高一数学指数与指数函数试题答案及解析
高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析一、选择题1. 函数 y = 2^x 的反函数是()A. y = log2(x)B. y = log(x)C. y = log2(x+1)D. y = log2(x-1)答案:A解析:由指数函数与对数函数的关系,我们知道指数函数y = 2^x 的反函数是对数函数 y = log2(x)。
因此,选项A正确。
2. 函数 y = log3(x) 的定义域是()A. x > 0B. x ≥ 1C. x < 0D. x ≤ 1答案:A解析:对数函数 y = log3(x) 的定义域是 x > 0,因为对数函数要求真数大于0。
所以选项A正确。
二、填空题1. 函数 y = 3^x 在 x = 2 时的函数值是________。
答案:9解析:将 x = 2 代入函数 y = 3^x,得到 y = 3^2 = 9。
2. 函数 y = log5(x) 在 x = 25 时的函数值是________。
答案:2解析:将 x = 25 代入函数 y = log5(x),得到 y =log5(25) = 2。
三、解答题1. 已知函数 y = 2^x 和 y = log2(x),求它们的交点坐标。
解析:为了求出两个函数的交点坐标,我们可以将两个函数相等,即:2^x = log2(x)对上式两边取以2为底的对数,得到:log2(2^x) = log2(log2(x))x = log2(log2(x))这是一个关于 x 的方程,我们可以通过换元法求解。
设t = log2(x),则原方程可化为:t = log2(t)2^t = t这是一个二次方程,我们可以通过解二次方程的方法求解。
将方程两边移项,得到:2^t - t = 0设 f(t) = 2^t - t,求导得到 f'(t) = 2^t ln(2) - 1。
令 f'(t) = 0,解得 t = log2(ln(2))。
新课标高一数学指数与指数函数练习题及答案

指数与指数函数同步练习一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、化简1111132168421212121212-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,结果是( )A 、11321122--⎛⎫- ⎪⎝⎭B 、113212--⎛⎫- ⎪⎝⎭ C 、13212-- D 、1321122-⎛⎫- ⎪⎝⎭2、44等于( )A 、16aB 、8aC 、4aD 、2a3、若1,0a b ><,且b b a a -+=则b b a a --的值等于( ) A 、6B 、2±C 、2-D 、24、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( ) A 、1>a B 、2<a C、a <、1a <<5、下列函数式中,满足1(1)()2f x f x +=的是( ) A 、 1(1)2x + B 、14x + C 、2x D 、2x -6、下列2()(1)x x f x a a -=+是( )A 、奇函数B 、偶函数C 、非奇非偶函数D 、既奇且偶函数7、已知,0a b ab >≠,下列不等式(1)22a b >;(2)22a b>;(3)ba 11<;(4)1133a b >;(5)1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭中恒成立的有( )A 、1个B 、2个C 、3个D 、4个8、函数2121x x y -=+是( )A 、奇函数B 、偶函数C 、既奇又偶函数D 、非奇非偶函数9、函数121x y =-的值域是( )A 、(),1-∞B 、()(),00,-∞+∞ C 、()1,-+∞ D 、()(,1)0,-∞-+∞10、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限11、2()1()(0)21x F x f x x ⎛⎫=+⋅≠ ⎪-⎝⎭是偶函数,且()f x 不恒等于零,则()f x ( )A 、是奇函数B 、可能是奇函数,也可能是偶函数C 、是偶函数D 、不是奇函数,也不是偶函数12、一批设备价值a 万元,由于使用磨损,每年比上一年价值降低%b ,则n 年后这批设备的价值为( )A 、(1%)na b -B 、(1%)a nb -C 、[1(%)]n a b -D 、(1%)n a b - 二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若103,104x y ==,则10x y -= 。
高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
(精选试题附答案)高中数学第四章指数函数与对数函数真题

(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
2021-2022年高一数学人教版A版(2019)必修第一册同步练习题4-1 指数与指数函数含答案

2021-2022年高一数学人教版A 版(2019)必修第一册同步练习题4-1 指数与指数函数【含答案】一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2017·内蒙古集宁一中高一期中(文))()()3343112222--⎛⎫⎛⎫--+-+--- ⎪ ⎪⎝⎭⎝⎭的值( ) A .374B .8C .24-D .8-【答案】C【解析】原式111682488⎛⎫=-----=- ⎪⎝⎭.故选:C. 2.232a a⋅的结果为( )A .32aB .16aC .56a D .65a【答案】C【解析】7522226627132362a a aa a aa aa-====⋅⋅,故选:C3.(2020·全国高一专题练习)若103,104x y ==,则3210x y -=( )A .1-B .1C .2716D .910【答案】C【解析】依题意,()()333322221010327101041610x xx yy y -====.故选:C.4.若a >1,b >0,a b +a -b =22,则a b -a -b等于( ) A .4 B .2或-2 C .-2 D .2【答案】D【解析】设a b -a -b=t .