变压器谐波损耗计算及影响因素分析.
(完整版)变压器空载损耗与负载损耗的计算方法及公式

变压器空载损耗与负载损耗的计算方法及公式电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。
1、电力变压器损耗计算公式(1)有功损耗:ΔP=P0+KTβ2PK-------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK-------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ------(3)Q0≈I0%SN,QK≈UK%SN式中:Q0——空载无功损耗(kvar)P0——空载损耗(kW)PK——额定负载损耗(kW)SN——变压器额定容量(kVA)I0%——变压器空载电流百分比。
UK%——短路电压百分比β ——平均负载系数KT——负载波动损耗系数QK——额定负载漏磁功率(kvar)KQ——无功经济当量(kW/kvar)上式计算时各参数的选择条件:(1)取KT=1.05;(2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%;(4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h;(5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。
2、电力变压器损耗的特征P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗;磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。
涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。
PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。
其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。
负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。
变压器的全损/耗ΔP=P0+PC变压器的损耗比=PC /P0变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。
变压器谐波损耗计算及经济性评估

要 :随着先进的基于微 电子控制技术的 自动化生产流水线 大量应用 于现代工业 , 企业 的生产效率不 断提高 ; 与此同时企业 对电力 系统 的电能质量 问题也越发关注。为了掌握谐波对企业造成 的损失情况 , 携带 电能质量分 析仪——F 1 u k e 4 3 5对该 企业的每个 测量点进行了 2 4小时连续不间断的测量 ; 在实测数据 的基础上 , 结合变压器谐波损耗 的经典理论对谐波造成 的直 接损失和 间 接损失进行了经济性评估 。对工业 用户评估及计算电力系统谐波造成的经济损失有一定的指导意义和参考价值 。
关键 词 :电能 质 量 ; 变压器 ; 谐波 ; 直 接损 失 ; 间接 损 失 ; 经 济性 评 估
D OI : 1 0 . 3 9 6 9 / j・ i s s n . 1 0 0 0—3 8 8 6 . 2 0 1 3 . 0 5 . 0 1 7
[ 中 图分 类 号 ] T M 4 0 1 +. 1 [ 文 献 标 志码 ] A [ 文章编号 ]1 0 0 0— 3 8 8 6 ( 2 0 1 3 ) 0 5— 0 0 4 6— 0 3
a r e e v a l u a t e d t h r o u g h c l a s s i c a l t h e o r y o f t r a n s f o me r r s ’ h a r mo n i c l o s s e s .F o r i n d u s t r i l a e n t e r p r i s e s ,t h i s me t h o d h a s s o me g u i d a n c e a n d
( A r c h i t e c t u r a l D e s i g n a n d R e s e a r c h I n s t i t u t e o f S o u t h C h i n a S c i e n c e a n d
电力变压器空载损耗与负载损耗的计算方法及计算公式

电力变压器空载损耗与负载损耗的计算方法及计算公式电力变压器损耗分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实际是铁芯所产生的损耗(也称铁芯损耗),而铜损也叫负荷损耗。
1、电力变压器损耗计算公式(1)有功损耗:ΔP=P0+KTβ2PK-------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK -------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ ------(3)Q0≈I0%SN,QK≈UK%SN式中:Q0——空载无功损耗(kvar)P0——空载损耗(kW)PK——额定负载损耗(kW)SN——变压器额定容量(kVA)I0%——变压器空载电流百分比。
