小题,每小题5分,总计20分)1122x x -4x +x =_______.12.若m ,n 分别是一元二次方程2410x x -+=的两个根,则23m m n -+的值为______. 13.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为20cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为 _____.14.对于一元二次方程20ax bx c ++=(a ≠0),下列说法: ①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立; ④若0x 是一元二次方程20ax bx c ++=的根,则()2204b ac a x b -=+. 其中正确的是_________.三、(本大题共2小题,每小题8分,总计16分) 15.计算: 804595-(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭16.已知:53x +=53y -=,求代数式22x y -的值. 四、(本大题共2小题,每小题8分,总计16分)17.已知关于x 的方程2(2)20x k x k -++=. (1)求证:无论k 取任意实数值,方程总有实数根.(2)若等腰三角形ABC 的一边1a =,另两边长b 、c 恰是这个方程的两个根,求ABC 的周长. 18.密云水库是首都的“生命之水”,作为北京重要的水源地,保持水质成为重中之重.如图所示,点A 和点B 分别表示两个水质监测站,点C 表示某一时刻监测人员乘坐的监测船的位置.其中,B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向的交汇处,求此时从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数.五、(本大题共2小题,每小题10分,总计20分) 19.a b a b ,因为22a ba b aba b =-=-,所以构造“对偶式”再将其相乘可以有效地将a b和a b ()()22222322222222++==+--+像这样,通过分子、分母同乘一个式子把分母中的根号化去,叫做分母有理化.根据以上材料,理解并运用材料提供的方法,解答下列问题: (1)对偶式23+23之间的关系是___________;A .互为相反数B .互为倒数C .绝对值相等 (2)已知5252x y ==-+22x y xy +的值; (3)2482x x --=.248x x t --=) 20.某大型批发商场平均每天可售出某款商品3000件,售出1件该款商品的利润是10元. 经调查发现,若该款商品的批发价每降低1元,则每天可多售出1000件.为了使每天获得的利润更多,该批发商场决定降价x 元销售该款商品.(1)当x 为多少元时,该批发商场每天卖出该款商品的利润为40000元?(2)若按照这种降价促销的策略,该批发商场每天卖出该款商品的利润能达50000元吗?若能,请求出x 的值,若不能,请说明理由.六、(本大题共1小题,每小题12分,总计12分)21.定义:如果一元二次方程()200ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程.(1)若()200ax bx a a ++=≠有两个相等的正实数根,请你判断这个方程是否为“凤凰”方程? (2)已知关于x 的方程()22130m x x nx +-+=是“凤凰”方程,且两个实数根都是整数,求整数m的值.七、(本大题共1小题,每小题12分,总计12分)22.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.八、(本大题共1小题,每小题14分,总计14分)23.如图1,长方形ABCD中,6AB=,8AD=,E为AD边上一点,3DE=,动点P从点B出发,沿B C D→→以1个单位/s作匀速运动,设运动时间为t.(1)当t为_________s时,ABP与CDE全等;(2)如图2,EF为AEP△的高,当点Р在BC边上运动时,EF的最小值是_________;(3)当点P在EC的垂直平分线上时,求出t的值.参考答案:题号 1 2 3 4 5 6 7 8 9 10答案 B A C B D D C A A B 1-12.313.30cm14.①②15.(1804595 -453535-=25=(2)221(31)(2)123-⎛⎫+--- ⎪⎝⎭19221=+9=.16.解:∵53x +=53y -=, ∴5x y +=3x y -=∴()()225315x y x y x y -=+-=17.(1)解:∵()()2222424420k k k k k ∆=+-⨯=-+=-≥, ∴无论k 取任意实数值,方程总有实数根.(2)解:①当1a =的边为等腰三角形的底边时,b c =, 此时方程有两个相等的实数根, ∴()220k ∆=-=,解得2k =,此时方程为2440x x -+=,解得122x x ==, ∴ABC 的周长为5;②当1a =的边为等腰三角形的腰时,1b a ==或1c a ==, 此时方程有一个根为1,代入方程,可得()1220k k -++=,解得1k =, 此时方程为2320x x -+=,解得11x =,22x =, ∵1、1、2不能满足两边之和大于第三边, ∴此情况舍去.综上所述:ABC 的周长为5.18.解:解:∵B 点在A 点的西南方向,船只C 在A 点南偏东25°方向和B 点北偏东75°方向,∴452570BAC ∠=︒+︒=︒,754530ABC ∠=︒-︒=︒, ∴180180703080ACB BAC ABC ∠=︒-∠-∠=︒-︒-︒=︒.答:从船只C 看A 、B 两个水质监测站的视角ACB ∠的度数是80°. 19.