∵a >1,b >0,∴a b >1,a -b <1.∴t =a b -a -b>0. 则t 2=(a b -a -b )2=(a b +a -b )2-4=(22)2-4=4.∴t =2. 5.设x ,y 是正数,且x y=y x,y =9x ,则x 的值为( ) A.91 B .43C .1D .39【答案】B【解析】∵x y=y x,y =9x ,∴x 9x=(9x )x ,∴(x 9)x =(9x )x ,∴x 9=9x .∴x 8=9.∴x =4839=.6.已知f (x )是奇函数,当x >0时,f (x )=x ·2x +a-1,若f (-1)=43,则a 等于( ) A .-3 B .-2 C .-1 D .0【答案】A 【解析】∵f (-1)=43,∴f (1)=-f (-1)=-43,即21+a-1=-43,即1+a =-2,得a =-3. 7.(多选)(2019·广东禅城佛山一中高一月考)下列运算结果中,一定正确的是( ) A .347a a a ⋅= B .()326a a -=C 88a a =D ()55ππ-=-【答案】AD【解析】34347a a a a +==,故A 正确;当1a =时,显然不成立,故B 不正确;88a a =,故C ()55ππ-=-,D 正确,故选AD.8.(多选下列各式中一定成立的有( )A .7177n n m m ⎛⎫= ⎪⎝⎭B .()431233-=C ()33344x y x y +=+ D 3393=【答案】BD【解析】777n n m m -⎛⎫= ⎪⎝⎭,A 错误;()143312333-=,B 正确;()1333344x y x y+=+,C 11112333329993⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭D 正确故选:BD二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2020·上海高一开学考试)当2x <3838(2)(2)x x --=_______________.【答案】22【解析】,nn n na a aa ==,因为2x <,所以原式=2222x x -+故答案为:2210.(2020·全国高一课时练习)设0a >,232a a⋅表示成分数指数幂的形式,其结果是________.【答案】76a【解析】∵0a >117222361231223a aa aa a b--⋅===.故答案为:76a.11.2a a=,则1a a +=______;当0a <3231a a a -=______.【答案】2;a -.【解析】12a a +=222a a ∴= 124a a ∴++=12a a∴+=,32311a a a a a a a--⨯⨯==0a <3231a a a a -∴=-故答案为:2;a -12化简:3216842111111111111222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++⋅+= ⎪⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭________. 【答案】63122-【解析】原式43216821111111111111122222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++⋅+-⨯ ⎪⎪⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭321682421111111111112222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++⋅-⨯ ⎪⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭32164481111111111222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-⨯ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭3216881111111122222⎛⎫⎛⎫⎛⎫⎛⎫=+++-⨯ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭3216161111112222⎛⎫⎛⎫⎛⎫=++-⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭32321111222⎛⎫⎛⎫=+-⨯ ⎪⎪⎝⎭⎝⎭641122⎛⎫=-⨯ ⎪⎝⎭63122=-.三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)13.(2020·全国高一课时练习)将下列根式化成分数指数幂的形式.(1)13·a a(a >0);(2())25230x xx >;(3)23243b--⎝⎭(b >0). 【答案】(1)512a;(2)35x-;(3)19b .【解析】(1)原式=1132·a a56a 1526a ⎛⎫⎪⎝⎭=512a. (22325·()x x 435·x x935x=91531()x =351x=35x -.(3)原式=[2134()b -]23-=212()343b -⨯⨯-=19b .14.(2020·全国高一课时练习)若本例变为:已知a ,b 分别为x 2-12x +9=0的两根,且a <b ,求11221122a b a b-+的值.【答案】3【解析】11221122a b a b-+=1122211112222()()()a b a b a b -+-=12()2()a b ab a b +--.①∵a ,b 分别为x 2-12x +9=0的两根, ∴a +b =12,ab =9,②∴(a -b )2=(a +b )2-4ab =122-4×9=108. ∵a <b ,∴a -b =-3③将②③代入①,得11221122a ba b -+12963-=-33. 15.已知2a ·3b =2c·3d=6,求证:(a -1)(d -1)=(b -1)(c -1). 证明:∵2a·3b=6,∴2a -1·3b -1=1. ∴(2a -1·3b -1)d -1=1,即2(a -1)(d -1)·3(b -1)(d -1)=1.①又∵2c ·3d=6,∴2c -1·3d -1=1.