一元二次方程综合复习(含知识点和练习)(含答案)

合集下载

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)

一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。

一元二次方程经典练习题(6套)附带详细答案

一元二次方程经典练习题(6套)附带详细答案

练习一一、选择题:(每小题3分,共24分)1.下列方程中,常数项为零的是( )A.x2+x=1B.2x2-x-12=12;C.2(x2-1)=3(x-1)D.2(x2+1)=x+22.下列方程:①x2=0,② -2=0,③2+3x=(1+2x)(2+x),④3-=0,⑤-8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(x-)(x+)+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x2-4x-4=0B.x2-5=.5x2-2x+1=0 D.5x2-4x+6=04.方程x2=6x的根是( )A.x1=0,x2=-6B.x1=0,x2=.x=6 D.x=05.方2x2-3x+1=0经为(x+a)2=b的形式,正确的是( )A. ;B.;C. ;D.以上都不对6.若两个连续整数的积是56,则它们的和是( )A.11B.-15 D.±157.不解方程判断下列方程中无实数根的是( )A.-x2=2x-1B.4x2+4x+=0;C.D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题3分,共24分)9.方程化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x的一元二次方程x2+bx+c=0有实数解的条件是__________.11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.13.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=;(3)(x-a)2=1+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n 的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD二、9.x2+4x-4=0,410.11.因式分解法12.1或13.214.15.16.30%三、17.(1)3,;(2);(3)1,-118.m=-6,n=819.(1)Δ=2k2+8>0, ∴不论k为何值,方程总有两不相等实数根.(2)四、20.20%21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

初中一元二次方程专项练习题(含答案)

初中一元二次方程专项练习题(含答案)

初中一元二次方程专项练习题一、填空题1、若x1=-1是关于x的方程x2+mx-5=0的一个根,则此方程的另一个根x2=。

(答案:5)2、若a为方程x2+x-5=0的解,则a2+a+1=0的值为。

(答案:6)3、若x2+6x+9+√y−3=0,则x-y的值为。

(答案:-6)4、已知直角三角形的两条直角边的长恰好是方程x2-5x+6=0的两根,则此直角三角形的斜边长为。

(答案:√13)5、由关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为。

(答案:-1)6、已知三角形两边长分别为2和9,第三边的长为一元二次方程x2-14x+48=0的一根,则这个三角形的周长为。

(答案:19)的值等于零的x是。

(答案:6)7、使分式x2−5x−6x+18、若关于y的一元二次方程ky2-4y-3=3y+4有实根,则,且k≠0)k的取值范围是。

(答案:k≥-749、如果2x2+1与4x2-2x-5互为相反数,则x的值为。

)(答案:1或-2310、已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1,则a= ,b= 。

(答案:1,-2)11、一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于 。

(答案:3)12、已知3-√2是方程x 2+mx+7=0的一个根,则m= ,另一根为 。

(答案:-6,3+√2)13、已知两数的积是12,这两数的平方和是25,以这两数为根的一元二次方程是 。

(答案:x 2-7x+12=0或x 2+7x+12=0)14、已知x 1,x 2是方程x 2-2x-1=0的两个根,则等于1x 1+1x 2 。

(答案:-2)15、设m 、n 是一元二次方程x 2+3x-7=0的两个根,则m 2+4m+n= 。

(答案:4)二、解答题21、解下列方程:(1)x 2-5x+1=0;(答案:5±√212) (2)3(x -2)2=x (x -2);(答案:2,3) (3)2x 2-2√2x -5=0;(答案:√2±2√32) (4)(y+2)2=(3y -1)2;(答案:-14,32) (5)x 2-7x -18=0;(答案:-2,9)(6)x 2-x -6=0;(答案:-2,3)(7)(3-x )2+x 2=5;(答案:1,2)(8)2x 2+12x -6=0;(答案:-3±2√3)22、已知关于x 的一元二次方程x 2+(2m -1)x+m 2=0有两个实数根和。

(完整版)初三一元二次方程练习题及答案

(完整版)初三一元二次方程练习题及答案

九年级数学(一元二次方程)一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a ≠3)B.ax 2+bx+c=0232057x +-= 2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( )A 、1B 、1-C 、1或1-D 、125.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、、3 C 、6 D 、97.使分式2561x x x --+ 的值等于零的x 是( ) A.6 B.-1或6 C.-1 D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74且k ≠0 9.已知方程22=+x x ,则下列说中,正确的是( )(A )方程两根和是1 (B )方程两根积是2(C )方程两根和是1- (D )方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x =1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______.15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知3-2是方程x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+= 22.22330x x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

