小学奥数六年级下册数学 工程问题分类讲解 含解析
小学六年级数学讲义:工程问题

工程问题知识点1:工程问题:由两个或两个以上单位(或人),共同去完成一件工作或一项工程,计算需要完成任务的时间,这一类应用题叫做“工程问题”。
题目中没有给出具体的总工程量,通常用单位“1”表示(即整体思想),并用“1÷工作时间”推算工作效率,用一个分数单位1n⎛⎫⎪⎝⎭表示。
基本数量关系与一般工作问题完全相同,即总工程量÷工作效率=工作时间;总工程量÷工作时间=工作效率知识点2:工程问题中的“牛吃草”问题工程问题中的“牛吃草”问题是工程问题的特殊形式,即题目条件里面有变量。
所以解答此类问题首先应该将工程问题中的条件与“牛吃草”中的“原有草量”、“新生长的草量”和“牛吃草”一一对应,而关键是确定工程问题里面的两个不变量,仿照“牛吃草”问题即:原有量和增加率。
所以类似的基本数量关系式有:增加率=(台(人)数×时间-台(人)数×时间)÷时间差;原有量=(台(人)数-增加率×1)×时间台(人)数=原有量÷时间+增加率×1;时间=原有量÷(台(人)数-增加率×1)通常把“牛吃草”的速度即减少的速度设为“1”份。
知识点3:解题的思考方法:解答工程问题时一定要认真审题,弄明白是完成全部工程,还是该工程的部分(即它的几分之几)?有几个人或单位参加工作?他们完成这项工程各自需要多少时间?推得各自的工效是几分之一?他们是同时开始、同时结束工作的,还是有先有后的?具体要求什么等等。
因为工程问题的条件可用多种形式提出,有的不以“工程”命题,有的与其他类型的题目结合,这样,工程问题的题目就复杂起来。
但复杂是可以向简单转化的,通过一定的手段,使其变为若干个基本题,解题的基本思路与方法是不变的。
因此,只要抓住工作总量、工作效率、工作时间三者的关系,细心分析,就能找到解题的途径、步骤和方法。
例1(基础)原计划由一支工程队修建一座公园,预计需要1年零6个月;现在为了加紧完工,又调来了两支工程队,已知两只工程队的工作效率相同,那么需要多久才能完工?(提高、尖子)原计划一个工程队铺设一条水管需要18天,开工6天之后抽调走工程队中23的人数去做其他的工作,那么一共需要多少天才能建成这座大桥?(基础)批改一批考卷,李老师单独做需要12小时,王老师和李老师一起批改,需要8小时,那王老师单独批改这份考卷需要多少时间?(提高、尖子)有一批书,小明9天可装订34,小丽20天可装订56,现小明和小丽合作共装订了6天,余下的由小丽来装订,问:装订完这批书共用多少天?例3(基础、提高)满一个水池的水,同时开①、②、③号阀门需要15小时;同时开①、③、⑤号阀门需要10小时;同时开①、③、④号阀门需要12小时;同时开②、④、⑤号阀门需要8小时。
(完整word版)六年级奥数《工程问题》讲义

工程问题工程问题是将一般的工作问题分数化,换句话说从分率的角度研究工作总量、工作时间(完成丁作总量所需的时间)、工作效率(,单位时间内完成的工作於)三者之间关系的问题•它的特点是将工作总量看成单位“1”,用分率表示工作效率,对做工的问题进行分析解答.T•程问题的三个基本数址关系式是:工作效率X工作时间=工作总量. 工作总就十工作时间=工作效率. 工作总量一工作效率=丁作时间.V —件工程,甲、乙合做需6天完成,乙.丙合做需9天完成•甲、丙合做需15天完成•现在甲.乙、丙三人合做需要多少天完成?分析先求出三人合做一天完成这件工程的几分之几•再求三人合做需要多少天完成.