一元一次方程——从算式到方程
从算式到一元一次方程

时间 10:00 13:00 15:00
x千米
50千米 王家庄 青山 翠湖
70千米 秀水
50千米
下一页
问题 图中的汽车匀速行驶途经王 家庄、青山、秀水三地的时间如表 所示。翠湖在青山、秀水两地之间, 距青山50千米,距秀水70千米。王 家庄到翠湖的路程有多远?
地 青 秀 名 山 水 时 间
相同:都是等式。
?
不同:方程含有未知数,并且未知数的次数为一次。
一元一次方程:含有一个未知数的等式,并且未知数的次 数为一次的等式。 注意:一元就是含有一个未知数,一次就是未知数的 次数是一次。通常用小写英文字母(x,y,z……)来表 示未知数。
(1)用一根长24cm的铁丝围成一个正方形,正方形 的边长是多少? (2)某校女生占全校人数的52%,比男生多80人, 这个学校有多少学生? 解:(1)设正方形的边长为x cm,则方程为 4x=24 (2)设学校共有x人,那么女生人数为0.52x,男生 人数为(1-0.52)x,则其方程为: 0.52x-(1-0.52)x=80
实际问题
设未知数
找相等ቤተ መጻሕፍቲ ባይዱ系
列方程
怎样解一元一次方程?
作业: p84:1,5,9题。
从王家庄到青山行车
王家庄到秀水行车
3
小时,
x 50 3
5
小时.
汽车从王家庄到青山的速度为
千米/时,
从王家庄到秀水的速度为 x 70 x 50 5 3
x 70 5
千米/时.
=
• • •
对于上面的问题你还能列出其它的方程 吗?根据什么等量关系? 你发现我们列的算术等式与方程有什么不同 吗?
人教版七上数学.1一元一次方程课件(共37张)

(来自教材)
总结
知2-讲
分析实际问题中的数量关系,利用其中的相等关 系列出方程.
知2-练
1 列等式表示: (1)比a大5的数等于8; (2)b的三分之一等于9; (3)x的2倍与10的和等于18; (4)x的三分之一减y的差等于6; (5)比a的3倍大5的数等于a的4倍; (6)比b的一半小7的数等于a与b的和.
(1)a+5=8;
(2) 1 b=9;
3
(3)2x+10=18;
(4) 1 x-y=6;
3
(5)3a+5=4a;
(6) 1 b-7=a+b.
2
(来自教材)
2 根据下列条件能列出方程的是( D ) A.a与5的和的3倍 B.甲数的3倍与乙数的2倍的和 C.a与b的差的15% D.一个数的5倍是18
知2-练
知识点 3 一元一次方程
知3-讲
定义 只含有一个未知数(元),未知数的次数都是1, 等号两边都是整式的方程叫做一元一次方程.
知3-讲
一元一次方程
1、只含有一个未知数 2、未知数的最高次数是1次 3、等号的两边都是整式
知3-讲
例3 下列方程,哪些是一元一次方程?
(1) 1 x+y=1-2y; (2)7x+5=7(x-2);
知4-讲
1.使方程中等号左右两边相等的未知数的值,就是 这个方程的解.
2.求方程的解的过程叫做解方程.
例5 下列说法中正确的是( C )
A.y=4是方程y+4=0的解
B.x=0.000 1是方程200x=2的解
C.t=3是方程|t|-3=0的解
D.x=1是方程
x 2
2024人教版七年级上册数学第五单元《一元一次方程》课件PPT

C.4x=5(x+4)
D.4(x+4)=5x
例3:如图,轩轩将一个正方形纸片剪去一个宽为4 cm的长条后,
再从剩下的长方形纸片上剪去一个宽为5 cm的长条(图中阴影部
分).若分两次剪下的长条面积正好相等,则每一个长条的面积
为多少?为解决这个问题,轩轩设正方形的边长为x cm,根据题
意,可列方程为( ) A
情境导入
同学们,你们知道老师的年龄吗? 我是4月出生的,我年龄的2倍减去2,正好是我出生的那个月总天数 的2倍. 请你们猜猜我的年龄是多少?