2022届初三数学中考复习《二次函数与一元二次方程》专项复习练习题 (含答案解析)

2022届初三数学中考复习《二次函数与一元二次方程》专项复习练习题 (含答案解析)

2022届初三数学中考复习《二次函数与一元二次方程》专项复习练习题一、单选题1.已知二次函数22=-++的部分图象如图所示,则关于x的一元二次方程y x x m220-++=的解为()x x mA.-1 ,0B.-1,1C.1,3D.-1,32.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;①3a+c=0;①当y>0时,x的取值范围是﹣1≤x<3;①方程ax2+bx+c﹣3=0有两个不相等的实数根;①点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是().A.1个B.2个C.3个D.4个3.二次函数y=3(x–2)2–5与y轴交点坐标为()A.(0,2)B.(0,–5)C.(0,7)D.(0,3)4.根据下列表格对应值:判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.2.1<x <2.2B.2.2<x<2.3C.2.3<x<2.4D.2.4<x<2.55.如图是抛物线y =ax 2+bx+c (a≠0)图象的一部分,已知抛物线的对称轴是直线x =2,与x 轴的一个交点是(﹣1,0),那么抛物线与x 轴的另一个交点是( )A .(3,0)B .(4,0)C .(5,0)D .(6,0)6.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a < B .1a >-C .12a -<≤D .12a -≤<二、填空题7.已知抛物线2y x bx c =++的部分图象如图所示,当3y <-时,x 的取值范围是______.8.已知二次函数2y ax bx c =++的部分图像如图所示,对称轴为直线1x =,则关于x 的方程23ax bx c ++=的解为__________.9.二次函数22(1)1y a x a =-+-的图象经过原点,则a 的值为______. 10.在平面直角坐标系中,抛物线212y x bx c =++与x 轴交于A 、B 两点,若2b +c =﹣2,b =﹣2﹣t ,且AB 的长为kt ,其中t >0,k 的值为___. 三、解答题11.随着地球上的水资源日益枯竭,各级政府越来越重视节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中 x 表示人均月生活用水的吨数,y 表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过 5 吨,每吨按 元收取; 超过 5 吨的部分,每吨按 元收取; (2)当 x >5 时,求 y 与 x 的函数关系式;(3)若某个家庭有 5 人,五月份的生活用水费共 76 元,则该家庭这个月用了多少吨生活用水?12.已知关于x 的方程:2244(3)x m x m --=(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实数根1x 、2x 满足211x x -=,求m 的值及相应的1x 、2x .13.如图,抛物线y=ax 2+c 经过A (1,0),B (0,﹣2)两点.连结AB ,过点A 作AC①AB ,交抛物线于点C .(1)求该抛物线的解析式; (2)求点C 的坐标;(3)将抛物线沿着过A 点且垂直于x 轴的直线对折,再向上平移到某个位置后此抛物线与直线AB 只有一个交点,请直接写出此交点的坐标.14.已知二次函数2y x bx c =-++的图象如图所示,它与x 轴的一个交点坐标为()10-,,与y 轴的交点坐标为()03,.(1)求此二次函数的表达式及对称轴;(2)直接写出当函数值0y >时,自变量x 的取值范围. (3)直接写出当函数值3y >时,自变量x 的取值范围. 15.定义[],p q 为一次函数y =px +q 的特征数.(1)若特征数是[]2,1m +的一次函数为正比例函数,求m 的值;(2)已知抛物线y =(x +n )(x -2)与x 轴交于点A 、B ,其中n >0,点A 在点B 的左侧,与y 轴交于点C ,且①OAC 的面积为4,O 为原点,求图象过A 、C 两点的一次函数的特征数.参考答案:1.D 【解析】 【分析】先求出二次函数的对称轴,然后利用二次函数的对称性即可求出抛物线与x 轴的另一个交点坐标,最后根据二次函数与x 轴交点坐标与一元二次方程解的关系即可得出结论. 【详解】解:二次函数22y x x m =-++的对称轴为直线()2121x =-=⨯-由图象可知:二次函数22y x x m =-++的图象与x 轴的一个交点坐标为(3,0) ①二次函数22y x x m =-++的图象与x 轴的另一个交点坐标为(-1,0) ①关于x 的一元二次方程220x x m -++=的解为x 1=-1,x 2=3 故选D . 【点睛】此题考查的是求抛物线的对称轴、抛物线与x 轴的交点和求一元二次方程的解,掌握抛物线的对称轴公式和二次函数与x 轴交点坐标与一元二次方程解的关系是解决此题的关键. 2.D 【解析】 【分析】根据抛物线的开口,对称轴,特殊值x=-1可判断①①正确,根据图像可得,当y>0时,是x 轴上方的图像,可判断①错误,对方程230ax bx c ++-=进行变形,看成抛物线2y ax bx c =++与3y =的交点即可判断①正确,把点(﹣2,y 1),(2,y 2)描到图像上可判断出①正确. 