(1)解:∵((2323431⨯=-=, ∴对偶数23+23之间的关系是互为倒数,故选:B ; (2)由题意得()()5252525252x +=--+,()()5252525252y -==+-+,∴251x y xy +==,, ∴22x y xy +()xy x y =+ 5=(3248x x t --=2482x x --=,得()2482x x t ---=,解得8t =,2488x x --2482x x --②, ∴①+②,得22410x -, 两边同时平方得()424100x -=, 解得=1x -,经检验,=1x -是原方程的解.20.(1)解:该批发商场决定降价x 元销售该款商品,依题意得,()()300010001040000x x +-=,即27100x x -+= 解得:122,5x x ==,答:当x 为2或5时,该饮料批发商店每天卖出该款饮料的利润为40000元 (2)解:()()300010001050000x x +-=, 即27200x x -+=∵24494200b ac ∆=-=-⨯<,原方程无解,∴按照这种降价促销的策略,该饮料批发商店每天卖出该款饮料的利润不能达到50000元. 21.解: (1)解:∵()200ax bx a a ++=≠有两个相等的实数根, ∴()()224220b a b a b a ∆=-=+-=,∵这两个相等的实数根为正数,∴02bx a-=>, ∴a ,b 异号, ∴20b a -≠,∴20b a +=,即0a b a ++=, ∴这个方程是“凤凰”方程; (2)解:方程整理得:()230m x nx m -++=,∵此方程是“凤凰”方程, ∴3230m n m m n -++=+-=, ∴32n m =-,∵()()2222243412324129n m m n m m m m m ∆=--=-+=--+=, ∴()()32393233262626m n n m x m m m --±-±-±-±===---,∴1=1x ,23mx m =-, ∵两个实数根都是整数, ∴整数m 的值为0或2或4或6. 22.解:(1)如图1,三角形为所求;(2)如图2,三角形为所求;(3)如图3,正方形为所求.23.(1)解:如图,∵四边形ABCD是长方形,∴90AB CD B D=∠=∠=︒,,当点P在BC边上,且3BP DE==时,ABP CDE△≌△,∵BP t=,∴3t=;当点P在CD边上,若点P与点C重合,满足90AB CD B D=∠=∠=︒,,此时BP DE>,∴ABP与CDE不全等,若点P与点D重合,满足90AB CD BAD D=∠=∠=︒,,此时AP DE>,∴ABP与CDE不全等,综上所述,当3t=时,ABP CDE△≌△;故答案为:3;(2)解:∵6AB=,8AD=,3DE=,∴835AE AD DE=-=-=,当点P在BC边上运动,165152AEPS=⨯⨯=△,∵EF为AEP△的高,∴1152AEPAP EF S⋅==△,∴AP•EF=40,∴EF随AP的增大而减小,∴22222525AP BP AB BP BP +=+=+ ∴AP 随BP 的增大而增大,当点P 与点C 重合时BP 最大,此时AP 也最大,而EF 则最小, 如图,点P 与点C 重合,∵9068B AB BC AD ∠=︒===,,, ∴226810AC =+=, ∵1122PAE AC EF AE AB S ⋅=⋅=△, ∴1065EF =⨯, 解得3EF =, ∴EF 的最小值为3, 故答案为:3;(3)解:设EC 的垂直平分线为直线MN ,如图,点P 在BC 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,作PG AD ⊥于点G ,则90∠=︒PGE , ∵AD BC ∥,PG AD CD AD ⊥⊥,, ∴6PG CD ==, 同理AG BP t ==,5GE t =-,∵222GE PG PE +=, ∴222(5)6(8)t t -+=-,第 11 页 共 11 页 解得12t =; 如图,点P 在CD 边上,且在直线MN 上,连接PE ,则8PE PC t ==-,14PD t =-,∵222DE PD PE +=, ∴2223(14)(8)t t +-=-, 解得474t =,综上所述,t 的值为12或474.。
2023年人教版八年级数学下册期中考试卷(参考答案)

2023年人教版八年级数学下册期中考试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 4.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解6.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°7.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC8.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x=>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______. 4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC的解析式为________.5.如图,已知函数y=2x+b与函数y=kx-3的图象交于点P(4,-6),则不等式kx-3>2x+b的解集是__________.6.如图,ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果CDM的周长为8,那么ABCD的周长是_____.三、解答题(本大题共6小题,共72分)1.解方程:21133x xx x=+++.2.先化简2728333x xxx x-⎛⎫+-÷⎪--⎝⎭,再从04x≤≤中选一个适合的整数代入求值.3.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、C6、C7、C8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、42、-2 -33、54、113y x=-+5、x<46、16三、解答题(本大题共6小题,共72分)1、32 x=-2、42xx+;1x=时,原式52=(或当2x=时,原式32=.)3、m>﹣24、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)略(2)90°(3)AP=CE6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.。