∴(2c -1·3d -1)b -1=1,即2(c -1)(b -1)·3(d -1)(b -1)=1.②由①②知2(a -1)(d -1)=2(c -1)(b -1),∴(a -1)(d -1)=(b -1)(c -1).16.(2020·黑龙江萨尔图�大庆实验中学高一期末)已知()442xx f x =+.(1)求()()1f a f a +-(0a >且1a ≠)的值;(2)求12320182019201920192019f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值.【答案】(1)1;(2)1009.【解析】(1)()442xxf x =+,()()()1111444441424242442a a a a aa a a a a f a f a ----⨯∴+-=+=++++⨯+()444442142424424242224a a a a a a a a a =+=+=+=++⨯++++; (2)原式120182201710091010201920192019201920192019f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦1009=.专题4.1.2 指数函数姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020·全国高一课时练习)若函数()21xy a =-(x 是自变量)是指数函数,则a 的取值范围是( ) A .0a >且1a ≠ B .0a ≥且1a ≠ C .12a >且1a ≠ D .12a ≥【答案】C【解析】由于函数()21xy a =-(x 是自变量)是指数函数,则210a ->且211a -≠,解得12a >且1a ≠.故选:C. 2.(2020·全国高一课时练习)已知函数1()4x f x a +=+的图象经过定点P ,则点P 的坐标是( ) A .(-1,5) B .(-1,4)C .(0,4)D .(4,0)【答案】A【解析】当10x +=,即1x =-时,011x a a +==,为常数,此时()415f x =+=,即点P 的坐标为(-1,5).故选:A. 3.(2020·全国高一课时练习)函数f (x )=a x -b的图象如图,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 【答案】D 【解析】由f (x )=ax -b的图象可以观察出,函数f (x )=ax -b在定义域上单调递减,所以0<a <1.函数f (x )=a x -b的图象是在f (x )=a x的基础上向左平移得到的,所以b <0.故选:D.4.(2020·陆良县联办高级中学高一开学考试)函数112xy ⎛⎫=- ⎪⎝⎭)A .()0,+∞B .(),0-∞C .[)0,+∞D .(],0-∞【答案】C【解析】要是函数有意义须满足1102x ⎛⎫-≥ ⎪⎝⎭,即011122x ⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭,解得0x ≥, 因此,函数112xy ⎛⎫=- ⎪⎝⎭[)0,+∞.故选:C. 5.(2020·内蒙古集宁一中高二月考(文))若a =12⎛⎫ ⎪⎝⎭23,b =15⎛⎫ ⎪⎝⎭23,c =12⎛⎫ ⎪⎝⎭13,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <a D .b <a <c【答案】D【解析】∵y =x 23 (x >0)是增函数,∴a =12⎛⎫⎪⎝⎭23>b =15⎛⎫ ⎪⎝⎭23. ∵y =12⎛⎫⎪⎝⎭x 是减函数,∴a =12⎛⎫ ⎪⎝⎭23<c =12⎛⎫ ⎪⎝⎭13,∴b <a <c .故本题答案为D. 6.(2020·浙江高一单元测试)函数1()31x f x =+的值域是( ). A .(,1)-∞ B .(0,1)C .(1,)+∞D .(,1)(1,)-∞⋃+∞【答案】B【解析】∵30x >∴311x +>,∴10131x<<+,∴函数值域为(0,1).故选:B 7.(多选)(2020·全国高一课时练习)设函数||()x f x a -=(0a >,且1a ≠),若(2)4f =,则( )A .(2)(1)f f ->-B .(1)(2)f f ->-C .()1)(2f f > D.(4)(3)f f ->【答案】AD【解析】由2(2)4f a -==得12a =,即||||1()22x x f x -⎛⎫== ⎪⎝⎭,故(2)(1)f f ->-,(2)(1)f f >,(4)(4)(3)f f f -=>,所以AD 正确.故选:AD8.(多选)(2020·山东临沂�高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列说法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+ 【答案】AD【解析】将点()1,3的坐标代入函数t y a =的解析式,得13a =,函数的解析式为3t y =.对于A 选项,由13323n nn+-=可得浮萍每月的增长率为2,A 选项正确; 对于B 选项,浮萍第1个月增加的面积为()102332m -=,第2个月增加的面积为()212336m -=,26≠,B 选项错误;对于C 选项,第4个月时,浮萍的面积为438180=>,C 选项错误;对于D 选项,由题意可得132t =,234t =,338t =,2428=⨯,()2122333t t t ∴=⨯,即132233t t t +=,所以,2132t t t =+,D 选项正确. 故选:AD.二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.(2019·定远县育才学校高一月考)若函数()xf x a =(0a >且1a ≠)在[]1,2上最大值是最小值的2倍,则a =______.【答案】2或12【解析】当01a <<时,函数()xf x a =为R 上的减函数,故()()122f f =,即22a a =,解得12a =. 当1a >时,函数()xf x a =为R 上的增函数,故()()221f f =,即22a a =,解得2a =.故a 的值为2或12.故填:2或12. 10.(2020·江苏秦淮�高三期中)不等式21124x x-⎛⎫>⎪⎝⎭的解集为_________.