【详解】抛物线的开口向下,a<0,对称轴为x=1,①12ba-=,①20b a =->,抛物线与y 轴交于(0,3),①c>0,①0abc <,故①正确;当x=-1时,0a b c -+=,①2b a =-代入得:3a +c=0,故①正确;根据图像可得,当y>0时,是x 轴上方的图像,抛物线过点(﹣1,0),对称轴为x=1,根据抛物线的对称性可得,抛物线过点(3,0),①13x ,故①错误;对方程230ax bx c ++-=进行变形得:23ax bx c ++=,可看成抛物线2y ax bx c =++与3y =的交点,由图像可得:抛物线2y ax bx c =++与3y =有两个交点,①方程ax 2+bx +c ﹣3=0有两个不相等的实数根,故①正确;把点(﹣2,y 1),(2,y 2)描到图像上可知,10y <,20y >,①y 1<0<y 2,故①正确, 故选:D . 【点睛】本题考查了二次函数的图像和性质,解决这类题需要掌握:a 看抛物线开口方向,b 往往看对称轴,c 看抛物线与y 轴的交点,24b ac -看抛物线与x 轴的交点,抛物线的对称性以及代入特殊点等. 3.C 【解析】 【分析】由题意使x=0,求出相应的y 的值即可求解. 【详解】①y=3(x ﹣2)2﹣5, ①当x=0时,y=7, ①二次函数y=3(x ﹣2)2﹣5与y 轴交点坐标为(0,7). 故选C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式. 4.C 【解析】 【分析】由于x =2.3时,ax 2+bx +c =﹣0.01;x =2.4时,ax 2+bx +c =0.06,则在2.3和2.4之间有一个值能使ax 2+bx +c 的值为0,据此即可判断. 【详解】①x =2.3时,ax 2+bx +c =﹣0.01;x =2.4时,ax 2+bx +c =0.06, ①方程ax 2+bx +c =0的一个解的范围为2.3<x <2.4. 故选:C .【点睛】本题考查了估算一元二次方程的近似解,关键是观察表格,确定函数值由负到正时,对应的自变量取值范围. 5.C 【解析】 【分析】直接利用抛物线的对称性进而得出另一个交点坐标. 【详解】①抛物线的对称轴是直线x =2,与x 轴的一个交点是(﹣1,0), ①抛物线与x 轴的另一个交点是:(5,0). 故选C . 【点睛】此题主要考查了抛物线与x 轴的交点,正确利用抛物线的对称性分析是解题关键. 6.D 【解析】 【分析】由抛物线与x 轴没有公共点,可得∆<0,求得2a <,求出抛物线的对称轴为直线x a =,抛物线开口向上,再结合已知当1x <-时,y 随x 的增大而减小,可得1a ≥-,据此即可求得答案. 【详解】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点,22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线 22ax a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小,1a ∴≥-,∴实数a 的取值范围是12a -≤<,故选D . 【点睛】本题考查了二次函数图象与x 轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键. 7.0<x <2 【解析】 【分析】根据函数图象和二次函数的性质,可以得到(0,-3)关于对称轴对称的点,再结合图像可得x 的范围. 【详解】 解:由图象可得,该抛物线的对称轴为直线x =1,与y 轴的交点为(0,-3), 故(0,-3)关于对称轴对称的点为(2,-3), 故当y <-3时,x 的取值范围是0<x <2, 故答案为:0<x <2. 【点睛】本题考查了二次函数的图像和性质,解题的关键是理解3y <-,结合函数的对称性得到结果. 8.10x =,22x =【解析】 【详解】根据二次函数图象可得:当x =0时,y =3,又因为二次函数关于直线x =1对称,所以当x =2时,y =3,所以关于x 的方程23ax bx c ++=的解为10x =,22x =,故答案为10x =,22x =. 9.-1 【解析】 【分析】根据题意将(0,0)代入二次函数22(1)1y a x a =-+-,即可得出a 的值,最后根据二次函数的定义进行求解即可. 【详解】解:①二次函数22(1)1y a x a =-+-的图象经过原点,①210a -=, ①1a =±, ①10a -≠ ①1a ≠ ①a 的值为-1. 故答案为:-1. 【点睛】本题考查二次函数图象上点的特征以及二次函数的定义,图象过原点,可得出当x =0时,y =0,从而分析求值. 10.2 【解析】 【分析】由题意得抛物线为y =12x 2+(﹣2﹣t )x +(2t +2),设抛物线212y x bx c =++与x 轴交于点A (x 1,0)、B (x 2,0),则x 1+x 2=4+2t ,x 1x 2=4t +4,由AB 的长为kt ,得出(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=k 2t 2,即(4+2t )2﹣4(4t +4)=k 2t 2,进而即可求得k 的值. 【详解】解:①2b +c =﹣2,b =﹣2﹣t , ①c =2t +2,①抛物线为y =12x 2+(﹣2﹣t )x +(2t +2), 设抛物线212y x bx c =++与x 轴交于点A (x 1,0)、B (x 2,0),则x 1+x 2=212t---=4+2t ,x 1x 2=2212t +=4t +4,①AB 的长为kt , ①|x 1﹣x 2|=kt ,①(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=k 2t 2,即(4+2t )2﹣4(4t +4)=k 2t 2, 整理得:4t 2=k 2t 2, ①k 2=4, ①kt >0,t >0,①k =2, 故答案为:2. 【点睛】本题考查了二次函数的性质,抛物线与x 轴的交点,交点坐标和系数的关系是解题的关键.11.