年龄是31岁
故事导入
同学们,你们知道丢番图是谁吗? 丢番图是古希腊数学家,人们对他的生平事迹知道的很少, 但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图, 多么令人惊讶,它忠实地记录了其所经历的人生旅程. 上帝赐予他的童年占六分之一,又过了十二分之一他两颊长出来胡须,再过七分 之一,点燃了新婚的蜡烛,五年之后喜得贵子,可怜迟到的宁馨儿,享年仅其父 之半便入黄泉,悲伤只有用数字研究去弥补,又过四年,他也走完了人生的旅 途.——出自《希腊诗文选》 你能求出丢番图去世时的年龄吗?
【题型二】根据实际问题列方程
例2:根据下列条件列出方程: (1)一个数x比它的 23大45 :_____x_-__23_x_=__45; (2)一个数x的一半比它的3倍大4:___12_x_-__3_x_=__4_; (3)一个数x比它的平方小24:____x_2-__x_=__2_4__; (4)一个数x的40%与25的差等于30:____4_0_%_x_-__2_5_=_3_0.
6是等式,但不是方程
2x-6=6等
-3y=10等
注:判断一个式 子是不是方程:
知识点2:列方程(难点)
3人教版七年级数学上册第三章 3.1.1 一元一次方程 优秀教学PPT课件

【素养提升】 18.(12分)某通讯公司推出两种手机付费方式:甲种方式不交月租费, 每通话1分钟付费0.15元;乙种方式需交18元月租费,每通话1分钟付费 0.10元.两种方式不足1分钟均按1分钟计算. (1)如果一个月通话x分钟,那么用甲种方式付费应付话费多少元?用乙 种方式应付话费多少元? (2)如果求一个月通话多少分钟时两种方式的费用相同,可以列出一个怎 样的方程?它是一元一次方程吗? 解:(1)甲种方式应付话费0.15x元,乙种方式应付话费(18+0.10x)元 (2)0.15x=18+0.10x,是一元一次方程
17.(10分)根据题意列出方程: (1)《文摘报》每份0.5元,《信息报》每份0.4元,小刚用7元钱买了两种 报纸共15份,他买的两种报纸各多少份? (2)水上公园某一天共售出门票128张,收入912元,门票价格为成人每张 10元,学生可享受六折优惠.这一天出售的成人票与学生票各多少张? (只列方程) 解:(1)设买《文摘报》x份,则买《信息报》(15-x)份,根据题意列方 程,得0.5x+0.4(15-x)=7 (2)设出售成人票x张,则出售学生票(128-x)张,根据题意列方程,得 10x+60%×10×(128-x)=912
当x = 4,5,6时呢?
1.若k是方程 2x=3 的解,则 4k+2=______.
2.若 xn2 4 0 是关于x的一元一次方程,则
n=______.
3.已知方程 x a 1 1是关于x的一元一次方程,则
a=______.
1. 一元一次方程的概念: 只含有一个未知数,未知数的次数是1,等号两 边都是整式,这样的方程叫做一元一次方程.
回顾思考
1.你知道什么叫做方程吗?
方程: 含有未知数的等式叫方程.
3人教版七年级数学上册第三章 3.1.2 等式的性质 优秀教学PPT课件

试一试
我们可以直接看出像4x=24,x+1=3这样简单 方程的解,但是仅靠观察来解比较复杂的方 程是困难的。因此,我们还要讨论怎样解方 程。方程是含有未知数的等式,为了讨论解 方程,我们先来看看等式有什么性质。
对比天平与等式,你有什么发现?
等式的左边
等式的右边
等号
把一个等式看作一个天平,把等号两边的式子看作天平两边的砝码, 则等号成立就可看作是天平保持两边平衡.
1、什么叫方程的解?
使方程左右两边的值相等的未知数的值叫 做方程的解。
2、什么叫解方程?
求出使方程左右两边都相等的未 知数的值的过程叫做解方程。
检验一个数值是不是方程的解的步骤:
1.将数值代入方程左边进行计算,
2.将数值代入方程右边进行计算, 3.比较左右两边的值,若左边=右边,则是方程的 解,反之,则不是.
第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质
学习目标
1. 理解、掌握等式的性质. (重点) 2. 能正确应用等式的性质解简单的一元一次方程.