UK%——短路电压百分比β——平均负载系数KT——负载波动损耗系数QK——额定负载漏磁功率(kvar)KQ——无功经济当量(kW/kvar)上式计算时各参数的选择条件:(1)取KT=1.05;(2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%;(4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h;(5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品出厂资料所示。
2、电力变压器损耗的特征P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗;磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。
涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。
PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。
其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。
负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。
变压器的全损耗ΔP=P0+PC变压器的损耗比=PC /P0变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。
电网中谐波的危害及措施分析

电网中谐波的危害及措施分析1、引言随着我国国民经济的快速发展,大功率整流设备、变频调速设备、换流逆变器设备等在配电网中得到广泛应用,给配电网注入了大量的非线性阻抗特性,导致电网波形出现严重畸变现象,电网中的谐波问题严重,在很大程度上对电力系统及电气设备造成危害。
2、谐波的基本特性和测量(1)谐波的概念谐波是一个周期电气量的正弦波分量,其频率是基波频率的整数倍数。
理论上看,非线性负荷是配电网谐波的主要产生因素。
非线性负荷吸收电流和外加端电压为非线性关系,这类负荷的电流不是正弦波,且引起电压波形畸变。
周期性的畸变波形经过傅立叶级数分解后,那些大于基频的分量被称作谐波。
非线性负荷除了产生基频整次谐波外,还可能产生低于基频的次谐波,或高于基波的非整数倍谐波。
电力系统中出现系统短路、开路等事故,而导致系统进入暂态过程引起的谐波,将不归属谐波治理的范畴。
(2)谐波的类型谐波按其性质和波动的快慢可分成四类:准稳态谐波、波动谐波、快速变化的谐波和间谐波四类。
因其多样性和随机性,在实际工作中,要精确评估谐波量值非常困难,所以在IEC 6100-4-7标准中对前三类谐波进行了规定,推荐采用数理统计的方法对谐波进行测量。
国标GB/T 14549-1993采用观察期3s有效测量的各次谐波均方根值的95%概率作为评价谐波的标准。
为简便实用,将实测值按由大到小的方式排序,在舍去前5%个大值后剩余的最大值,近似作为95%的概率值。
(3)谐波的测量通常采用谐波测试仪来监测和分析谐波。
一般来说,将用户接入公用电网的公共连接点作为谐波监测点,测量该点的电压和注入公共电网的电流后,通过对电压和电流的分析,取得谐波测量资料。
电网中谐波源定位,一般采用功率方向法和瞬时负荷参数分割法。
而谐波模型分析的方法一般有三种:非线性时域仿真、非线性和线性频率分析。
三种方法的相同点是对电网作适当的线性化处理,只是在处理非线性设备时采取了不同的模拟方式。
电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。
然而,谐波问题却成为了影响电力系统性能的一个重要因素。
谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。
因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。
一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。
在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。
2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。
3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。
二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。
2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。
3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。
4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。
三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。
常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。
通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。
2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。
谐波的主要影响