人教版八年级数学下册期中考试题及答案【完整版】

人教版八年级数学下册期中考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.式子:①2>0;②4x+y≤1;③x+3=0;④y-7;⑤m-2.5>3.其中不等式有()A.1个B.2个C.3个D.4个5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.下列长度的三条线段能组成直角三角形的是()A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<48.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.14二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.正五边形的内角和等于______度.3.当x3x2﹣4x+2017=________.4.如图,在△ABC中,∠B=46°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=________.5.如图,M、N是正方形ABCD的边CD上的两个动点,满足AM BN=,连接AC 交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是________.6.如图,在平行四边形ABCD中,添加一个条件_____使平行四边形ABCD是菱形.三、解答题(本大题共6小题,共72分)1.解不等式:111 23x x+--≤2.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=-1,y=12.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,(1)求证:CF∥AB,(2)求∠DFC的度数.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、A7、A8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、5403、20164、67°.5、353-6、AB=BC(或AC ⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、1x ≤2、223x y -+,14-. 3、8k ≥-且0k ≠.4、(1)略;(2)105°5、24°.6、(1)购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)三种方案:①购买A 型公交车6辆,则B 型公交车4辆;②购买A 型公交车7辆,则B 型公交车3辆;③购买A 型公交车8辆,则B 型公交车2辆;(3)购买A 型公交车8辆,B 型公交车2辆费用最少,最少费用为1100万元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题1. 下列有理式224013922,,,,2x x ab a x x aπ+--中,分式有( )个 A. 1 B. 2C. 3D. 42. 分式2222,,42x y y x x y y -+中,最简分式有( ) A. 0个 B. 1个C. 2个D. 3个3. 若把分式32x yx+的x 、y 同时缩小12倍,则分式的值( ) A 扩大12倍 B. 缩小12倍C. 不变D. 缩小6倍4. 点()0,1( ) A. 轴上 B. 轴上 C. 第一象限 D. 第三象限5. 函数y=12x +中,x 的取值范围是( ) A. x≠0B. x >﹣2C. x <﹣2D. x≠﹣26. 一次函数0y kx b kb =+,<,且随的增大而增大,则其图象可能是( ) A. B. C. D.7. 如图,直线3y kx =+经过点(2,0),则关于的不等式30kx +≥的解集是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤8. 若关于x 的分式方程1322m x x x++=--有增根,则m 的值是( ) A. m =-1 B. m =2C. m =3D. m =0或m =39. 关于的方程:11ax =+的解是负数,则的取值范围是( ) A. 1a <B. 1a <且0a ≠C. 1aD. 1a 且0a ≠10. 已知反比例函数y=21k x+的图上象有三个点(2,1y ), (3, 2y ),(, 3y ),则1y ,2y ,3y 的大小关系是( ) A. 1y >2y >3yB. 2y >1y >3yC. 3y >1y >2yD. 3y >2y >1y11. 张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是A. 加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25B. 途中加油21升C. 汽车加油后还可行驶4小时D. 汽车到达乙地时油箱中还余油6升 12. 如图,在平面直角坐标系中,点是函数()0ky x x=>在第一象限内图象上一动点,过点分别作AB x ⊥轴于点B AC y ⊥、轴于点,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点的纵坐标逐渐增大时,四边形OFAE 的面积( )A. 不变B. 逐渐变大C. 逐渐变小D. 先变大后变小二.填空题13. 当x =____时,分式225x x -+的值为0. 14. 在现代科学技术中,纳米是一种长度单位,1纳米等于十亿分之一米(即1纳米=-910米),经科学检测,新冠病毒的直径约为100纳米,用科学计数法表示:100纳米=__________米。