(难点)
1. 什么是方程?
方程是含有未知数 的等式。
2. 什么是一元一次方程? 只含有一个未知数(元),未知数的次数都是1,等 号两边都是整式,这样的方程叫一元一次方程。
(1)a,b,c三个物体就单个而言哪个最重? (2)若天平一边放一些物体a,另一边放一些物体c,要使天平平衡,天平 两边至少应该分别放几个物体a和物体c?
解:(1)根据图示,知 2a=3b,2b=3c,所以 a=32 b,b=32 c,则 a=
9 4
c,因为94
c>32
c>c,即 a>b>c,所以 a,b,c 三个物体就单个而言,
5.1.1 从算式到方程(教学设计)-七年级数学上册同步高效课堂(人教版2024)

5.1.1 从算式到方程教学设计一、内容和内容解析1.内容本节课是人教2024版《义务教育教科书•数学》七年级上册(以下统称“教材”)第五章“一元一次方程”5.1方程第1课时,内容包括方程及一元一次方程的概念;根据问题中的数量关系,设未知数建立方程模型.2.内容解析方程是初等代数学的核心内容,是解决实际问题的一种重要的数学模型.方程的出现是从算术方法发展到代数方法的一个重要标志.方程随着实践的需要而产生,它是具备了“含有未知数”特征的等式,它使得实际问题中的已知数与未知数通过等式连接起来.列方程描述问题中的相等关系,解方程使问题中的未知数转化为确定的解,这种以方程为工具解决问题的思想即“方程思想”,它在本章中占有重要地位.一元一次方程是最简单的代数方程.解任何一个代数方程(组)最终都要化归为一元一次方程.一元一次方程是具备了“含有一个未知数,未知数的次数是一次”两个特征的整式方程(即等号两边都是整式的方程).整式方程一般是按照其中未知数(元)的个数和未知数的最高次数分类,也就是方程的命名是根据未知数的个数定“元”,根据未知数的最高次数定方程的次数.一元一次方程中的“一元”指方程仅含有一个未知数,“一次”指未知数的次数为1.基于以上分析,可以确定本节课的教学重点为:方程及一元一次方程的概念,方程思想.二、目标和目标解析1.目标(1)了解方程及一元一次方程的概念.(2)通过列方程的过程,感受方程作为刻画现实世界的数学模型的意义,体会由算式到方程是数学的一大进步,从而体会方程思想.2.目标解析达成目标(1)标志是:学生知道方程是含有未知数的等式,一元一次方程是含有一个未知数,且未知数的次数是一次的整式方程;能准确判断一个等式是否为方程和一元一次方程,能举出方程及一元一次方程的具体例子.达成目标(2)标志是:学生通过尝试用算式和方程两种方法解决实际问题,认识到方程的优越性,经历从实际问题中建立方程模型并认识它的结构特征的过程,体会出方程是解决问题的有力工具,并在运用的过程中对方程思想有更深入的体会.三、教学问题诊断分析在小学阶段,学生已经习惯了用算术的方法解决实际问题,而对于如何设未知数,如何寻找相等关系,如何用含有未知数的式子表示相等关系,虽然已经有所接触,但是还不够熟悉,从算术方法过渡到代数方法的思维转变还是有一定困难.因此,本节课教学时应该进行有针对性的问题引领.通过思考,让学生比较算术方法和代数方法,体会方程在解决问题中的优势,从而更重视对方程的学习.基于以上分析,确定本节课的教学难点为:从列算式到列方程的思维习惯的转变.四、教学过程设计(一)创设情境,提出问题本章引入:甲、乙两支登山队沿同一条路线同时向一山峰进发.甲队从距大本营1 km的一号营地出发,每小时行进1.2 km;乙队从距大本营3 km的二号营地出发,每小时行进0.8 km.多长时间后,甲队在途中追上乙队?师生活动:学生审题之后教师提问:(1)你会用算术方法解决这个问题吗?教师展示问题,学生分组讨论解决问题的方法,学生代表展示结果,教师及时给予肯定或帮助,并说明算术解法不便捷.教师提出进一步学习新解法的必要性.在学生尝试算术方法解决问题之后,教师提问:(2)此题中涉及哪些量,这些量之间有什么关系?如何表示?(3)你认为应引进什么样的未知量?如何用方程表示这个问题中的相等关系?(4)列方程的依据是什么?教师与学生一起进行分析,引导学生找出相等关系列出方程.师:本章我们将学习一种新的方法,通过列方程来解决这个问题.方程是含有未知数的等式,它是应用广泛的数学工具.