谐波的主要影响作用(谐波的危害)1.对电费计量系统的危害:由于谐波电流的波形不同于基波电流,当系统谐波电流含量较高时,会严重影响电费计量系统,计量系统若不能区分谐波电流与基波电流,将谐波电流计为有功电流,造成用户多支出电费。
2.计算机和一些其它电子设备:如PLC等,对电能质量要求较高,较高的谐波可导致控制设备误动作,进而造成生产或运行中断,导致较大的经济损失。
3.变压器:对变压器而言,谐波电流可导致铜损和杂散损增加,谐波电压则会增加铁损。
与纯正基本波运行的正弦电流和电压相较,谐波对变压器的整体影响是温升较高。
须注意的是; 这些由谐波所引起的额外损失将与电流和频率的平方成比例上升,进而导致变压器的基波负载容量下降。
而当你为非线性负载选择正确的变压器额定容量时,应考虑足够的降载因子,以确保变压器温升在允许的范围内。
还应注意的是用户由于谐波所造成的额外损失将按所消耗的能量(仟瓦一小时)反应在电费上,而且谐波也会导致变压器噪声增加。
4. 电力电缆:在导体中非正弦波电流所产生的热量与俱有相同均方根值的纯正弦波电流相较,则非正弦波会有较高的热量。
该额外温升是由众所周知的集肤效应和邻近效应所引起的,而这两种现象取决于频率及导体的尺寸和间隔。
这两种效应如同增加导体交流电阻,进而导致I2Rac损耗增加。
5. 电动机与发电机:谐波电流和电压对感应及同步电动机所造成的主要效应为在谐波频率下铁损和铜损的增加所引起之额外温升。
这些额外损失将导致电动机效率降低,并影响转矩。
当设备负荷对电动机转矩的变动较敏感时,其扭动转矩的输出将影响所生产产品的质量。
对于旋转电机设备,与正弦磁化相比,谐波会增加噪音量。
像五次和七次这种谐波源,在发电机或电动机负载系统上,可产生六次谐波频率的机械振动。
机械振动是由振动的扭矩引起的,而扭矩的振动则是由谐波电流和基波频率磁场所造成,如果机械谐振频率与电气励磁频率重合,会发生共振进而产生很高的机械应力,导致机械损坏的危险。
变压器空载损耗计算公式读

变压器的损失电量分为铁损和铜损,铁损又叫空载损耗,就是其固定损耗,实是铁芯所产生的损耗(也称铁芯损耗,而铜损也叫负荷损耗一变压器损耗计算公式(1)有功损耗:ΔP=P0+KTβ2PK-------(1)(2)无功损耗:ΔQ=Q0+KTβ2QK-------(2)(3)综合功率损耗:ΔPZ=ΔP+KQΔQ----(3)Q0≈I0%SN,QK≈UK%SN式中:Q0——空载无功损耗(kvar)P0——空载损耗(kW)PK——额定负载损耗(kW)SN——变压器额定容量(kVA)I0%——变压器空载电流百分比。
UK%——短路电压百分比β——平均负载系数KT——负载波动损耗系数QK——额定负载漏磁功率(kvar)KQ——无功经济当量(kW/kvar)“上式计算时各参数的选择条件:(1)取KT=1.05;(2)对城市电网和工业企业电网的6kV~10kV降压变压器取系统最小负荷时,其无功当量KQ=0.1kW/kvar;(3)变压器平均负载系数,对于农用变压器可取β=20%;对于工业企业,实行三班制,可取β=75%;(4)变压器运行小时数T=8760h,最大负载损耗小时数:t=5500h;(5)变压器空载损耗P0、额定负载损耗PK、I0%、UK%,见产品资料所示。
二变压器损耗的特征P0——空载损耗,主要是铁损,包括磁滞损耗和涡流损耗;磁滞损耗与频率成正比;与最大磁通密度的磁滞系数的次方成正比。
涡流损耗与频率、最大磁通密度、矽钢片的厚度三者的积成正比。
PC——负载损耗,主要是负载电流通过绕组时在电阻上的损耗,一般称铜损。
其大小随负载电流而变化,与负载电流的平方成正比;(并用标准线圈温度换算值来表示)。
负载损耗还受变压器温度的影响,同时负载电流引起的漏磁通会在绕组内产生涡流损耗,并在绕组外的金属部分产生杂散损耗。
变压器的全损耗ΔP=P0+PC变压器的损耗比=PC/P0变压器的效率=PZ/(PZ+ΔP),以百分比表示;其中PZ为变压器二次侧输出功率。
谐波产生的原因危害和抑制措施

谐波产生的原因危害和抑制措施0前言随着电力电子技术的飞速发展,各种新型用电设备越来越多地问世和使用,高次谐波的影响越来越严重。
电力系统受到谐波污染后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。
以前,电力系统考核电能质量的主要指标是电压的幅值和频率,现在世界各国都把电网电压正谐波形畸变率极限值作为电能质量考核指标之一,正确认识谐波已成为电力工作者的重要任务之一。
因此,研究和分析谐波产生的原因、危害和抑制谐波的措施具有重要的实际意义。
1谐波产生的原因在供电系统中谐波的发生主要是由两大因素造成的:(1)可控硅整流装置和调压装置等的广泛使用,晶闸管在大量家用电器中的普通采用以及各种非线性负荷的增加导致波形畸变。
(2)设备设计思想的改变。
过去倾向于采用在额定情况以下工作或裕量较大的设计。
现在为了竞争,对电工设备倾向于采用在临界情况下的设计。
例如有些设计为了节省材料使磁性材料工作在磁化曲线的深饱和区段,而在这些区段内运行会导致激磁材料波形严重畸变。
2谐波对电力系统的危害谐波对电力系统的污染日益严重,谐波源的注入使电网谐波电流、谐波电压增加,其危害波及全网,对各种电气设备都有不同程度的影响和危害。
现将对具体设备的危害分析如下:(1)交流发电机。
同步电动机及感应电动机在定子绕组和转子绕组产生附加热损耗,热损耗除谐波电流铜损I2nR以外,还由于电流的集肤效应,产生附加损耗,对转子引起热损耗增大。
对大型汽轮发电机来说,若发生多次谐波振荡,谐波电流超过额定电流的25%时,由于上述原因可能会导致转子局部过热而损坏。