解1+ [(¥ + + +需)十2]= 5 天).答甲、乙.丙三人合做需要5器天完成.冷<2卩一项工作,甲、乙合做要12天完成•若甲先做3天后,再由乙工作8天,共完成这件工作的卷如果这件工作由甲、乙单独做•甲需要多少天?乙需要多少天?分析把甲先做3天后再由乙工作8天共完成这件工作的立•看作甲、乙合作3天再由乙单砂做5天“完成这件T作的寻•又这件工作甲、乙台做要12夭完成"则甲、乙合做1天完成这件工作的越3天完成这件工作的备x 3 =与前述进行比较知•乙5 天完成这件工作的5 1 1———■12 4 6-解乙单独完成这件工作的天数「壬(辛*5)=30(天儿甲单独完成这件匸作的天数士 1 -=-(吉一点)=20(天).答这件工作由甲、乙单独做•甲需要20夭,乙需宴30天.亠(】)做一件工程•甲独做需要12小时完成,乙独做需要]8小时兀成■甲、乙合做1小时肩,然后由甲工作1小时,再由乙工作]小时两人如此交替工作'完成任务还需多少时间?<2)加工一批零件'甲、乙两人合做]小时势完成了这批零件的器乙、丙两人接着生产1小时•又完成了為甲、丙又合做2小时,完成了剩下的任务.甲•乙、丙三人合做■还妄多少小时完成?'?晅»有—水池,装有甲、乙两个注水管.下面装有丙管放水■池空时•单开卬管5分钟可注满.单开乙管10分钟可注满;水池装潢水肩.单开丙管15分钟可将水放完.如果在池空时•将甲、乙、丙三管齐开分钟启关闭乙管*还要多少分钟可注满水池?分析三管齐开2分钟肩的T作量是1 —(辛+吉一吉)x2.*[1_(言+壽_養餐2]斗(吉一吉)="分九答2分钟后关闭乙管.还妄4分钟可注满水池.密一份穡件.甲单独打字需6小时完成•乙单独打字需K)小时完成.现在甲单独打若干小时后•因有事由乙接着打完,共用了7小时.那么甲打字用了多少小时?分析乙7小时共打字盖幻=岳送样就差—磊=磊的稿件.因此甲每小时比乙多打全部稿件的吉一霁=磊*磊*点=4号(小时人*答甲打字用了4寺小时2再单独做4夭•还剩下这项工程的着没有完成,求甲、乙两队工作效卒之比.(2)甲、乙两项工程分别由一*二队来完成.在晴天•一队完成甲工程需要12天,二队完成乙工程需姜15天卡在雨天”一队的工作效率要下降40%•二队的工作效率耍下降10%.结果两队同时完成这两项工程•那么•在施工的日子卑•雨天有多少天?g;有卬、乙两项工程•张师傅单独完成甲丁程需寰9天,单独完成乙1 [程需要12天;王师傅单独完成甲工程需要3天. E独完成乙H 程需要15天.如果两人合作完成这两项丁程.最少需要多少天?分折由题目条件知,王师傅擅长做甲工程,所以让王师傅先做甲丁程,张师傅先做乙工程.等王师傅做完甲工程再和张师傅做乙工程.解3+(】_誇)+(吉+養)=3十5 = 8(天》.答两人合作完成这两项工程,堆少需要8天.0 <34某地要修筑-条公路,甲丁•程队单独干需要io天完成,乙工程队单独干需要15天完成*如果两队合作*他们的工作效率就要降低■甲队只能完成原来的壬,乙队只能完成原来的壽.现在if划8天完成这项工程,且要求两队合作天数尽可能少*那么两队要合作多少天?分析根据题意•甲、乙及甲.乙合做的工作效率分别为霁、1 tJL 1 4 1 9 7运及10X J +l5X l0 =50*此3种情况中乙的效率最低,甲、乙合做的效率最高,要使甲、乙合作天数尽可能的少.则必须甲尽可能地多做.如果全是甲做怡天可完成磊X8 =磊=£的工作虽尚有*的匚作没有完成■这部分工作要由甲、乙合做比甲多做的部分来完成.