解决许多实际问题时,人们经常用字母表示其中的未知数,通过分析问题中的数量关系,列出方程表示相等关系,然后解方程求出未知数,从而获得实际问题的答案.怎样根据问题中的数量关系列方程?怎样解方程?这是本章研究的主要问题.通过解决本章中丰富多彩的问题,你将初步感受方程的作用,并学习利用一元一次方程解决问题的方法.在小学,我们利用算术方法解决了很多实际问题.接下来,我们将引入方程解决一些实际问题.首先来认识一下什么是方程.学生根据小学学习的简易方程回答:含有未知数的等式叫作方程.师:下面,我们引入一种新的方法来解决这个问题.解:甲、乙两队的行进速度是已知的,行进的时间和路程是未知的.如果设两队行进的时间为x h,根据“路程=速度×时间”,甲队和乙队的行进路程可以分别表示为1.2x km 和0.8x km,从而甲、乙两队距大本营的路程可以分别表示为(1.2x+1) km和(0.8x+3)km.甲队追上乙队时,他们处于同一位置,此时甲队距大本营的路程=乙队距大本营的路程,因此1.2x+1=0.8x+3.【设计意图】让学生感受问题1用算术解法不容易解决,使学生认识到进一步学习新解法的必要性.问题2:对于上面的问题,你还能列出其他方程吗?师生活动:教师提出问题,学生思考回答.【设计意图】这是一个行程问题,用未知量表示路程、时间、速度,让学生体会到用字母也可以表示数量,找出相等关系是列方程的关键所在,通过对问题的思考有助于分析问题.体会一个问题中的相等关系往往不止一个,所以列出方程的角度不是唯一的.(二)合作探究问题1:用买3个大水杯的钱,可以买4个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?师生活动:学生和教师共同完成本题.解:如果设大水杯的单价为x元,那么小水杯的单价为(x-5)元.因为用买3个大水杯的钱,可以买4个小水杯,所以3x=4(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.问题2:如图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4000 mm2,长和宽的比为8:5(即宽是长的58).这枚纪念币的长和宽分别是多少毫米?师生活动:学生和教师共同完成本题.解:如果设这枚纪念币的长为x mm ,则纪念币的宽可以表示为58x mm ,面积可以表示为58x 2 mm 2.已知纪念币的面积为4000 mm 2,所以 2540008x . 由这个含有未知数x 的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.【设计意图】进一步让学生感受找出相等关系是列方程的关键所在,通过对问题的思考有助于分析问题.(三)比较方法,明确意义问题3:比较列算式和列方程解决这个问题各有什么特点?师生活动:教师提出问题,学生思考、回答.学生回答问题之后,教师进一步提出:你能归纳列方程的步骤吗?【设计意图】让学生知道用算术方法解题时,列出的算式只能用已知数,而用方程解决问时,方程中既含有已知数,又含有用字母表示的未知数,也就是说,在方程中未知数(字母)可和已知数一起表示问题中的数量关系.同时让学生初步了解列方程的步骤.(四)定义方程,感受过程问题4:你能归纳出方程的定义吗?师生活动:教师引导学生结合上面等式的特征,给出方程的定义.归纳:像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程(equation ).学生归纳出定义之后,提问:你能举出方程的一个例子吗?教师:列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程.【设计意图】这是首次正式给出方程的定义,学生在小学已经学过简易方程,通过举例可让学生回顾已经学过的知识.(五)典例分析例1:根据下列问题,设未知数并列出方程:(1)某校女生占全体学生数的52%,比男生多80 人,这所学校有多少名学生?解:(1)设这所学校的学生人数为x,那么女生人数为0.52x,男生人数为(1-0.52)x.