(1)1.6; 2.4;(2) y = 125x ﹣4;(3) 该家庭这个月用了 40 吨生活用水. 【解析】 【分析】(1)分析图像可得答案;(2) 当x >5时设y =kx +b ,代入(5,8)、(10,20)可得一次函数解析式; (3)把 y =代入 y =x ﹣4 可得答案.【详解】(1)该市人均月生活用水的收费标准是:不超过 5 吨,每吨按 1.6 元收取; 超过 5 吨的部分,每吨按 2.4 元收取; 故答案为1.6;2.4; (2)当 x >5 时,设 y =kx +b ,代入(5,8)、(10,20)得,解得 k =,b =﹣4, ①y =x ﹣4;(3)把 y =代入 y =x ﹣4 得x ﹣4=, 解得 x =8,5×8=40(吨).答:该家庭这个月用了 40 吨生活用水. 【点睛】本题主要考查一次函数的应用,根据题意列出并解除一次方程是解题的关键.12.(1)证明见解析(2)①1x =2x =②1x =212x =【解析】【详解】试题分析:(1)求出b 2-4ac>0,即可判断方程总有两个实数根;(2)根据根与系数的关系求得123x x m +=-,21204m x x ⋅=-≤,即可得1x 、2x 异号或有1个为0.再根据211x x -=,分①10x ≥,20x <和②10x ≤,2>0x 两种情况求m 的值及相应的1x 、2x . 试题解析:(1)()2216316m m ∆=-+23296144m m =-+ 2332722m ⎛⎫=-+ ⎪⎝⎭ 72≥.①无论m 取何值,方程有两个异根.(2)()224430x m x m ---=.∵4a =,124b m =-,2c m =-.∵123x x m +=-,21204m x x ⋅=-≤, ∵1x 、2x 异号或有1个为0.211x x -=,①10x ≥,20x <,211x x --=即121x x +=-,31m -=-,∵2m =.24440x x +-=.1x =,2x =. ②10x ≤,2>0x .211x x +=,4m =.244160x x --=.240x x --=.1x =2x =. 13.(1)y=2x 2﹣2;(2)(﹣,);(3)(,3).【解析】【详解】试题分析:(1)因为抛物线y=ax 2+c 经过A (1,0),B (0,﹣2)两点,则有:解得:,所求的抛物线的解析式是:y=2x 2﹣2;(2)①AC①AB ,又根据题意可知:OA①BD ,①Rt①AOD①Rt①BOA ,①,①OD=,又根据A (1,0),B (0,﹣2),则有:AO=1,BO=2,①OD=,①D (0,),设直线AC 的解析式是y=kx+b ,则有,解得:,①所求的解析式是:y=﹣x+,由直线AC 与抛物线y=2x 2﹣2相交,则有:﹣x+=2x 2﹣2,解得:x 1=﹣,x 2=1,当x=﹣时,y=﹣×(﹣)+=,①点C 的坐标是(﹣,);(3)抛物线沿着过A 点且垂直于x 轴的直线对折后与x 轴的交点坐标为(1,0)和(3,0),此时抛物线解析式为y=2(x ﹣2)2﹣2,向上平移此时解析式为y=2(x ﹣2)2+k ,直线AB 的解析式为y=2x ﹣2,则2(x ﹣2)2+k=2x ﹣2,①=100﹣80﹣8k=0,解得k=,即2(x ﹣2)2+=2x ﹣2,解得x=,所求交点的坐标是(,3).考点:二次函数综合题.14.(1)2y x 2x 3=-++,x=1;(2)−1<x <3;(3)0<x <2.【解析】【分析】(1)将(−1,0)和(0,3)两点代入二次函数2y x bx c =-++,求得b 和c ;从而得出抛物线的解析式,进而得出对称轴;(2)令y =0,解得1x ,2x ,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y >0时,自变量x 的取值范围.(3)令y =3,解得1x ,2x ,结合图像即可分析出当函数值3y >时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过(−1,0)和(0,3)两点,得1+03b c c --=⎧⎨=⎩ , 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2y x 2x 3=-++, 对称轴()21221b x a =-=-=⨯- . (2)令y =0,得2x -+2x +3=0.解这个方程,得1x =3,2x =−1.①此二次函数的图象与x 轴的另一个交点的坐标为(3,0).当−1<x <3时,y >0.(3)令y =3,得2x -+2x +3=3,解这个方程得:1x =0,2x =2.①由图像可知,当0<x <2时,y >3.【点睛】本题考查了二次函数与x 轴的交点问题以及用待定系数法求二次函数的解析式,解题的关键是正确求出抛物线的解析式,此题难度不大.15.(1)m =-1;(2)[]24-,-【解析】【分析】(1)根据正比例函数的一般形式y=kx (k≠0),则m+1=0,进而求出即可;(2)根据题意得出n 的值,进而得出直线AC 的解析式,进而得出图象过A 、C 两点的一次函数的特征数.【详解】解:(1)①特征数是[2,m+1]的一次函数为正比例函数,①m+1=0,解得:m =-1;(2)由题意得点A 的坐标为(-n ,0),点C 的坐标为(0,-2n).①①OAC 的面积为4, ①1242n n ⨯⨯=, ①n =2,① 点A 的坐标为(-2,0),点C 的坐标为(0,-4).设直线AC 的解析式为 y =kx +b.①204k b b -+=⎧⎨=-⎩, ①24k b =-⎧⎨=-⎩, ① 直线AC 的解析式为:y =-2x -4;① 图象过A 、C 两点的一次函数的特征数为[]24-,-.【点睛】此题主要考查了待定系数法求一次函数解析式以及新定义,根据题意得出直线AC 的解析式是解题关键.。