【答案】(1,2)-【解析】22111()242x x-⎛⎫>=⎪⎝⎭,化为220x x --<,解得12x -<<,所以不等式的解集是(1,2)-. 故答案为:(1,2)-.11.(2019·深州长江中学高一期中)函数28212x x y --⎛⎫=⎪⎝⎭的单调递增区间为_________.【答案】[)1,-+∞【解析】函数12xy ⎛⎫= ⎪⎝⎭在R 上递减,函数228y x x =--+的对称轴是1x =-,且在(],1-∞-上递增,在[)1,-+∞上递减.根据复合函数单调性同增异减可知:函数28212x x y --⎛⎫=⎪⎝⎭的单调递增区间为[)1,-+∞.故填:[)1,-+∞.12.(一题两空)(2020·上海高一课时练习)函数2x y =的图象与函数2x y -=的图象关于________对称,它们的交点坐标是_________. 【答案】y 轴 ()0,1【解析】函数2x y =的图象与函数2x y -=的图象如下:由指数函数的性质可知,函数2x y =的图象与函数2x y -=的图象关于y 轴对称,它们的交点坐标是()0,1.故答案为:y 轴;()0,1.三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)13.(2020·浙江高一课时练习)已知函数21,0()21,1x c cx x cf x c x -+<<⎧⎪=⎨⎪+≤<⎩,满足928c f ⎛⎫= ⎪⎝⎭. (1)求常数c 的值.(2)解关于x 的不等式2()1f x >+. 【答案】(1)12;(2)2548x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 【解析】(1)由928c f ⎛⎫=⎪⎝⎭,得9128c c ⋅+=,解得12c =. (2)由(1)得4111,022()121,12x x x f x x -⎧+<<⎪⎪=⎨⎪+≤<⎪⎩.由2()18f x >+得,当102x <<时,121128x +>+, 212x <<; 当112x ≤<时,42211x -+>+,解得1528x ≤<.综上,不等式2()18f x >+的解集为2548x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.14.(2019·陕西临渭�高一期末)已知函数()2121x x f x -=+.(1)判断并证明函数()f x 的奇偶性; (2)判断并证明()f x 在其定义域上的单调性. 【答案】(1)详见解答;(2)详见解答. 【解析】(1)()f x 的定义域为实数集R ,2112()()2112x xx x f x f x -----===-++,所以()f x 是奇函数;(2)()21212121x x xf x -==-++,设12x x <, 12121212222(22)()()2121(21)(21)x x x x x x f x f x --=-+=+++⋅+, 12121212,022,220,()()x x x x x x f x f x <<<-<<,所以()f x 在实数集R 上增函数.15.(2019·黑龙江松北�哈九中高一期末)已知函数()1124x xf x a =--. (1)若1a =时,求满足()11f x =-的实数x 的值;(2)若存在[]0,1x ∈,使()0f x >成立,求实数a 的取值范围. 【答案】(1)12log 3x =(2)34a >【解析】(1)当1a =时,()1111124x x f x =--=-,令()102x t t =>,则2120t t +-=, 解得3t =或4t =-(舍),由132x=,得12log 3x =, 所以12log 3x =.(2)由已知,存在[]0,1x ∈,使()0f x >成立可转化为存在[]0,1x ∈,使得1124x xa >+, 只需求出函数11()24x xh x =+的最小值即可, 令12x t =,∴1,12t ⎡⎤∈⎢⎥⎣⎦.则2y t t =+,易知2y t t =+在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以 2min 113()224y =+=,∴min 3()4h x =,∴34a >.16.(2019·安徽合肥�高二开学考试)设函数()(2)x x f x a k a -=-+(0a >且1a ≠)是定义域为R 的奇函数. (1)求实数k 的值; (2)若3(1)2f =,22()2()x xg x a a mf x -=+-,且()g x 在[1,)+∞上的最小值为1,求实数m 的值.【答案】(1)1-;(2)1312. 【解析】(1)因为()f x 是定义域为R 的奇函数,所以(0)0f =,所以1(2)0k -+=,即1k =-,当1k =-时,()))((()x x x x x x f f x a a f x a a a x a ---⇒=---=-=-=-符合条件.(2)因为13(1)2f a a =-=,所以22320a a --=,解得2a =或12a =-(舍). 故()()()222()22222222222x x x x x xx x g x m m ----=+--=---+,令22x x t -=-,由1x ≥,故113222t -≥-=, 所以2322,2y t mt t =-+≥函数222y t mt =-+图象的对称轴为t m =,①32m ≥时,22min 221y m m =-+=,解得1m =±(舍去); ②32m <时,min 93214y m =-+=,解得133122m =<. 所以,1312m =.。
高一数学指数运算及指数函数试题(有答案)