等量关系:女生人数-男生人数=80,列方程:0.52x-(1-0.52)x=80.(2)如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.解:(2)设正方形绿地的边长为x m,那么扩大后的绿地面积为(x2+5x) m. 根据“扩大后的绿地面积是500 m2”,列方程:x2+5x=500.师生活动:教师出示问题,学生独立完成,学生代表分析并展示结果.【设计意图】通过例题的学习,让学生再次熟悉列方程时的设未知数、寻找相等关系、列出方程的过程,为一元一次方程的定义奠定基础.(六)归纳总结,巩固发展问题5:(1)怎样从实际问题中列出方程?(2)列方程的依据是什么?师生活动:学生针对上面的问题做进一步思考、归纳,教师帮助学生规范语言,并展示结论.分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.这个过程可以表示如下:针对训练:1. 某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.求卖出铅笔的支数.解:设卖出铅笔x支,则卖出圆珠笔(60-x)支.等量关系:x支铅笔的售价+(60-x)支圆珠笔的售价=87,列方程:1.2×0.8x+2×0.9(60-x)=87.【设计意图】归纳得出分析实际问题中的数量关系并利用其中的相等关系列出方程的方法.通过习题进行巩固.(七)合作探究问题6:对于方程4x=24,容易知道x = 6可以使等式成立,对于方程1700+150x =2450,你知道x 等于什么时,等式成立吗?我们来试一试.师生活动:学生针对上面的问题做进一步思考、归纳,师生共同总结:使方程左右两边相等的未知数的值叫方程的解.求方程解的过程叫作解方程.【设计意图】通过填表格尝试的方法,使学生体会方程的解的形成过程及解的概念.(八)典例分析例2:(1)x=2,32x=是方程2x=3的解吗?(2)x=10,x=20 是方程3x=4(x-5)的解吗?解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当32x=时,方程2x=3的左边=3232⨯=,右边=3,方程左、右两边的值相等,所以是方程2x=3的解.(2)当x=10 时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解.当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.针对训练:1. 检验x = 3是不是方程2x-3 = 5x-15的解.解:把x =3分别代入方程的左边和右边,得左边=2×3-3=3,右边=5×3-15=0.∵左边≠右边,∴x =3不是方程的解.2. x=1000和x=2000中哪一个是方程0.52x-(1-0.52)x=80的解?解:当x=1000时,方程左边=0.52×1000-(1-0.52)×1000=520-480=40,右边=80,左边≠右边,所以x=1000不是此方程的解.当x=2000时,方程左边= 0.52×2000-(1-0.52)×2000=1040-960=80,右边=80,左边=右边,所以x=2000是此方程的解.【设计意图】了解方程的解的概念,巩固方程的解的概念.(九)新知讲解问题7:方程有多种类型,本章我们先来研究一类最简单的方程.观察1.2x+1=0.8x+3;3x=4(x-5);0.52x-(1-0.52)x=80.它们有什么共同特征?师生活动:教师引导学生对列出的方程进行特征分析,教师可以提示:方程的特征可以从未知数的个数和次数等来观察.教师:只含有一个未知数(元),未知数的指数都是1(次),等号两边都是整式的方程叫作一元一次方程.【设计意图】运用三个问题巩固列方程的一般步骤,强调列方程是依据了相等关系,进一步让学生体会相等关系是列方程的关键,在归纳方程特征的过程中,培养学生观察、分析、归纳的能力.针对训练:1. 下列式子哪些是方程,哪些是一元一次方程?(1)2x+1;(2)2m+15=3;(3)3x-5=5x+4;(4)x2+2x-6=0;(5)-3x+1.8=3y;(6)3a+9>15;(7)116x= -.2. 