人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)

人教版九年级数学上册综合题练习卷:第21章  一元二次方程(包含答案)

第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。

一元二次方程知识点总结和例题——复习

一元二次方程知识点总结和例题——复习

知识点总结:一元二次方程知识框架知识点、概念总结1.一元二次方程:方程两边都是整式,只含有一个未知数〔一元〕,并且未知数的最高次数是2〔二次〕的方程,叫做一元二次方程。

2.一元二次方程有四个特点:(1)含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,假设是,再对它进行整理。

如果能整理为 ax2+bx+c=0(a≠0)的形式,那么这个方程就为一元二次方程。

〔4〕将方程化为一般形式:ax2+bx+c=0时,应满足〔a≠0〕3. 一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,•都能化成如下形式ax2+bx+c=0〔a≠0〕。

一个一元二次方程经过整理化成ax2+bx+c=0〔a≠0〕后,其中ax2是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项。

4.一元二次方程的解法〔1〕直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如bax=+2)(的一元二次方程。

根据平方根的定义可知,ax+是b的平方根,当0≥b时,bax±=+,bax±-=,当b<0时,方程没有实数根。

〔2〕配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2bababa+=+±,把公式中的a看做未知数x,并用x代替,那么有222)(2bxbbxx±=+±。

配方法解一元二次方程的一般步骤:现将方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.〔3〕公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