高一数学指数运算及指数函数试题一.选择题x x=22.若非零实数a、b、c满足,则的值等于(B)∴设=3.已知,则a等于()解:因为4.若a>1,b>1,p=,则a p等于()p=b.6.若lgx﹣lgy=2a,则=(C)lg lg=lg﹣lg=lg﹣lglg(=7.已知函数,若实数a,b满足f(a)+f(b﹣2)=0,则a+b=x+8.=()×+1=9.设,则=()解:∵∴(()10.,则实数a的取值区间应为(C)=log11.若lgx﹣lgy=a,则=(A)解:12.设,则()13.已知a,b,c均为正数,且都不等于1,若实数x,y,z满足,满足=log14.化简a2•••的结果是(C)••x y xy2x x2x x2解可得,18.若关于x的方程=3﹣2a有解,则a的范围是(A)≤a<≥<a<≤≤,二.填空题19.,则m=10.+=log20.已知x+y=12,xy=9,且x<y,则=.=x+y+2=12+6=18,故答案为:21.化简:=(或或)..故答案为:(或或22.=1.23.函数在区间[﹣1,2]上的值域是[,8].=;=[,[24.函数的值域为(0,8].25.函数(﹣3≤x≤1)的值域是[3﹣9,39],单调递增区间是(﹣2,+∞)..y=三.解答题26.计算:(1);(2).)27.(1)若,求的值;(2)化简(a>0,b>0).=3=..28.已知函数f (x )=4x﹣2x+1+3. (1)当f (x )=11时,求x 的值;(2)当x ∈[﹣2,1]时,求f (x )的最大值和最小值.29.已知函数||22)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于]2,1[∈t 恒成立,求实数m 的取值范围。
(1)当0<x 时,0)(=x f ;当0≥x 时,x x x f 212)(-=. 由条件可知 2212=-x x ,即 012222=-⋅-x x , 解得 212±=x . 02>x ,()21log 2+=∴x . (2)当]2,1[∈t 时,021*******≥⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-t t t t t m , 即 ()()121242--≥-t t m . 0122>-t , ∴ ()122+-≥t m . ()]5,17[21],2,1[2--∈+-∴∈t t ,故m 的取值范围是),5[∞+-.30.如果函数)1,0(122≠>-+=a a a ay x x 在区间[—1,1]上的最大值是14,求a 的值。
高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。
高一数学指数运算及指数函数试题(有答案).doc

«—数学指数运算及指数函数试题一. 选择题1. 若 xlog 23=l,则 3X +9X 的值为(B )A. 3B. 6C. 2解:由题意 x=—-—=logo 2^ log 23 °所以 3x =3lGg 32=2, 所以9X =4,所以3X +9X =6 故选B2. 若非零实数a 、b 、c 满足5^2b^^,则£^^的值等于 3L b A. 1B. 2C. 3解:•’ 5a :2b :VlO c ,•••设 5;a = 2b -VlO c=m,a=log5m ,b=log2m» c=21gm ,._c z: 21 gm + 21 gm a bloggin log 2in=21gm (log m 5+log m 2) =21grn<log m 10=2.故选B.3. 已知l 0g a 8=^,则a 等于( )A. _1B. \C. 22解:因为log a s=|所以 解得a=4 故选Dlogv (log k a) 4. -------------------------------------- 若 a 〉l, b 〉l ,p=: ,贝1Ja p 等于( )A. 1B. bC. log b aD. a k )g baB )D. 4D. 4log blog, ( log E a)解:由对数的换底公式可以得出P= ---------- : ---------------- =loga ( logba )因此,a p 等于logba. 故选c.解:•••lg2=a ,10b =3,•••lg3=b ,•••logi25= 1 的lgl2_ l-lg2 21g2+lg3 1-a 2a+b 故选c.解:...lgx - lgy=2a ,(lgx - lgy)2 y 2 故答案为C.7.己知函数f (x) =ln (x+J x 2+l),若实数 a ,b 满足 f (a) +f (b - 2) =0,则 a+b=角早:f(x)+f(-x) =ln (x+V y 2+i) +ln (- x+J ( - x) 2+i=0 •••f (a) +f (b -2) =0 •••a+ (b -2) =0 •••a+b=2故选D.log b a5.已知 lg2=a ,10b =3,贝1J logi25 可表示为(C )A. 1+aB. 1+aC. 1 一 a2a+ba+2b2a+bD. 1 - a a+2bA. 3a6.若 lgx - lgy=2a , (C )2 aC. aD. a 12a=a ;( )A. - 2B. - 1C. 0D. 2xl+2lgx ' l+4lgx ' l+8lgx ' 1+ 2 —lgx l+4~lgx 1+82+2lgx + 2~lgx 2+4lgx + 4~lsx 2+8lgx + 8~lsx2+2lgx + 2"lgX 2+4lgx + 4~lgX 2+8lgx + 8~lgX=3故选CA. (1, 2)B.(2, 3)C.(3, 4)D. (4, 5)解:a:_, 1 o=log34+log37=log328log 43 log 73••• 3=log 327 < log 328< log 381 =4•••实数a 的収值区间应为(3, 4) 故选c.11.若 lgx-lgy=a ,则 lg (^) 3 - lg (^)10. 3L— 1—,则实数a 的取值区间应为(C )log 43 log ?3A. 1B. _4 1C. - 2D. _21解:原式=2lDS “2x ilg 2+1g 5: 故选B.i+49•设f (xA. 11+21+41+8B. 2 贈⑴+f 4)C. 3D. 4解:Yf (xI^+'l4-4lgx "k l +8lsx•••f (x) +f (丄)(H2lsx + l+2~lgx )+1+(7^+I^)l+4lsx ,l+4"lgx3.B. 2C.A. aA. 3aB. 3C. aD. a"2a "233解:lg (^) - 1§ (^)=3 (lgx-lg2) -3 (lgy - lg2) =3 (lgx - lgy) =3a故选A.=log 112+logn 3+logn 4+logn5 =logn (2x3x4x5) =lognl20.•••logii 11 = 1 <logi 1120<logn 121=2. 故选B.13. 已知a, b, c 均为正数,且都不等于1,若实数x, y, z 满足=x y z则abc 的值等于(A )A. 1B. 2C. 3D. 4解.