* (1~]^x8h(io x f+n x w~^)1 2=1■十韵=5(天〉.答两队要合作5天.(1) 一项工程•甲、乙合做全工程的晋^剩下的由甲单独完成. 甲一共做了10.5天”这项工程由甲单独做需要15天,如果由乙单独做•需要多少天?(2) 师徒三人合作承包一项工程显天能够全部完成.已知师傅单•独做所需的夭数与两个徒弟合作做所需的天数相等宇而师傅与乙徒第合作做所需的天数的2倍与甲徒弟单独做完所需的天数相等•那么甲徒弟单独做,完成这项丁程需要多少天?乙徒弟单独做,完成这项工程需要多少天?练习题1 完成一项工作"噩耍甲队干5天,乙队干6天•或者甲队干7 天•乙臥干2天.如果甲.乙两队独立完成该工程各需多少天?O 一个水池•甲.乙两个水管同时打开击小时可以灌满水池:若甲管打开8小时后关闭+然后打幵乙管,再工作3小时也可以灌满水池.问:甲管先工作2小时后关闭,乙管再工作儿小时可以港满全水池?3 一件工作甲5小时完成了吉”乙£小时完成了剩下的一半,余T的部分由甲、乙合作,还需要多少小时?O 甲、乙合作完战一项工作,由于配合得好舟甲的工作效率比单独做时提高壽■乙的工作效率比单独做时提高+•甲.乙合作6小时完成了这项任务.如果甲单独做需羹H小时,那么乙单独做需要多少小时?5某工程如果由第一、二、三小队合干,需12天才能完成;由第一.三、五小队合干,需7天才能完成*由第二、四.五小队合干•需圧天才能完成*曲第一、三、四小队合干•需42天才能完成■那么这五个小队一起合干,需要多少天才能完成这项工程?0 一批工人到甲、乙两个工地进行清理工作•甲T:地的「作绘是乙工地工作址的L5倍.上午去甲工地的人数是去乙匚地人数的3倍■下午这批工人中有召的人去甲工地•其他工人到乙工地.到傍晚时•甲工地的工作已做完农乙工地的工作还需4名工人再做1天・那么,这批工人有多少人?。
奥数班六年级下册第14讲工程问题综合课件

合作天数少
解:设甲乙合作了x天,则甲单独做了(6-x)天。 合作完成的工作量+甲单独完成的工作量=1
合作完成的工作量少
+
=1
单独完成的工作量多
甲单独工作
6
【典型例题】
假设:师傅每小时做5份,徒弟每小时做4份。
第一天工作总量:
师傅第二天的份数:
第二天工作总量:
徒弟第二天的份数:
师徒10时完成份数:
1份的个数:
甲乙完成的工作总量: 丙完成的工作总量: 丙完成的工作效率: 三队合作的时间:
9
【课堂精练】
甲、乙、丙合作的工作效率: 甲的工作效率: 丙的工作效率: 甲、丙合作的时间:
10
【课堂精练】
4.现有A、B、C三位老师参加阅卷,已知A老师单独改阅需要10小时,B老
师单独改阅需要8小时,C老师单独改阅需要6小时。
(1)如果三位老师同时改阅,需要多少时间?
(2)如果按照A,B,C,A,B,C,…的顺序每人改阅1小时,则改阅完全部
试卷需要多少时间?
(3)如果调整(2)问中的改阅顺序,是否可以将改阅全部试卷的时间提前半小时
(?1)合作的时间:
(3)调整为: C,B,A, C,B,A
(2) 1个周期: 需要几个周期: 2个周期完成的工作量: 剩下的工作量:
3
【典型例题】
例2:一项工程,甲队单独完成需要10天,乙队单独完成需要15天,丙队 单独完成需要20天。开始时三个队一起工作,中途甲队撤走,由乙、丙 两队一起完成剩下的工程,最后共用了6天完成该工程。甲队实际工作了 多少天?