初三数学课本练习和习题-一元二次方程

初三数学课本练习和习题-一元二次方程

一元二次方程22.1 一元二次方程【知识点】1、一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程。

一般形式:ax 2﹢bx ﹢c =0 (a 、b 、c 为常数,且a ≠0)其中,a 是二次项系数,b 是一次项系数,c 是常数项。

注意,系数是包括前面的符号的。

一元二次方程的解也叫做一元二次方程的根。

2、单循环比赛公式:2)1(-n n 双循环比赛公式:n (n ﹣1)【练习】1. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项。

(1)x x4152=- (2)8142=x (3)25)2(4=+x x (4)38)1)(23(-=+-x x x2. 根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短的一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x ;(4)一个直角三角形的斜边长为10 cm ,两条直角边相差2 cm ,求较长的直角边长x 。

3. 如图,有一块长方形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?4. 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。

根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【习题】一元二次方程【复习巩固】1. 将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次性系数及常数项:2. 根据下列问题列方程,并将其化成一元二次方程的一般形式:(1)一个圆的面积是6.28 m2,求半径。

(2)一个直角三角形的两条直角边相乘3 cm,面积是9 cm2,求较长直角边的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,也是方程中重点内容,是学习二次函数等内容的基础,本节是本章的起始内容,主要学习下列三个内容:建立一元二次方程此内容是本节课的难点之一,在后续的内容中将继续学习,为此设计较易的[拓展应用]的例4及其变式题, [课时作业]的第6、7题。

1.一元二次方程的概念此内容是本节课的重点,是学习一元二次方程的基础,为此设计[拓展应用]的例1、例3,[当堂检测]的第1、2、4题,[课时作业]的第1—5题。

2.一元二次方程的解的含义利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计[拓展应用]的例2,[当堂检测]的第3题,[选做题]和[备选题目]的问题。

点击一:一元二次方程的定义一元二次方程的定义:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方程.针对练习1: 下列方程是一元二次方程的有__________。

(1)x 2+x1-5=0(2)x 2-3xy+7=0(3)x+12 x =4(4)m 3-2m+3=0 (5)22x 2-5=0 (6)ax 2-bx=4答案: (5)针对练习2: 已知(m+3)x 2-3mx -1=0是一元二方程,则m 的取值范围是 。

答案:一元二次方程二次项的系数不等于零。

故m≠-3 点击二:一元二次方程的一般形式元二次方程的一般形式是ax 2+bx +c =0(a ≠0),其中ax 2是二次项,bx 是一次项,c 是常数项,a 是二次项系数,b 是一次项系数,c 是常数.任何一个一元二次方程都可以通过整理转化成一般形式.由此,对于一个方程从形式上,应先将这个方程进行整理,看是否符合ax 2+bx +c =0(a ≠0)的一般形式.其中,尤其注意a ≠0的条件,有了a ≠0的条件,就能说明ax 2+bx +c =0是一元二次方程.若不能确定a ≠0,并且b ≠0,则需分类讨论:当a ≠0时,它是一元二次方程;当a =0时,它是一元一次方程.针对练习3: 把方程(1-3x )(x +3)=2x 2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项.答案:原方程化为一般形式是:5x 2+8x -2=0(若写成-5x 2-8x +2=0,则不符合人们的习惯),其中二次项是5x 2,二次项系数是5,一次项是8x ,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的负号).点击三:一元二次方程的根的定义的意义一元二次方程的根的定义可以当作性质定理使用,即若有实数m 是一元二次方程ax 2+bx +c =0(a ≠0)的根,则m 必然满足该方程,将m 代入该方程,便有am 2+bm +c =0(a ≠0);定义也可以当作判定定理使用,即若有数m 能使am 2+bm +c =0(a ≠0)成立,则m 一定是ax 2+bx +c =0的根.我们经常用定义法来解一些常规方法难以解决的问题,能收到事半功倍的效果.针对练习3: 若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2009的值. 答案: m 3+2m 2+2009=m 3+ m 2+m 2+2009=m (m 2+ m )+ m 2+2009=m+ m 2+2009=1+2009=2010.类型之一:一元二次方程的定义例1.关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足什么条件? 【解析】先把这个方程变为一般形式,只要二次项的系数不为0即可.【解答】由mx 2-3x=x 2-mx+2得到(m -1)x 2+(m -3)x -2=0,所以m -1≠0,即m≠1.所以关于x 的方程2322+-=-mx x x mx 是一元二次方程,m 应满足m≠1.【点评】要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.类型之二:考查一元二次方程一般形式一元二次方程的一般形式是ax 2+bx+c=0(a 、b 、c 是已知数,a≠0),其中a 叫做二次项系数,b 叫做一次项系数c 叫做常数项.只有将方程化为一般形式之后,才能确定它的二次项系数、一次项系数和常数项.这里特别要注意各项系数的符号。