对变压器来说,铁芯产生热损耗,尤其是涡流损耗大,在变压器绕组中有谐波电流,在铁芯中感应磁通,产生铁损。
(2)架空线路谐波电流产生热损,较大的高次谐波电流分量能显著地延缓潜供电流的熄灭,导致单相重合闸失败。
电缆中的谐波电流会产生热损,使电缆介损、温升增大。
(3)电力电容器由于谐波电流会引起附加绝缘介质损耗,加快电力电容器绝缘老化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 39卷第 4期电力系统保护与控制 Vol.39 No.4 2011年 2月 16日 Power System Protection and Control Feb.16, 2011 变压器谐波损耗计算及影响因素分析张占龙 1,王科 1,2,李德文 1,周军 3,吴喜红 1,黄嵩 1,唐炬 1(1.重庆大学输配电装备及系统安全与新技术国家重点实验室, 重庆 400030;2.重庆长寿供电局,重庆 401220; 3.四川自贡电业局,四川自贡 643000摘要:为了准确分析配电网谐波对变压器损耗的影响,依据电路理论建立了变压器谐波损耗模型,推导出变压器谐波损耗的计算关系式。
针对谐波次数和变压器负载不平衡引起的谐波损耗进行了分析,提出了变压器谐波损耗在线监测方法,并通过实验对该方法的有效性进行了分析。
分析结果表明:建立的变压器谐波损耗模型一方面由于不需要考虑变压器一次侧谐波电流,简化了计算复杂程度;另一方面能够准确计算出变压器的各次谐波引起的变压器损耗。
基于配电网 3次与 5次谐波引起的变压器损耗占变压器总谐波损耗的90%以上,有效降低配电网 3次与 5次谐波对于变压器的降损节能具有很好的工程实用价值。
关键词: 变压器;谐波;不平衡;简化模型;在线监测Transformer harmonic loss calculation and influence factor analysisZHANG Zhan-long1, WANG Ke1,2, LI De-wen1, ZHOU Jun3, WU Xi-hong1, HUANG Song1, TANG Ju1(1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400030, China; 2. Chongqing Changshou Power Supply Bureau, Chongqing 401220, China; 3. Sichuan Zigong Electric Power Bureau, Zigong 643000, ChinaAbstract: In order to analyze the influence of distribution network harmonic on transformer loss accurately, transformer harmonic loss model is established according to circuit theory and its calculation formula is derived. Transformer harmonic loss causedby harmonic order and transformer load imbalance is analyzed, a method about online monitoring transformer harmonic loss is proposed, and its effectiveness is analyzed by experiment. The result confirms that the calculation can be simplified by using transformer harmonic loss model because it does not need to consider the transformer primary side harmonic currents and transformer harmonics loss caused by each order harmonic can be calculated accurately. Effectively reducing third order and fifth order harmonic of distribution network has a good practical value for energy conservation of transformer because more than 90% of transformer harmonic loss is caused by them.This work is supported by special fund of the National Basic Research Program of China (973 (No. 2009CB724506.Key words: transformer; harmonic; unbalance; simplified model; online monitoring中图分类号: TM406 文献标识码:A 文章编号: 1674-3415(201104-0068-050 引言降损节能是智能电网发展方向之一,变压器作为电力系统中重要的输配电设备,其工作效率直接关系到电网电能转换的效率,也是用户能否正常使用电能的重要组成部分 [1]。