解:设甲实际工作了x天。
甲完成的工作量+乙完成的工作量+丙完成的工作量=1
甲的工作效率:
【小学数学】小学六年级奥数工程问题例题详解及练习(一)

工程问题(一)顾名思义;工程问题指的是与工程建造有关的数学问题。
其实;这类题目的内容已不仅仅是工程方面的问题;也括行路、水管注水等许多内容。
在分析解答工程问题时;一般常用的数量关系式是:工作量=工作效率×工作时间;工作时间=工作量÷工作效率;工作效率=工作量÷工作时间。
工作量指的是工作的多少;它可以是全部工作量;一般用数1表示;也可工作效率指的是干工作的快慢;其意义是单位时间里所干的工作量。
单位时间的选取;根据题目需要;可以是天;也可以是时、分、秒等。
工作效率的单位是一个复合单位;表示成“工作量/天”;或“工作量/时”等。
但在不引起误会的情况下;一般不写工作效率的单位。
例1 单独干某项工程;甲队需100天完成;乙队需150天完成。
甲、乙两队合干50天后;剩下的工程乙队干还需多少天?分析与解:以全部工程量为单位1。
甲队单独干需100天;甲的工作效例2某项工程;甲单独做需36天完成;乙单独做需45天完成。
如果开工时甲、乙两队合做;中途甲队退出转做新的工程;那么乙队又做了18天才完成任务。
问:甲队干了多少天?分析:将题目的条件倒过来想;变为“乙队先干18天;后面的工作甲、乙两队合干需多少天?”这样一来;问题就简单多了。
答:甲队干了12天。
例3 单独完成某工程;甲队需10天;乙队需15天;丙队需20天。
开始三个队一起干;因工作需要甲队中途撤走了;结果一共用了6天完成这一工程。
问:甲队实际工作了几天?分析与解:乙、丙两队自始至终工作了6天;去掉乙、丙两队6天的工作量;剩下的是甲队干的;所以甲队实际工作了例4 一批零件;张师傅独做20时完成;王师傅独做30时完成。
如果两人同时做;那么完成任务时张师傅比王师傅多做60个零件。
这批零件共有多少个?分析与解:这道题可以分三步。
首先求出两人合作完成需要的时间;例5 一水池装有一个放水管和一个排水管;单开放水管5时可将空池灌满;单开排水管7时可将满池水排完。
全国通用六年级下册数学培优课件6.11工程问题 (共8张PPT)

们常常将全部工程看作单位“1”,于是
工作效率=
1
,然后再根据工作总
工作时间
量、工作效率和工作时间这三个量的关系解
题。
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月10日星期日2022/4/102022/4/102022/4/10 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/102022/4/102022/4/104/10/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/102022/4/10April 10, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
解析:“中途乙队因事调走 ”,但是甲队一直在工作, 即甲在这项任务中工作了30 天,乙工作了若干天。
答:乙队工作了20天。
1、工程问题是研究工作效率、工作时间和工 作总量之间相互关系的一种应用题,一般把 工作总量看作单位“1”,它们的基本关系式 是:工作总量=工作效率×工作时间。
2、当题目没有给出具体的工作总量时,我
10
1
乙的工作效率:8
①先求甲、乙
甲4天完成的工作量为:110
4=
2 5
的效率;②再
求甲4天完成的
剩下的工作量为: 1 - 2 = 3
工作量;③最
55
后算出剩下的
剩下的工程需要的时间为:
工作量。
53110+18=83=232(天)
答:还需要
2
2 3
天可完成全部工程。
例4:一块地需要除草,小奥单独除60分钟
谢谢观赏
小学六年级数学工程问题经典例题解析

工程问题,是小升初常考的知识点,奥数网小编将工程问题知识点及经典例题解析整理如下。
知识要点
1、分数工程应用题,一般没有具体的工作总量,工作总量常用单位“1”表示,用1/工作时间表示各单位的工作效率。
工作效率与完成工作总量所需时间互为倒数。
2、解工程问题的应用题,一般都是围绕寻找工作效率的问题进行。
3、工作效率、工作时间、工作总量是工程问题的三个基本量,解题时要注意对应关系。
经典例题解析
1、一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?
2、师徒二人合作生产一批零件,6天可以完成任务,师傅先做5天后,因事外出,由徒弟接着做3天,共完成任务的7/10,如果每人单独做这批零件各需几天?
3、一件工作甲先做6小时,乙接着做12小时可以完成,甲先做8小时,乙接着做6小时也可以完成,如果甲做3小时后由乙接着做,还需要多少小时完成?