例2一元二次方程(x+1)2-x==3(x 2-2)化成一般形式是 .【解析】一元二次方程一般形式是ax 2+bx+c=0(a≠0),对照一般形式可先去括号,再移项,合并同类项,得2x 2-x -7=0。

【解答】2x 2-x -7=0类型之三:考查一元二次方程的解使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解。

例3已知关于x 的一元二次方程(m -2)x 2+3x+(m 2-4)=0有一个解是0,求m 的值。

【解析】;因为0是方程的解,所以m 2-4=0,m=±2。

又因为方程是关于x 的一元二次方程,所以二次项系数m -2≠0、m≠2,所以m 的值是-2。

【解答】m=-2【点拨】本题逆用一元二次方程解的定义易得出m 的值,但不能忽视一元二次方程成立的条件m -2≠0,因此在解题时要重视解题思路的逆向分析。

类型之四:综合应用例4. 已知一元二次方程有一个根为1,那么这个方程可以是 (只需写出一个方程)【解析】这是一道结论开放题,答案不唯一,解这类题的一般思路有两种:一种思路是根据根的定义,写一个含有1的等式,例如0312152=-⨯-⨯,再把1换成x :03252=--x x ;也可根据等式性质,由x=1,可得x+2=1+2,两边再平方得9)2(2=+x 即可。