• Ya ,b, c 均为正数,Il 都不等于1, 实数 x ,y ,z 满足 a x :b 》:c Z ,■=0, x y z•••设 a x =b y =c z =k ( k 〉0), 贝ij x=log a k ,y=logbk ,z=log c k ,4-^ -^=logka+logkb+logkC=logkabc=0, x y z•••abc=l. 故选A.5 514. 化简(丄)的结果是(C ) a 12.设 P:11 1,则(5A. O<P<1C. 2<P<3D. 3<P<4B. 1<F<2 解:P?11155 5解:Va2-V?- C1) 2. J a_5 5a2=a ,故选C15.若x,yER,且2x=18y=6xy,贝ij x+y 为( )A. 0B. 1C. 1 或2D. 0或2解:因为2x=18y=6xy,(1)当x=y=O时,等式成立,则x+y=O;(2)当x、y*0 时,由2x=18y=6xy得,xlg2=ylgl 8=xylg6,由xlg2=xylg6,得y=lg2/lg6,由ylg 18=xylg6,得x=lg 18/lg6,则x+y=lgl8/lg6+lg2/lg6= (Igl8+lg2) /lg6 =lg36/lg6=21g6/lg6=2.综上所述,x+y=O:或x+y=2.故选D.16.若32X+9=10.3X,那么x2+l 的值为(D )A. 1B. 2C. 5D. 1 或5解:令3x=t, (t>0),原方程转化为:t2 - 10t+9=0,所以t=l 或t=9,即3X=1 3X=9 所以x=0或x=2,所以x2+l=l或5 故选D17.已知函数f (x) =4x-a*2x+a2-3,则函数f (x)有两个相异零点的充要条件是(DA. -2<a<2B. V3<a<2C. V3<^<2D. V3<a<2解;令t=2x,则t〉()若二次函数f (t) =t2 - at+a2 - 3在(0, +oo)上有2个不同的零点,即0=t2 - at+a2 - 3在(0,+°°)上有2个不同的根A=a2 - 4 ( a2- 3)>0 人,a>0a2 - 3>0-2<a<2解可得,j a>0 即^<a<2~ V3L故选D18.若关于x的方程21—士=3-2a有解则a的范围是(AA. B. a 42 2 2解:VI - Vx<I,函数>,=2"在尺上是增函数,/.0<21_^<2'=2,故0<3 - 2a<2,解得-i<a<-?,2 2故选A.二.填空题19. 2a=5b=m,丄+丄=1,则nr= 10.a b解:rfl 己知,a=log2m, b=log5m.••• l+^=log m2+log m5=log m 10= 1a b... m=10 故答案为:1().20. 己知x+y=12, xy=9,且x<y,解:由题设0<x<y•••xy=9,«*.Vxy-3J. A 2•••x+y - 2y/~^y= (x2_y2) =12 - 6=61 A 2x+y+2Vxy= (y2 + y2) =12+6=18A J 1 1••• x 2 - y2= - V6, x 2 + y 2= 5^2x2 + y 故荇案为: SV2 3 32i.化简:為恥解:上a ~ a26a •14故答案为:J (或(V?,士)1 女诉22.-------------- -- ------- --------------- = 1解:(V7,|)—7,心,诉62(a3,bJ. 1 J,b3a 1.A 1 Ua *b 2 1故答案为:1.23. 函数f (x )二2X ‘_2x在区间l-丨,21上的值域是|+,81解:令 g (x) =x 2 - 2x= (x - 1) 2 - 1,对称轴为 x=l ,•••g (x)在[-1,1]上单调减,在[1,8]上单调递增,又f (x) =2g(x>为符合函数,•••f(x) =2§(~在[-1,1]上单调减,在[1,,2]上单调递增I 2 一 2><1=丄 2又f ( - 1) =2I 2+2><1=23=8, f (2) =22“2X2=1,•••数f (x)二2X: _2X 在区间卜丨,2j 上的值域是8J. 2故答案为:[1, 81.224. 函数尸(丄)X +2,X| 3的值域为 (0, 81 2结合二次函数的性质可得,t>-33=8,且 y 〉o故答案为:(0, 8].25.函数尸(j) —( -hxSl)的倌域是_ LV 9, 391,单调递增区间是2,+°°) •.1-2x 2-8x+l解:y= (?)可以看做是由y=(丄)土和t=-2x 2-8x+l ,两个函数符合而成, 第一个函数是一个单调递减函数,要求原函数的值域,只要求出t=-2x 2-8x+l ,在[1,3]上的值域就可以, tEf-9, 91 此时 y€[3 _9, 39]函数的递增区间是(-2],故答案为:[3-9, 39]; ( -2, +oo)minin =f (l) =2 解:令 t=x 2+2|x| - 3=<x 2+2x - 3, x 2 - 2x - 3,x^Ox<0(x+1) 2 - 4,x>0 (x-1) 2 _ 4, x<0三. 解答题26. 计算:(1)3b —2(-3a 2b 1)—2 —39a b(2) |l+lgO. 001 |+.Jig 2-|- 41g3+4+lg6-lgO. 02.3b —2(-3a 2b 1)o _ 11 _ 3 -3ab—9 一 3 9a Z b 1 "3 (2) |l+lg0.001 ll-31+Jlg2J. 41g3+4+l§6 - l§0. 02(2X3) -lg (2X0.01)2|+|lg|+2|+lg2+lg3 - (lg2+lg0.01)=2+2 - Ig3+lg2+lg3 - lg2+2 =627. (1)若 X I +X 〒二3,求2 , 2 _ o 2,-2_nX +x乙的值(2)化简'b 2Vab(a 〉0, b>0).(aVa解:⑴•••x 2+x2•••x+x -1=9 - 2=7, X 2+X'2=49 - 2=47, 3_3•••X D(x 2 + x2) (x +-11) =3x6=183 _2 .X 了+X 了_3_18_3_1 • \2^-2-2_^2'1(2) Va>0, b 〉0,3b 2^/a b 53 A 2a 2b ,[ (ab 2) 3]31 1"6,3s b — s b - a b 1046 k 3 ab 2 7 3k ^ a b_a« b28.己知函数 f (x) =4x -2x+1+3.(1) 当f (x) = 11时,求x 的值;(2) 当X E[-2: 1]时,求f (x)的最大值和最小值.