15. 点A(-3,2)关于y 轴对称点的坐标为__________. 16. 将直线 y =-x -3向上平移5个单位,得到直线_________17. 若函数y =kx+b 的图象平行于直线y =2x ,且过点(2,﹣4),则该函数的表达式是___________ . 18. 直线2y x b =-+与两坐标轴围成的三角形的面积为4,则的值为______. 19. 如图,在反比例函数4y x=的图象上,有点1P ,2P ,3P ,4P ,它们的横坐标依次为1,2,3,4,分别过这些点作轴与轴的垂线,图中所构成的阴影部分的面积从左到右依次为1S ,2S ,3S ,则1S +2S +3S =_____20. 将x=23代入反比例函数y=-1x 中,所得的函数值记为1y ,又将x=1y +1代入反比例函数y=-1x中,所得的函数值记为2y ,又将x=2y +1代入反比例函数y=-1x中,所得的函数值记为3y ,…,如此继续下去,则y 2020=______________三.计算或解答21. 计算:(1)12020201112( 3.14)316π--⎛⎫---+-+- ⎪⎝⎭(2)2221211x x xx x -+-+-+ 22. 解方程:21124x x x -=--. 23. 先化简:24x 4x 4x x x ++⎛⎫-÷ ⎪⎝⎭,若﹣2≤x≤2,请你选择一个恰当的x 值(x 是整数)代入求值.24. 某市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.25. 甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)求乙车到达A 地时甲车距A 地的路程.四.综合实践与应用26. 抗击“新冠疫情”期间,某种消毒液A 市需要6吨,B 市需要8吨,正好M 市储备有10吨,N 市储备有4吨,预防“新冠疫情”领导小组决定将这14吨消毒液调往A 市和B 市,消毒液每吨的运费价格如下表。
设从M 市调运x 吨到A 市.(1)求调运14吨消毒液的总运费y关于x的函数关系式;(2)求出总运费最低的调运方案,最低运费的多少?27. 如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线24myx-=在第一象限内交于点C(1,m),直线CQ解析式为:y=kx+b(k≠0) (1)求m和n的值;(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线24myx-=交于点P、Q,求△APQ的面积.(3)直接写出24mkx bx-+-<的解集(4)直接写出直方程24mkx bx-+-=的解。
答案与解析一.选择题1. 下列有理式224013922,,,,2x x ab a x x aπ+--中,分式有( )个 A. 1 B. 2C. 3D. 4[答案]C [解析]试题分析:因为形如(0)A B B ≠的式子是分式,所以有理式224013922,,,,2x x ab a x x aπ+--中,22403922,,x a x x a-是分式,故选C. 考点:分式. 2. 分式2222,,42x y yx x y y -+中,最简分式有( ) A. 0个 B. 1个C. 2个D. 3个[答案]B [解析] [分析]根据最简分式的定义,一一判断题目中的几个分式是否最简分式即可得到答案. [详解]解:2142x x=,分子分母有公因数2,故不是最简分式; 22x yx y -+,分子分母没有公因式,故是最简分式;2122y y y=,分子分母有公因式y ,故不是最简分式; 因此只有一个最简分式, 故选:B .[点睛]本题考查了最简分式的定义,即:一个分式的分子与分母没有公因式时,叫最简分式,掌握最简分式的定义是解题的关键. 3. 若把分式32x yx+的x 、y 同时缩小12倍,则分式的值( ) A. 扩大12倍 B. 缩小12倍C. 不变D. 缩小6倍[答案]C [解析] [分析]要把x ,y 同时缩小12倍,即将x ,y 用,1212x y代换,再化简比较即可得到答案; [详解]解:把分式32x yx+的x 、y 同时缩小12倍,得到: 3312122212x y x y x x +⨯+=⨯,∴分式的值没有改变, 故选:C .[点睛]此题考查的是对分式的性质的理解和运用,扩大或缩小n 倍,就将原来的数乘以n 或除以n . 4. 点()0,1在( ) A. 轴上 B. 轴上C. 第一象限D. 第三象限[答案]B [解析] [分析]直接利用轴上点的坐标特点得出答案. [详解]∵横坐标为0, ∴点(0,1)在y 轴上. 故选:B .[点睛]本题主要考查了点的坐标,正确掌握y 轴上点的坐标特点“y 轴上的点横坐标为0”是解题的关键. 5. 函数y=12x +中,x 的取值范围是( )A. x≠0B. x >﹣2C. x <﹣2D. x≠﹣2[答案]D [解析]试题分析:由分式有意义条件得出x+2≠0,解得x≠﹣2. 故选D .点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.6. 一次函数0y kx b kb =+,<,且随的增大而增大,则其图象可能是( ) A. B. C. D.[答案]A [解析] [分析]先根据一次函数y kx b =+中,y 随x 增大而增大,且0kb <,判断出k 与b 的符号,再根据一次函数的图象与系数的关系进行解答.[详解]∵一次函数y kx b =+中,随的增大而增大, ∴0k >, ∵0kb <, ∴0b <,∴一次函数y kx b =+的图象过一、三、四象限. 