若关于x的方程2x|n|-1-9=0是一元一次方程,则n 的值为. 变式训练:方程(m+1)x|m|+1=0是关于x的一元一次方程,则m= .参考答案:1. 方程:(2)、(3)、(4)、(5)、(7);一元一次方程:(2)(3).2. 2或-2;1.【设计意图】让学生巩固对方程与一元一次方程的概念的认识.(十)当堂巩固1. x =1是下列哪个方程的解 ( B )A. 1-x =2B. 2x -1=4-3xC. 122x x +=- D. x -4=5x -2 2. 若 x =1是方程x 2 -2mx +1=0的一个解,则m 的值为( C )A. 0B. 2C. 1D. -13. 下列方程:①12x x -=;②3x =11;③512x x =-;④y 2-4y =3;⑤x +2y =1. 其中是方程的是 ①②③④⑤ ,是一元一次方程的是 ②③ .(填序号)4. 根据下列问题,找出等量关系,设未知数列出方程,并指出其是不是一元一次方程.(1)环形跑道一周长400m ,沿跑道跑多少周,可以跑3000 m ?(2)甲种铅笔每支0.3 元,乙种铅笔每支0.6 元,用 9 元钱买了两种铅笔共20 支,两种铅笔各买了多少支?(3)一个梯形的下底比上底多2 cm ,高是5 cm ,面积是40 cm 2,求上底.解:(1)设沿跑道跑x 周.400x =3000, 是一元一次方程.(2)设甲种铅笔买了x 支,乙种铅笔买了(20-x )支.0.3x +0.6(20-x )=9, 是一元一次方程.(3)设上底为x cm ,则下底为(x +2) cm.1(2)5402x x ++⨯=, 是一元一次方程. 5. 已知方程(m -2)x |m |-1+3=m -5是关于x 的一元一次方程,求m 的值,并写出其方程.解:因为方程(m -2)x |m |-1+3=m -5是关于x 的一元一次方程,所以|m |-1 = 1,且m -2≠0,得m = -2.所以原方程为-4x +3 =-7.【设计意图】通过练习,巩固本几节课知识,同时让学生再次巩固列方程的基本步骤,在给学生数学知识的同时,渗透建立数学模型地想方法.(十一)课堂小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)一元一次方程的三个特征各指什么?(3)从实际问题中列出方程的关键是什么?【设计意图】通过归纳,加深学生对所学内容的理解,培养学生独立分析、归纳概括的能力,充分发挥学生的主体作用.(十二)布置作业P118:习题5.1:第1、3、5、6题.五、教学反思一元一次方程是“数与代数”领域一块重要的内容,是所有代数方程的基础,也是中学数学的主要内容之一,在初中数学中占有重要地位.理解和掌握本节内容,是后续进一步学习一元一次方程的解法及其应用,以及其他方程和不等式等内容的基础和铺垫.学生在前一学段已经学习了简单方程相关内容,如:会用方程表示简单情境中的数量关系,会解简单的方程,对方程有了初步的感性认识,这些基本的、朴素的认识为进一步学习一元一次方程的解法和应用奠定了基础.本节内容是在前面学习基础上的进一步发展,即对一元一次方程做更系统、更深入的学习和研究,更加突出方程作为解决实际问题重要模型的思想渗透,强调创设未知向已知转化的条件.我们生活在一个丰富多彩的世界里,这里蕴藏着大量的涉及数量关系的实际问题,这为学习“一元一次方程”提供了大量的现实素材.在本节学习中,实际问题情境贯穿于始终,对方程概念的引入也是在解决实际问题的过程中进行的.因此,本节教学要充分关注方程的现实背景,要通过大量丰富的实际问题,反映出方程来源于实际又服务于实际,深化对方程是解决现实问题重要数学模型的认识.鉴于本章的学习对象是七年级学生,在教学中要尽量避免过多直接使用“数学模型”等词语,而要通过具体例子反复强调方程在解决实际问题中的工具作用,实际上这就是在渗透建立数学模型的思想.。
一元一次方程(专题详解)(解析版)