解:(1)当 f (X) =11,即 4X -2X+1+3=11 时,(2X ) 2-2*2X -8=0••• (2x -4) (2x +2) =0 •••2x 〉02x +2〉2,•••2X - 4=0,2X =4,故 x=2 - - -- -- -- -- -- -- -- (4 分)(2) f (x) = (2X ) 2 - 2*2x +3 (- 2<x<l)令Af (x) = (2X - 1) 2+2当2X =1,即x=0时,函数的最小值f min (x) =2 ----------------------------------------------------- (1() 分)当 2X =2,即 x=1 时,函数的® 大值 f max (x) =3 - - -- -- -- -- -- -- (12 分) 29. 己知函数/(X) = 2x —(1)若/(又)=2,求x 的值;(2)若2y(2z) + m/(Z)2 0对于ze [l ,2]恒成立,求实数m 的取值范围(1)当%<0时,/(x) = 0;当时,f(x) = 2x2X1 J (a 4b 2aab 2,由条件可知2"--L二2,即22x-2-2A -1=0,2X解得2X=1±V2.••• 2' >0, ••• x = log2(l +V2 ).(2)当/e l1,2J时,2’(2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学指数与指数函数试题答案及解析1.设函数则使得成立的的取值范围是()A.B.C.D.【答案】C【解析】当时,由,可得,即;当时,由,可得,即,综上.故选C【考点】函数的求值.2.若,则在,,,中最大值是()A.B.C.D.【答案】C【解析】由指数函数的性质,得,;由幂函数的性质得,因此最大的是.【考点】指数函数和幂函数的性质.3.若函数有两个零点,则实数a的取值范围为【答案】【解析】研究函数与函数图像交点个数.当时,由于直线在轴的截距大于,所以函数与函数图像在及时各有一个交点. 当时,由于单调减,直线单调增,所以函数与函数图像只3在时有一个交点.【考点】指数函数图像4..【答案】【解析】原式=【考点】指数与对数5.设函数y=x3与的图像的交点为(x0,y),则x所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【答案】B【解析】由函数知识知函数y=x3与的图像的交点为(x0,y)的横坐标x即为方程的解,也是函数函数=的零点,由零点存在性定理及验证法知<0,故x0在区间(1,2)内.由题知x是函数=的零点,∵==-7<0,故选B.【考点】函数零点与函数交点的关系,零点存在性定理6.函数在上的最大值比最小值大,则 .【答案】【解析】因为,根据指数函数的性质可知在单调递增,所以最大值为,最小值为,依题意有即,而,所以.【考点】指数函数的图像与性质.7.已知指数函数(且)的图像过点,则实数___________.【答案】【解析】因为指数函数(且)的图像过点,则,得.【考点】指数函数的定义.8.设,且,则= ( )A.100B.20C.10D.【答案】A【解析】由题设,得,则,同理有,又,得,即,所以.故正确答案为A.【考点】指数式、对数式的运算9.函数在区间[0,1]上的最大值和最小值之和为.【答案】4【解析】因为在[0,1]上单调递增,在[0,1]上单调递减,所以在 [0,1]单调递增,所以y的最大值为,最小值为,所以最大值和最小值之和为4.【考点】指数函数和对数函数的单调性及利用单调性求最值10. (1)计算:(2)已知,求的值.【答案】(1);(2).【解析】(1)此题主要考查学生对指数运算法则、对数运算性质的掌握情况,以及对指数式、对数式整体与局部的认识,属基础题;(2)经过审题,若从已知条件中求出难度较大,由指数运算法则知,,所以所求式子中的,. 试题解析:(1)原式= 6分(2)因为得得所以原式= 12分【考点】1.指数运算法则;2.对数运算性质.11.(1)求的值;(2)求的值.【答案】(1);(2).【解析】(1)初中所学单项式与多项式的运算法则和乘法公式,当指数变成分数时仍然适用;(2)对数的运算一般要转化为同底数的对数才能运用对数的运算法则.试题解析:(1);(2)原式=.【考点】(1)指数的运算;(2)对数的运算.12.集合A是由适合以下性质的函数构成的:对于定义域内任意两个不相等的实数,都有.(1)试判断=及是否在集合A中,并说明理由;(2)设ÎA且定义域为(0,+¥),值域为(0,1),,试写出一个满足以上条件的函数的解析式,并给予证明.【答案】(1),;(2)【解析】(1)根据题目给出的性质对函数与进行判断即可;(2)可以模仿(1)中的函数进行寻找,或者可以这么找,因为我们学了指数、对数、幂函数,而(1)中已经出现了对数函数与幂函数,所以是否可以考虑从指数函数中寻找.试题解析:(1),. 2分对于的证明. 任意且,即. ∴ 4分对于,举反例:当,时,,,不满足. ∴. 7分⑵函数,当时,值域为且. 9分任取且,则即. ∴. 14分【考点】1.函数性质;2.新定义型解答题;3.指数函数、对数函数、指数函数.13.三个数的大小关系为()A.B.C.D.【答案】D【解析】,,,故,选D.【考点】指数、对数函数性质.14.已知函数(1)若存在,使得成立,求实数的取值范围;(2)解关于的不等式;(3)若,求的最大值.【答案】(1)(2);②;③,,(3)【解析】(1)令,即成立 1分的最小值为0,当时取得 4分5分(2),令 6分① 7分② 8分③ⅰ 9分ⅱ 10分(3)令则12分13分,的最大值为 14分【考点】二次函数点评:主要是考查了二次函数的最值以及不等式的性质的运用,属于基础题。
15.设,则【解析】根据题意,由于,则可知故可知答案为3.【考点】对数的运算点评:主要是考查了对数式与指数式的计算,属于基础题。
16.某厂在1995年底制定生产计划,要使2005年底的总产量在1995年底的基础上翻两番,则年平均增长率为()A.B.C.D.【答案】D【解析】设年平均增长率为x,则根据题意有【考点】本小题主要考查指数函数模型在实际问题中的应用.点评:解决此类问题的关键是读懂题意,根据题意选择合适的函数模型,将实际问题转化为数学问题解决.17.函数的图象一定过点()A.B.C.D.【答案】B【解析】根据题意,由于函数,令x-1=0,x=1,可知函数值为2,故可知函数一定过点,选B.【考点】指数函数点评:本试题主要是考查了指数函数恒过(0,1)点的运用,属于基础题。