随着电网中负载的复杂基金项目 :国家重点基础研究计划 (973 资助 (2009CB724506 ;重庆大学输配电装备及系统安全与新技术国家重点实验室访问学者基金(2007DA10512709408 、中国电机工程学会电力青年科技创新项目多样性,电网中存在的谐波和负荷不平衡已经是一种比较普遍的现象 [2],长期运行增加了变压器内部损耗,造成较大的电能损耗,缩短变压器寿命,严重时将对电网的安全、经济运行造成极大的影响。
在变压器谐波损耗监测中, 文献 [3]提出了变压器谐波损耗的计算方法,分析了变压器谐波损耗与谐波电流畸变率的关系。
文献 [4]提出了考虑集肤效应时的变压器谐波损耗计算方法。
文献 [5]分析了谐波次数与变压器模型参数之间的曲线关系。
上述研究成果集中在变压器谐波损耗的理论分析和谐波状张占龙,等变压器谐波损耗计算及影响因素分析 - 69 -态下的变压器参数变化,没有考虑变压器负载不平衡和谐波次数对变压器谐波损耗的影响。
本文在文献 [3]提出的变压器谐波损耗模型的基础上进行了改进,简化了变压器谐波损耗计算复杂程度,并分析了谐波次数和三相负载不平衡与变压器谐波损耗之间的关系。
1 变压器谐波损耗模型根据变压器开路试验和短路试验对变压器的等效电路参数进行计算,然后根据集肤效应和叠加原理,得出变压器谐波等效模型—变压器 T 形等效电路如图 1所示。
图 1 变压器 T 形等效电路Fig.1 T equivalent circuit of transformer图 1中的等效电路参数激磁电阻 R m 和激磁电抗 X m通过变压器开路试验计算而得; 原端电阻 R 1、副端电阻 R 2、原端电抗 X 1和副端电抗 X 2由短路试验计算而得。
图 2变压器开路试验原理图Fig.2 Open-circuit test diagram of transformer开路试验原理如图 2所示,试验时变压器二次侧开路,工程上为了试验时的安全和仪表选择的方便,开路试验通常在低压侧加压,高压侧开路,此时测出的值为归算到二次侧的值,需要将其再归算到高压侧,其归算计算公式为:22(m m Z k kZ == (12220(2203m m P k k I R R ==低压 (2m X = (3短路试验原理如图 3所示,试验时把二次侧绕组短路,一次侧加电压 U k ,输入功率 P k 、电流 I k , 由于短路试验所加电压很小,短路试验时变压器内部的磁通小,激磁电流和铁耗可以忽略不计,由此可求出变压器的短路阻抗 Z k ,如式(4所示。
1111Nk k k U U I I ==k Z (4图 3变压器短路试验原理图Fig.3 Short-circuit test diagram of transformer不计铁耗时,短路输入功率可以认为全部消耗在一次和二次绕组的电阻上, R k 的计算如式(5 所示, X k 的计算如式(6所示。
在工程中大多采用一次侧电阻 R 1与二次侧 R 2相等的计算方法将二者分离,所以变压器等效参数中的 R 1=R 2=R k /2, X 1=X 2=Xk /2[6]。
112211Nk kk k P P R I I == (5 k X = (6当谐波作用于变压器时, 由于集肤效应的影响, 其内部参数会发生很大的变化。
在图 1所示的变压器等效模型基础上,利用叠加原理将各次谐波分量看成是一系列独立电流源,分别叠加在变压器上, 构成变压器的谐波等效模型,对于第 n 次谐波,变压器谐波等效模型如图 4所示。
R n (1R n (2图 4变压器谐波等效模型Fig.4 Transformer harmonic equivalent model图 4中 n 为谐波次数, (1n I 为变压器一次侧所加的谐波电流, (2n I 为变压器二次侧的谐波电流。
(1n R 、 (1n X 为第 n 次谐波作用下变压器一次侧绕- 70 - 电力系统保护与控制组的电阻和电抗。
(2n R 、 (2n X 为第 n 次谐波作用下变压器二次侧绕组的电阻和电抗。
( n m R 、 ( n m X 为第 n 次谐波作用下变压器的激磁阻抗和激磁电抗。
为了便于计算和测量,将一次侧电阻、电抗、激磁电阻和激磁阻抗归算到二次侧,这样在计算变压器谐波损耗时只需要测量其二次侧谐波电流,很大程度上简化了变压器谐波损耗计算的复杂性,变压器 n 次谐波等效模型如图 5所示, 其中 (1n r 、(1n x 为变压器一次侧归算到二次侧的谐波电阻和电抗, ( n m r 、 ( n m x 为变压器一次侧归算到二次侧的激磁电阻和激磁电抗。
图 5简化的变压器谐波等效模型Fig.5 Simplified transformer harmonic equivalent model以变压器的基波等效模型参数值为基准,根据集肤效应原理,可以得到各次谐波损耗模型的参数值。
导体每个单位长度的电阻和电感计算公式如下:R (7式(7中: b 为导体半径, mm ; 为电导率,铜为75.810s/m ×; c δ为集肤深度, mm ; ω为工作频率, Hz ; μ为导体的绝对磁导率。
由式 (7 可知, 导体的工作频率越高, 其阻抗就越高。
以 50 Hz时的电阻和电抗为基准,各次谐基波值 [7-8],因此第 n 次谐波产生的变压器损耗计算关系式如式(8 :222(1(1(2(2( ( 333n n n n n n m n m P I r I r I r =++ (8 变压器谐波总损耗计算关系式如式(9:222(1(1(2(2( ( 2333n n n n n m n m n P I r I r I r ∞==++∑总(9 2 变压器谐波损耗影响因素分析依据变压器谐波等效模型,影响变压器谐波损耗主要有两个因素:谐波次数和负载不平衡。