一元一次方程专题详解专题03 一元一次方程专题详解 (1)3.1从算式到方程 (2)知识框架 (2)一、基础知识点 (2)知识点1 方程和一元一次方程的概念 (2)知识点2 方程的解与解方程 (3)知识点3 等式的性质 (4)二、典型题型 (5)题型1 依题意列方程 (5)题型2 运用等式的性质解方程 (6)三、难点题型 (7)题型1 利用定义求待定字母的值 (7)3.2解一元一次方程-合并同类项和移项 (8)知识框架 (8)一、基础知识点 (8)知识点1 合并同类项解一元一次方程 (8)知识点2 移项解一元一次方程 (9)二、典型题型 (10)题型1 一元一次方程的简单应用 (10)3.3解一元一次方程-去括号与去分母 (11)知识框架 (11)一、基础知识点 (11)知识点1 去括号 (11)知识点2 去分母 (12)二、典型题型 (13)题型1 去括号技巧 (13)题型2 转化变形解方程 (15)题型3 解分子分母中含有小数系数的方程 (16)三、难点题型 (18)题型1 待定系数法 (18)题型2 同解问题 (18)题型3 含参数的一元一次方程 (19)题型4 利用解的情况求参数的值 (20)题型5 整体考虑 (21)3.4实际问题与一元一次方程 (21)一、基础知识点 (21)知识点1 列方程解应用题的合理性 (21)知识点2 建立书写模型常见的数量关系 (22)知识点3 分析数量关系的常用方法 (23)二、典型例题 (24)3.1从算式到方程知识框架一、基础知识点知识点1 方程和一元一次方程的概念1) 方程:含有未知数的等式。
例:3x=5y+2;100x=200;3x 2+2y=3等2)一元一次方程:只含有一个未知数(元,隐含未知数系数不为0),未知数的次数是1(次),等号两边都是整式(整式:未知数的积,而非商)的方程。
如何判断一元一次方程:①整式方程;②只含有一个未知数,且未知数 的系数不为0;③未知数的次数为1. 例:3112=+x ;3112=+x ;3m-2n=5;3m=5;6x 2-12=0 例1.下列各式中,那些是等式?那些是方程?①3x-6;②3-5=-2;③x+2y=8;④x+2≠3;⑤x-x1=2; ⑥y=10;⑦3y 2+2y=0;⑧3a<-5a ;⑨3x 2+2x-1=0;⑩213m m y =-+ 【答案】是方程的有:③、⑤、⑥、⑦、⑨、⑩方程需满足2个条件:1)含有未知数;2)是等式。
一元一次方程知识点总结归纳
第三课时一元一次方程廖雅欣2月3日1、从算式到方程①一元一次方程⑴方程:方程是含有未知数的等式。
列方程式,要先设字母表示未知数(通常用X、y、z等字母表示未知数),,然后根据题目中的相等关系写出等式。
注:I、方程有两个条件,一是含有未知数,二是含有“二”二者缺一不可。
如都是方程。
H、方程一定是等式,但等式不一定是方程,如6+2=8又如a+b二b+a,a+2a=3a它们I ■ ■- •门― 一;\ /■ /是表示运算律的恒等式,其中的字母不是未知数而是任意数,故他们也不是方程。
⑵一元一次方程:只含有一个未知数(元),未知数的次数是1,等号两边都是整式(包含单项式与多项式)的方程。
注:I、一元一次方程中分母不含未知数,即方程是由整式组成的,如就不是一元一次方程。
H、一元一次方程中只含有一个未知数,如就不是一元一次方程。
(注意含参数叫 \ 弋,”餐// #j的一元一次方程)皿、一元一次方程化简以后未知数的次数为1,是指含有未知数的项的最高次数为1,如就不是一元一次方程,而可以化简为,故是一元一次方程。
W、注意判别一元一次方程与恒等式(式中的字母取任意值等式都恒成立)。
⑶解方程:解方程就是求出使方程中等号左右两边相等的未知数的值,这个使方程实际问列一兄―床方程中等号左右两边相等的未知数的值叫做方程的解。
归纳:精心整理分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
2、等式的性质①等式的性质1等式的两边加上(或减去)同一个数(或式子),结果仍相等。
女口果a=b,那么a士c=b± c②等式性质2:等式两边同乘同一个数,或除以同一个不为0 的数,结果仍相等。
如果a=b那么ac=bc如果a=b且c不等于0,那么a—c=b—c掌握关键:<1> “两边”“同一个数(或式子)”<2> “除以同一个不为0的数”补充性质:③对称性:等式的左右两边交换位置,所得的结果仍是等式,即由a=b 可以推得b=a.④传递性:如果a=b,b=c那么a=c.利用等式的性质解方程,实质就是将方程转化为x=a(a是常数)的形式。