故答案为:A .[点睛]本题考查的是一次函数的图象与性质、一次函数的性质及不等式的基本性质,解决本题的关键是熟练掌握一次函数图像和系数的关系.7. 如图,直线3y kx =+经过点(2,0),则关于的不等式30kx +≥的解集是( )A. 2x >B. 2x <C. 2x ≥D. 2x ≤[答案]D [解析] 分析]写出函数图象在x 轴上方及x 轴上所对应的自变量的范围即可. [详解]解:当x ≤2时,y ≥0.所以关于x 的不等式kx +3≥0的解集是x ≤2. 故选:D .[点睛]本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y =kx +b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合. 8. 若关于x 的分式方程1322m x x x++=--有增根,则m 的值是( ) A. m =-1 B. m =2C. m =3D. m =0或m =3[答案]C [解析] [分析]分式方程去分母转化为整式方程,由分式方程有增根得到x ﹣2=0,求出x 的值,代入整式方程计算即可求出m 的值.[详解]解:去分母得:13(2)m x x --=-, 由分式方程有增根,得到x ﹣2=0,即x =2, 把x =2代入整式方程得:m ﹣3=0, 解得:m =3, 故选:C[点睛]此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值. 9. 关于的方程:11ax =+的解是负数,则的取值范围是( ) A. 1a < B. 1a <且0a ≠ C. 1a D. 1a 且0a ≠[答案]B [解析]试题分析:方程去分母得,a=x+1, 解得,x=a-1, ∵x <0,∴a -1<0即a <1,又a≠0则a 的取值范围是a <1且a≠0. 故选B.考点:分式方程的解.10. 已知反比例函数y=21k x+的图上象有三个点(2,1y ), (3, 2y ),(, 3y ),则1y ,2y ,3y 的大小关系是( ) A. 1y >2y >3y B. 2y >1y >3yC. 3y >1y >2yD. 3y >2y >1y[答案]A [解析] [分析]先判断出k 2+1是正数,再根据反比例函数图象的性质,比例系数k >0时,函数图象位于第一三象限,在每一个象限内y 随x 的增大而减小判断出y 1、y 2、y 3的大小关系,然后即可选取答案. [详解]解:∵k 2≥0, ∴k 2+1≥1,是正数,∴反比例函数y =21k x+的图象位于第一三象限,且在每一个象限内y 随x 的增大而减小,∵(2,y 1),(3,y 2),(﹣1,y 3)都在反比例函数图象上,∴0<y2<y1,y3<0, ∴y1>y2>y3.故选:A.[点睛]本题考查了反比例函数图象的性质,对于反比例函数y=kx(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内,本题先判断出比例系数k2+1是正数是解题的关键.11. 张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是A. 加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是y=﹣8t+25B. 途中加油21升C. 汽车加油后还可行驶4小时D. 汽车到达乙地时油箱中还余油6升[答案]C[解析]分析:A、设加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系式为y=kt+b.将(0,25),(2,9)代入,得b25{2k b9=+=,解得k8{b25=-=,∴y=﹣8t+25,正确.故本选项不符合题意.B、由图象可知,途中加油:30﹣9=21(升),正确,故本选项不符合题意.C、由图可知汽车每小时用油(25﹣9)÷2=8(升),∴汽车加油后还可行驶:30÷8=334<4(小时),错误,故本选项符合题意.D 、∵汽车从甲地到达乙地,所需时间为:500÷100=5(小时),∴5小时耗油量为:8×5=40(升).又∵汽车出发前油箱有油25升,途中加油21升,∴汽车到达乙地时油箱中还余油:25+21﹣40=6(升),正确,故本选项不符合题意.故选C .12. 如图,在平面直角坐标系中,点是函数()0k y x x=>在第一象限内图象上一动点,过点分别作AB x ⊥轴于点B AC y ⊥、轴于点,AB AC 、分别交函数()10y x x =>的图象于点E F 、,连接OE OF 、.当点的纵坐标逐渐增大时,四边形OFAE 的面积( )A. 不变B. 逐渐变大C. 逐渐变小D. 先变大后变小[答案]A[解析][分析] 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE SCOF S = 12=,则四边形OFAE 的面积为定值1k -. [详解]∵点A 是函数(0k y x x=>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C , ∴矩形ACOB 的面积为,∵点E 、F 在函数1y x=的图象上, ∴BOE S COF S = 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .[点睛]本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.二.填空题13. 当x =____时,分式225x x -+的值为0. [答案]2[解析]由题意得 20250x x -=⎧⎨+≠⎩ , 解之得2x = .14. 在现代科学技术中,纳米是一种长度单位,1纳米等于十亿分之一米(即1纳米=-910米),经科学检测,新冠病毒的直径约为100纳米,用科学计数法表示:100纳米=__________米。