4、蓄水池有一条进水管和一排水管,要灌满一池水,单开进水管需要5小时,排光一池水,单开排水管需3小时。
现在池内有半池
水,如果按进水、排水、进水、排水……的顺序轮流各开1小时,问:多上时间后水池的水刚好排完?(精确到分钟)
5、甲乙二人植树,单独植完这批树甲比乙所需要的时间多1/3,如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?
6、一项工程,甲单独做需要12小时完成,乙单独做需要18小时完成,若甲先做1小时,然后乙接着做1小时,再由甲接着做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?。
六年级奥数_第5讲——工程问题

学生姓名上课时间课题名称第五讲工程问题学习目标一、熟悉工程问题的数量关系。
二、熟练运用数量关系式来分析题目,学会分着做和着想及和着做分着想的思维。
三、培养运用所学知识解决简单的实际问题的能力,培养数学代换思维。
重点分析熟练运用数量关系式来分析题目,学会分着做和着想及和着做分着想的思维。
难点分析熟练运用数量关系式来分析题目,学会分着做和着想及和着做分着想的思维。
学法指导附:课堂练习工程问题方法总结一:基本数量关系:工效×时间=工作总量甲工效+乙工效=合作工效二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:算术方法、比例方法、方程方法。
四:基本思想:分做合想、合做分想。
工程问题例1 一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?例2师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天后,因事外出,由徒弟接着做三天,共完成任务的107,如果每人单独做这项任务各需几天?例3 一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?例4 一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?例5筑路队预计30天修一条公路.先由18人修12天只完成全部工程的31,如果想提前6天完工,还需增加多少人?例6蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水,进水,排水…的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确到分钟)例7一件工作,甲5小时先完成了41,乙6小时又完成了剩下任务的一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?例8 甲乙二人植树,单独植完这批树,甲比乙所需要的时间多31,如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?例9 加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,再由乙做12天,还剩下这批零件的52没有完成,已知甲每天比乙多加工3个零件,求这批零件共多少个?例10 一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?作业 1.一项工程,甲单独做12天可以完成.如果甲单独做3天,余下工作由乙去做,乙再用6天可以做完.问若甲单独做6天,余下工作乙要做几天?2.一条水渠,甲乙两队合挖30天完工.现在合挖12天后,剩下的由乙队挖,又用24天挖完.这条水渠由乙单独挖,需要多少天?3.客车与货车同时从甲、乙两站相对开出,经2小时24分钟相遇,相遇时客车比货车多行9.6千米.已知客车从甲站到乙站行4小时30分钟,求客车与货车的速度各是多少?4.水箱上装有甲、乙两个注水管.单开甲管20分钟可以注满全箱.现在两管同时注水2.5分钟,注满水箱的245,如果单开乙管需要多少分钟注满水箱?5.一项工程,甲、乙单独做分别需要18天和27天.如果甲做若干天后,乙接着做,共用20天完成.求甲乙完成工作量之比.6.一项工程,甲、乙两队合作6天能完成65,已知单独做,甲完成31与乙完成21所需时间相等,问单独做甲、乙各需多少天?7.做一批儿童玩具.甲组单独做10天完成,乙组单独做12天完成,丙组每天可生产64件.如果让甲、乙两组合作4天,则还有256件没完成.现在决定三个组合做这批玩具,需要多少天完成?课后反思作业情况:。
六年级奥数专题 工程问题(学生版)

工程问题 学生姓名 授课日期 教师姓名授课时长知识定位工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是工程应用题的关键。
本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。
知识梳理1.工程问题在主要概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间的相互关系的问题。
在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。