七年级数学上册 第五章 一元一次方程 1 认识一元一次方程 从算式到方程课标解读素材 (新版)北师大
从算式到方程一、课标要求“从算式到方程”的主要内容是一元一次方程及其相关概念、等式的性质等内容,《义务教育数学课程标准(2011年版)》对这一节的内容提出了如下教学要求:1.能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.2.了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.3.掌握等式的性质,能够利用等式的性质探究一元一次方程的解法.二、课标解读1.本节内容包括方程、一元一次方程、方程的解、解方程的概念以及等式的性质等.一元一次方程是“数与代数”领域一块重要的内容,是所有代数方程的基础,也是中学数学的主要内容之一,在初中数学中占有重要地位.理解和掌握本节内容,是后续进一步学习一元一次方程的解法及其应用,以及其他方程和不等式等内容的基础和铺垫.2.学生在前一学段已经学习了简单方程相关内容,如:会用方程表示简单情境中的数量关系,会解简单的方程,对方程有了初步的感性认识,这些基本的、朴素的认识为进一步学习一元一次方程的解法和应用奠定了基础.本节内容是在前面学习基础上的进一步发展,即对一元一次方程作更系统、更深入的学习和研究,更加突出方程作为解决实际问题重要模型的思想渗透,强调创设未知向已知转化的条件.3.我们生活在一个丰富多彩的世界里,这里蕴藏着大量的涉及数量关系的实际问题,这为学习“一元一次方程”提供了大量的现实素材.在本节学习中,实际问题情境贯穿于始终,对方程概念的引入也是在解决实际问题的过程中进行的.因此,本节教学要充分关注方程的现实背景,要通过大量丰富的实际问题,反映出方程来源于实际又服务于实际,深化对方程是解决现实问题重要数学模型的认识.鉴于本章的学习对象是七年级学生,在教学中要尽量避免过多直接使用“数学模型”等词语,而要通过具体例子反复强调方程在解决实际问题中的工具作用,实际上这就是在渗透建立数学模型的思想.4.方程是含有未知数的等式,可以表示数量间的等量关系.解方程即是求未知数的值,这就需要相应的理论基础来说明解法的合理性,而等式的性质就是解方程的主要依据.本小节通过观察、归纳引出等式的两条性质,并直接利用它们讨论一些较简单的一元一次方程的解法.这将为后面几节进一步讨论较复杂的一元一次方程的解法提供理论依据.2。
七年级数学一元一次方程
解:(1)移项,得
1 8
x
3 4
x
5
合并,得
- 5 x 5 8
系数化1,得x=-8.
(2)移项,得0.3x+0.2x=-3-2 合并,得0.5x=-5 系数化1,得x=-10
解一元一次方程就是求一元一次方程解的过程基本步骤是: 移项、合并和系数化一。
天平的两个盘ab内分别放有113克和87克茶叶。问应该从a盘拿 01 多少茶叶放到b盘才能使天平平衡?
系数化1, 得x=400
02
移动通讯公司开设了两种通讯业务。全球通使用者先交50元月租,
02
基础话费。每通话一分钟再付0.4元。神州行使用者不交月租费 每通话一分钟付话费0.6元。如果一个月内通话x分钟。
(1)一个月内通话多少分钟时,两中通讯方式的费用才相同?
(2)若某人预计一个月内使用话费200元,则应选择哪种通讯
01 2x 1 10x 1 2x 1 1
3
6
4
02
10x 17 20x 1
7
3
03 5y 1 9 y 1 1 y
6
83
04
2
4 3
x
-
2 3
x
1 2
3 4
x
检验水平的时候到了!!!
难点
3.4一元一次方程---解决实际问题
例一:配套问题与工程问题
知识点1:产品配套问题 某车间有28名工人,每人每天能生产螺栓12个或螺母18个,设x名工人生产螺栓,其他工人 生产螺母每天生产的螺栓和螺母安1:2配套,有多少人生产螺栓?
分析:天平平衡时ab两盘的茶叶应相等,两盘茶叶量相等时,a盘 原茶叶量-拿出茶叶量等于b盘原茶叶量-a盘拿出的茶叶量。根据 这样的相等关系,你列出方程就可以解决问题。