18.方程9x-6·3x-7=0的解是.7【答案】x=log37【解析】令t=3x>0,则方程化为,解得t=7或-1(舍),∴3x =7,∴x= log3【考点】本题考查了指数方程的求解及对数的概念点评:换元法是解决此类问题的常用方法,属基础题19.计算(1)(2)【答案】(1)19;(2)16。
【解析】(1)==;(2)=。
【考点】本题主要考查对数的性质、对数的运算法则,有理指数幂的运算。
点评:中档题,熟记性质、法则是正确解题的基础,细心是正确解题的关键。
20.化简的结果是 .【解析】根据题意,结合指数幂的运算性质可知,由于原式=,故答案为-9a【考点】分数指数幂点评:指数幂的运算法则是解题的关键,要熟练的掌握,属于基础题。
21.(本小题满分12分)计算下列各式:(1);(2).【答案】(1)(2)【解析】解:(1)结合指数幂的运算法则,可知(2)因为原式=【考点】考查了指数式和对数式的运用点评:熟练的运用指数式运算和对数式的运算,是解决该试题的关键,同时能利用配方法的思想开根号,属于基础题。
22.计算:;【答案】【解析】【考点】本题主要考查有理指数幂的运算,对数性质及其运算。
点评:简单题,注意运用加以转化,运用进行计算。
23.函数在区间上的最大值与最小值的和为3,则等于()A.B.4C.2D.【答案】C【解析】不论是a>1还是,最大值与最小值之和都为,所以a=2。
【考点】指数函数的单调性;指数函数的最值。
点评:当指数函数的底数不确定时,注意要讨论a>1与。
此题是求最大值与最小值之和为3,可以不用讨论。
但是要是求最大值与最小值之差为3,就必须讨论。
24.指数函数y=a的图像经过点(2,16)则a的值是A.B.C.2D.4【答案】D【解析】因为指数函数y=a的图像经过点(2,16),所以16=a2,又因为a>0且a1,所以a=4.【考点】本题考查指数函数的的定义。
点评:不要忽略指数函数y=a中的隐含条件:a>0且a1。
25.(本题满分13分)(1)求值: ;(2)求值: (lg2)2+lg5·lg20+ lg100;(3)已知. 求a、b,并用表示.【答案】(1)原式=-3;(2)原式=3;(3)。
【解析】(1)掌握根式与分数指数幂互化公式是解决此小题的关键..(2)根据对数的运算性质:这是化简本题的基础.(3)因为,然后再根据换底公式把,再根据对数的运算性质化简代入a,b值即可求解.(1)原式==-3;……………………4分(2)原式===3…………8分(3)…………10分…………13分【考点】指数与对数的互化,对数的运算性质.点评:掌握指数与对数的互化,对数的运算性质,同时还要掌握换底公式是解决本小题的关系.换底公式:.26.(本小题10分)求下列各式的值.(1);(2).【答案】17. 解:(1)(2)【解析】(1)原式=(2)原式====【考点】对数恒等式、对数的运算法则。
点评:解决本小题的关键是掌握好对数恒等式、和对数的基本运算法则,并能熟练应用。
27.函数的值域为.【答案】【解析】因为函数那么根据定义域可知函数的值域为,故答案为。
28.若,则 ( )A.B.C.D.【答案】D【解析】因为,那么令x=-2,可知f(-2)=2-2=,选D.29.【答案】【解析】30..(本小题13分)计算下列各式(1)【答案】(1)-9a;(2)19.【解析】根据分数指数幂的运算法则进行化简即可.运算法则为.31.已知函数且)与函数且)的图象有交点,函数在区间上的最大值为,则在区间上的最小值为()A.;B.;C.;D..【答案】D【解析】32.若log<0, >1,则A.0<a<1, b<0B.0<a<1, b>0C.a>1, b<0D.a>1, b>0【答案】A【解析】考查对数函数与指数函数的单调性以及对数指数的运算法则及技巧:log<0, 0<a<1;>1,b<033.已知,且,则A.2或-2B.-2C.D.2【答案】D【解析】因为x>1,所以x2>1,0<<1,则x2->0.因为(x2-)2=(x2+)2-4=(2 )2-4=4,所以x2-=2.故选D.34.已知()A.B.C.D.【答案】B【解析】本题考查分数指数幂的含义,运算和代数式的运算.则所以故选B35.(1)若,求实数的值。
(6分)(2)计算(6分)【答案】-2,【解析】(1)①当a-3=-3即a=0时,集合为与集合的互异性矛盾;②当2a+1=-3即a=-2时,集合为符合题意,综上a=-2(2)36.已知,则a、b、c的大小关系是()A.B.C.D.【答案】B【解析】此题考查对数式和指数式的比较大小;对数式和指数式的比较大小都有三种类型;对数式分别是:(1)底数相同、真数不同:利用对数函数的单调性或作差比较;(2)底数不同,真数相同:利用对数函数图像或作商比较;(3)底数和真数都不相同:利用对数函数图像或和特殊值比较;指数式分别是:1)底数相同、指数不同:利用指数函数的单调性或作商比较;(2)底数不同,指数相同:利用指数函数图像或作商比较;(3)底数和指数都不相同:利用指数函数图像或和特殊值比较;因为,所以选B37.已知:函数f(x)=a x(0<a<1),(Ⅰ)若f(x)=2,求f(3x);(Ⅱ)若f(2x-3x+1)f(x+2x-5),求x的取值范围。
【答案】解:(Ⅰ)f(3x)=a=(a)=8; 4分(Ⅱ)因为0<a<1,所以f(x)=a单调递减;所以2x-3x+1≥x+2x-5,解得x≤2或x≥3; 10分【解析】略38.设函数f(x)=a(a>0),且f(2)=4,则A.f(-1)>f(-2)B.f(1)>f(2)C.f(2)<f(-2)D.f(-3)>f(-2)【答案】D【解析】解:由a2=4,a>0得a=2,∴f(x)=2|x|.又∵|-3|>|-2|,∴2|-3|>2|-2|,即f(-3)>f(-2).故选D39.函数y=lg(3-4x+x2)的定义域为M,当x∈M时,求f(x)=2x+2-3×4x的最值.【答案】解:由3-4x+x2>0,得x>3或x<1,∴M={x|x>3或x<1},f(x)=-3×(2x)2+2x+2=-3(2x-)2+.∵x>3或x<1,∴2x>8或0<2x<2,∴当2x=,即x=log时,f(x)最大,最大值为,f(x)没有最小值.2【解析】略40.计算:_________________【答案】10【解析】41.函数y=2a x+3(a>0且a≠1)的图象必经过点(填点的坐标)【答案】(0,5)【解析】函数(a>0且a≠1)的图像必须经过点,,即当时,,,2a x+3+3+35,所以函数y=2a x+3(a>0且a≠1)的图象必经过点(0,5)。