【解答】答案不唯一。

例如:9)2(2=+x 等。

1.下列方程中的一元二次方程是( )A.3(x+1)2=2(x -1)B.21x+x 1-2=0 C.ax 2+bx+c=0 D.x 2+2x=(x+1)(x -1) 【解析】A 注意一元二次方程中二次项系数不能为0,并且最高为二次. 2.把方程-5x 2+6x+3=0的二次项系数化为1,方程可变为( ) A.x 2+56x+53=0 B.x 2-6x -3=0 C.x 2-56x -53=0 D.x 2-56x+53=0 【解析】C 注意方程两边除以-5,另两项的符号同时发生变化. 3. 已知关于x 的方程(m -3)72-m x-x=5是一元二次方程,求m 的值.【解析】利用一元二次方程的定义,要注意二次项系数不为0的条件.【解答】由题意,得m 2-7=2且m -3≠0,所以只能取m=-3,即当m=-3时,方程(m-3)72-mx -x=5是一元二次方程.1.将方程3x 2=2x -1化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( )A. 3,2,-1B. 3,-2,-1C. 3,-2,1D. -3,-2,1 【解析】C 将方程3x 2=2x -1化成一元二次方程的一般形式,可化为3x 2-2x +1=2.下列方程中,是关于x 的一元二次方程的有___________.①x 2+2x +y =1 ②-5x 2=0 2-1=3x ④(m 2+1)x +m 2=6 ⑤3x 3-x =0 ⑥x 2+1x-1=0 【解析】判断一个方程是否是一元二次方程,必须具备以下三个条件:①方程中只含有一个未知数;②方程中未知数的最高次数是2;③方程两边都是关于未知数的整式方程【答案】②③3.已知方程(m+2)x 2+(m+1)x -m=0,当m 满足__________时,它是一元一次方程;当m 满足___________时,它是二元一次方程.【解析】当m +2=0,m =-2时,方程是一元一次方程;当m +2≠0,m≠-2时,方程是二元一次方程.【答案】m =-2 m≠-24.把方程x(x+1)=4(x -1)+2化为一般形式,并写出它的二次项系数、一次项系数、常数项.【解析】题中方程不是一般形式,应先去括号、移项、合并同类项,将方程化为一般形式.在化的时候,移项要变号,合并同类项要准确.【解答】一般形式为x 2-3x+2=0,它的二次项系数为1,一次项系数为-3,常数项为2.1. a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,求满足条件的一元二次方程.【解析】此题关键是理解算术根、完全平方数和绝对值的意义,即1-a ≥0,(b -2)2≥0,|a+b+c|≥0,只有使各项为0时,其和才为0.本题考查了对已学知识的掌握情况,同时与新学的一元二次方程知识密切联系.【解答】由1-a +(b -2)2+|a+b+c|=0,得⎪⎩⎪⎨⎧=++=-=-.0,02,01c b a b a 解得a=1,b=2,c=-3. ∵a 是二次项系数,b 是一次项系数,c 是常数项, ∴所求的方程为x 2+2x -3=0. 课时作业:A 等级1.下列方程中,属于一元二次方程的是( ). (A )x 2-1x=1 (B )x 2+y=2 (C2=2 (D )x+5=(-7)2 2.方程3x 2=-4x 的一次项系数是( ).(A )3 (B )-4 (C )0 (D )43.把一元二次方程(x+2)(x -3)=4化成一般形式,得( ).(A )x 2+x -10=0 (B )x 2-x -6=4 (C )x 2-x -10=0 (D )x 2-x -6=0 4.一元二次方程3x 2-2=0的一次项系数是________,常数项是_________. 5.x=a 是方程x 2-6x+5=0的一个根,那么a 2-6a=_________. 6.根据题意列出方程:(1)已知两个数的和为8,积为12,求这两个数.如果设一个数为x ,•那么另一个数为________,根据题意可得方程为___________.(2)一个等腰直角三角形的斜边为1,求腰长.如果设腰长为x ,根据题意可得方程为______________. 7.填表:8.判断下列各题括号内未知数的值是不是方程的解: (1)x 2+5x+4=0 (x 1=-1,x 2=1,x 3=-4);(2)(3x -1)2=3(x+2)2=7-6x (x 1=3,x 2=2,x 3=1,x 4=-1).9.根据题意,列出方程:有一面积为60m 2的长方形,将它的一边剪去5m ,另一边剪去2m ,恰好变成正方形,•试求正方形的边长.10.当m 满足什么条件时,方程m (x 2+x )2-(x+1)是关于x 的一元二次方程?当m 取何值时,方程m (x 2+x )2-(x+1)是一元一次方程?B 等级11.把方程2(21)(1)(1)x x x x +-=+-化成一般形式是 .12.一元二次方程226x x -=的二次项系数、一次项系数及常数之和为 . 13.已知1x ≠-是方程260x ax -+=的一个根,则a = .14.关于x 的方程2(1)230m x mx ++-=是一元二次方程,则m 的取值范围是 . 15.已知236x x ++的值为9,则代数式2392x x +-的值为 . 16.下列关于x 的方程:①20ax bx c ++=;②2430x x+-=;③2540x x -+=;④23x x =中,一元二次方程的个数是( )A .1个B .2个C .3个D .4个17.若2530ax x -+=是关于x 的一元二次方程,则不等式360a +>的解集是( ) A .2a >-B .2a <-C .2a >-且0a ≠D .12a >18.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( ) A .1B .1-C .1或1-D .1219.已知2是关于x 的方程23202x a -=的一个解,则21a -的值是( ) A .3B .4C .5D .620.如下图所示,相框长为10cm ,宽为6cm ,内有宽度相同的边缘木板,里面用来夹相片的面积为32cm 2,则相框的边缘宽为多少厘米?我们可以这样来解:(1)若设相框的边缘宽为cm x ,可得方程 (一般形式); (2)分析并确定x 的取值范围; (3)完成表格:(4)根据上表判断相框的边框宽是多少厘米?C 等级21. 关于x 2=-2的说法,正确的是 ( ) A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程 B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程 C.x 2=-2是一个一元二次方程D.x 2=-2是一个一元二次方程,但不能解22. 若3x =是方程2360x mx m -+=的一个根,则m 的值为( ) A .1B .2C .3D .423.无论a 为何实数,下列关于x 的方程是一元二次方程的是( ) A .(a 2-1)x 2+bx+c=0 B.ax 2+bx+c=0 C . a 2x 2+bx+c=0 D.(a 2+1)x 2+bx+c=0 24. 方程x 2-x+1=0的一次项系数是( )A B.-1 1 -x25. 把方程2336222--=+-kx x k x kx 整理为02=++c bx ax 的形式,并指出各项的系数.26. 某型号的手机连续两次降价,每个售价由原来的1185 元降到了580元,设平均每次降价的百分率为x ,则列出方程为_________________________________.27. 如图①,在一幅矩形地毯的四周镶有宽度相同的花边. 如图17②,地毯图案长8米、宽6米,整个中央的矩形地毯的面积是40平方米.求花边的宽28. 若220x x --=课前预习1.利用平方根的定义,将方程249x =直接开平方,所得方程的解为( )A .7x == B 。

相关文档
最新文档