工程问题是小升初的常见考题,题型复杂多变,但是核心不变,即:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;在分数应用题中,经常将工作总量抽象成单位“1”;例如:一项工程,甲5天完成,则甲每天完成全部的几分之几?分析:这道题中,我们将一项工程抽象成单位“1”,5为工作时间,所以每天完成整个工程的1÷5=51,即为所求,同时51也是甲完成这项工作的速度,所以51就是这道题中甲的工作效率。
在解决工程问题时,对于题中已知条件给出的每一个数字或字母表示的具体含义必须在读完题后,清晰明了,然后通过所求与已知的逻辑关系,再进一步求解。
常用方法:列表法,条件转换法,整体法;每一种方法的使用要在具体题目中用心体会。
2.解决工程问题的基本思路(1)工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。
工程问题一般采用这种方法求解。
(2)先求出独做的队或个人的工作效率 ,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。
(3)求剩余部分的工作量完成的时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数六年级下册数学 工程问题分类讲解 含解析 小学奥数六年级下册数学 工程问题分类讲解 含解析 小学奥数六年级下册数学 工程问题分类讲解 含解析 工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。在教学中,让学生建立正确概念是解决工程应用题的关键。
一. 工程问题的基本概念 定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间相互关系的问题。
工作总量:一般抽象成单位“1” 工作效率:单位时间内完成的工作量 三个基本公式:工作总量=工作效率×工作时间, 工作效率=工作总量÷工作时间, 工作时间=工作总量÷工作效率; 二、为了学好分数、百分数应用题,必须做到以下几方面: ① 具备整数应用题的解题能力,解决整数应用题的基本知识,如概念、性质、法则、公式等广泛应用于分数、百分数应用题;
② 在理解、掌握分数的意义和性质的前提下灵活运用; ③ 学会画线段示意图.线段示意图能直观地揭示“量”与“百分率”之间的对应关系,发现量与百分率之间的隐蔽条件,可以帮助我们在复杂的条件与问题中理清思路,正确地进行分析、综合、判断和推理;
④ 学会多角度、多侧面思考问题的方法.分数、百分数应用题的条件与问题之间的关系变化多端,单靠统一的思路模式有时很难找到正确解题方法.因此,在解题过程中,要善于掌握对应、假设、转化等多种解题方法,不断地开拓解题思路.
三、利用常见的数学思想方法: 如代换法、比例法、列表法、方程法等 抛开“工作总量”和“时间”,抓住题目给出的工作效率之间的数量关系,转化出与所求相关的工作效率,最后再利用先前的假设“把整个工程看成一个单位”,求得问题答案.一般情况下,工程问题求的是时间.
熟练掌握工程问题的基本数量关系与一般解法; (1) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;
(2) 根据题目中的实际情况能够正确进行单位“1”的统一和转换; (3) 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.
一、 周期性工程问题 [例 1] 一件工程,甲单独做要小时,乙单独做要小时,如果接甲、乙、甲、乙...顺序交替工作,每次小时,那么需要多长时间完成? [考点]工程问题 [难度]4星 [题型]解答 [解析] 甲小时完成整个工程的,乙小时完成整个工程的,交替干活时两个小时完成整个工程的,甲、乙各干小时后完成整个工程的,还剩下,甲再干小时完成整个工程的,还剩下,乙花小时即分钟即可完成.所以需要小时分钟来完成整个工程.
[答案]小时分钟 [巩固] 一项工程,甲单独完成需l2小时,乙单独完成需15小时。甲乙合做1小时后,由甲单独做1小时,再由乙单独做1小时,……,甲、乙如此交替下去,则完成该工程共用________小时。
[考点]工程问题 [难度]3星 [题型]解答 [关键词]2008年,希望杯,第六届,五年级,一试 [解析] 甲乙合做1小时后,还剩下:,甲乙单独做2小时,共做,还需要做2×5=10小时,还剩下,需要甲做1小时,还有,乙还需要做小时,一共需要1+10+1+ 0.25=12.25小时
[答案]天 [例 2] 一项工程,乙单独做要天完成.如果第一天甲做,第二天乙做,这样交替 轮流做,那么恰好用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做需要几天?
[考点]工程问题 [难度]4星 [题型]解答 [解析] 甲、乙轮流做,如果是偶数天完成,那么乙、甲轮流做必然也是偶数天完成,且等于甲、乙轮流做的天数,与题意不符;所以甲、乙轮流做是奇数天完成,最后一天是甲做的.那么乙、甲轮流做比甲、乙轮流做多用半天,这半天是甲做的.如果设甲、乙工作效率分别为和,那么,所以,乙单独做要用天,甲的工作效率是乙的倍,所以甲单独做需要天.
[答案]天 [巩固] 规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要小时,而乙、甲轮流做同样的工程只需要小时,那乙单独做这个工程需要多少小时?
[考点]工程问题 [难度]4星 [题型]解答 [解析] 根据题意,有:,可知,甲做小时与乙做小时的工作量相等,故甲工作2小时,相当于乙1小时的工作量. 所以,乙单独工作需要小时. [答案]小时 [例 3] 蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需小时;排光一池水,单开排水管需小时.现在池内有半池水,如果按进水,排水,进水,排水……的顺序轮流各开小时.问:多长时间后水池的水刚好排完?(精确到分钟)
[考点]工程问题 [难度]4星 [题型]解答 [解析] 法一: 小时排水比小时进水多,,说明排水开了小时后(实际加上进水3小时,已经过去小时了),水池还剩一池子水的,
再过小时,水池里的水为一池子水的, 把这些水排完需要小时,不到1小时, 所以共需要 小时小时分. 法二: 小时排水比小时进水多,, 说明小时以后,水池的水全部排完,并且多排了一池子水的, 排一池子需要小时,排一池子水的需要小时, 所以实际需要小时小时分. [答案]小时分 [巩固] 蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需小时,单开丙管需要小时,要排光一池水,单开乙管需要小时,单开丁管需要小时,现在池内有的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开小时,问多少时间后水开始溢出水池?
[考点]工程问题 [难度]5星 [题型]解答 [解析] 甲乙丙丁顺序循环各开小时可进水:,循环次后水池还空:,的工作量由甲管注水需要:(小时),所以经过小时后水开始溢出水池.
[答案] 二、 水管问题 [例 4] 一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?
[考点]工程问题 [难度]3星 [题型]解答 [解析] 由于甲、乙和乙、丙的工作效率之和都知道了,根据“现在先开乙管6小时,还需甲、丙两管同时开2小时灌满”,我们可以把乙管的6小时分成3个2小时,第一个2小时和甲同时开,第二个2小时和丙同时开,第三个2小时乙管单独开.这样就变成了甲、乙同时开2小时,乙、丙同时开2小时,乙单独开2小时,正好灌满一池水.可以计算出乙单独灌水的工作量为,所以乙的工作效率为:,所以整池水由乙管单独灌水,需要(小时).
[答案]小时 [巩固] 某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放 小时.
[考点]工程问题 [难度]3星 [题型]解答 [解析] 要想同时开的时间最小,则根据工效,让甲“满负荷”地做,才可能使得 同时开放的时间最小.所以,乙开放的时间为(小时),即甲、乙最少要同时开放4小时. [答案]4小时 [例 5] 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
[考点]工程问题 [难度]3星 [题型]解答 [解析] 先计算1个水龙头每分钟放出水量.2小时半比1小时半多60分钟,多流入水4 × 60= 240(立方米).时间都用分钟作单位,1个水龙头每分钟放水量是240 ÷ ( 5× 150- 8 × 90)= 8(立方米),8个水龙头1个半小时放出的水量是8 × 8 × 90,其中 90分钟内流入水量是 4 × 90,因此原来水池中存有水 8 × 8 × 90-4 × 90= 5400(立方米).打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要5400 ÷(8 × 13- 4)=54(分钟).所以打开13个龙头,放空水池要54分钟.水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.
[答案]54分钟 [巩固] 一个蓄水池有1个进水口和15个出水口,水从进水口匀速流入.当池中有一半的水时,如果打开9个出水口,9小时可以把水排空.如果打开7个出水口, 18小时可以把水排空.如果是一满池水,打开全部出水口放水,那么经过 时 分水池刚好被排空.
[考点]牛吃草问题 [难度]3星 [题型]填空 [关键词]对比思想方法 00001[解析] 本题是牛吃草问题的变形. 设每个出水口每小时的出水量为1,则进水口每小时的进水量为:,半池水的量为:,所以一池水的量为72.
如果打开全部15个出水口,排空水池所需要的时间为小时,即7小时12分钟. [答案]小时分钟
[例 6] 一个水箱,用甲、乙、丙三个水管往里注水.若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满.又知,乙管每分钟注水量是甲管每分钟注水量的2倍.则该水箱最多可容纳多少吨水?