一元一次方程解决问题公式大全
一元一次方程解决问题公式

一元一次方程解决问题公式
一元一次方程是初中数学中的基础知识,也是解决实际问题的重要
工具。
在日常生活中,我们经常会遇到一些需要用到一元一次方程的
问题,比如买东西打折、计算路程时间等等。
本文将从不同的角度介
绍一元一次方程解决问题的公式。
一、基本概念
一元一次方程是指只有一个未知数,并且这个未知数的最高次数为1
的方程。
一般形式为ax+b=0,其中a和b为已知数,x为未知数。
解
一元一次方程的基本方法是移项、合并同类项、化简等。
二、买东西打折
在购物时,商家常常会打折促销,这时我们需要计算出打折后的价格。
假设某商品原价为x元,打折后的价格为y元,打折力度为z折,那么可以列出如下的一元一次方程:
y = x * z / 10
其中,z为折扣数,需要将其转化为折扣率,即z/10。
通过解这个方程,就可以得到打折后的价格y。
三、计算路程时间
在旅行或者出差时,我们需要计算出行程的时间。
假设某段路程的长度为x公里,行驶速度为y公里/小时,行程时间为t小时,那么可以列出如下的一元一次方程:
x = y * t
通过解这个方程,就可以得到行程时间t。
四、其他应用
除了上述两个例子,一元一次方程还可以应用于很多其他的实际问题中。
比如计算水果的单价、计算工人的工资等等。
只要将问题转化为一元一次方程的形式,就可以通过解方程来得到答案。
总之,一元一次方程是解决实际问题的重要工具,掌握它的应用方法对于我们的日常生活和学习都有很大的帮助。
希望本文能够对大家有所启发。
实际问题与一元一次方程常用方法及公式

实际问题与一元一次方程(二元一次方程组也可用)知识点一、用一元一次方程解决实际问题的一般步骤:审、设、列、解、检验、答. 知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,则现有量=原有量+增长量=原有量×(1+增长率),也有降低的情况,则现有量=原有量-降低量=原有量×(1-降低率)例如原有量是a,增长率为10%,则现有量为(1+10%)×a=1.1 a ;若下降10%,则现有量为(1-10%)×a=0.9 a(2)寻找相等关系:抓住关键词,圈词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(s=vt ) ,速度= ,时间=(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1) 每个人工作效率相同时:总工作量=工作效率×工作时间x人数;工作效率= (由上式可推导)(2)总工作量=各部分工作量之和.4.调配问题(表格分析法)(1)寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.(2)此消彼长:甲处调往乙处x 人,则甲处现有人数=原有人数-x ,乙处现有人数=原有人数+x5.利润问题:成本一般即进价,先审题看题中涉及几个量,再决定用哪(几)个公式(变形)(1) 利润=售价-进价 (2)=100% 利润利润率进价(3) 实际售价=标价×折扣数/10 (4) 售价-进价= 利润率×进价(公式4可由公式1和2得到)(5) 标价=进价×(1+利润率) 例一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元。
解方程公式

解方程公式
解方程公式的概念是指通过数学运算找出方程中未知数的值。
在数学中,方程是用来描述两个表达式相等的等式。
解方程公式是指一般用来解一元一次方程、一元二次方程、一元三次方程和一元四次方程的公式。
以下是几个常见的解方程公式:
1. 一元一次方程的解公式:
对于形如 ax + b = 0 的一元一次方程,解公式为:x = -b/a
2. 一元二次方程的解公式:
对于形如 ax^2 + bx + c = 0 的一元二次方程,解公式为:x = (-b ± √(b^2 - 4ac)) / (2a)
3. 一元三次方程的解公式:
一般来说,一元三次方程没有通用的解公式,需要使用数值方法或近似解法来找到方程的解。
4. 一元四次方程的解公式:
类似于一元三次方程,一元四次方程也没有通用的解公式,需要使用数值方法或近似解法来找到方程的解。
需要注意的是,解方程公式只适用于特定类型的方程,对
于其他类型的方程可能需要使用不同的方法来解决。
因此,在解方程时需要根据方程的类型选择适当的解法。
一元一次方程的解法公式

一元一次方程的解法公式一元一次方程是数学中最基础的方程形式之一,它的一般形式为ax+b=0,其中a和b是已知的实数,且a≠0。
解一元一次方程的方法有很多种,其中最常用的是解法公式。
解法公式是指通过一系列的代数变换,将方程转化为形如x=c的形式,从而得到方程的解。
对于一元一次方程来说,解法公式可以简化为x=-b/a。
下面将详细介绍一元一次方程的解法公式。
我们来看一个具体的例子:2x+3=0。
我们需要找到一个数x,使得代入方程后等式成立。
根据解法公式,我们可以得到x=-3/2。
这个结果就是方程的解。
那么,为什么解法公式能够得到方程的解呢?这是因为我们通过一系列的代数变换,将方程转化为了一个等价的形式。
具体的步骤如下:1. 将方程的常数项移到等号的右边,得到ax=-b;2. 将方程两边同时除以a,得到x=-b/a。
通过上述步骤,我们得到了一元一次方程的解法公式x=-b/a。
这个公式告诉我们,要求方程的解,只需要将方程的常数项取相反数,然后除以方程的系数即可。
解法公式的使用非常简单,只需要将方程的系数代入公式中即可得到方程的解。
在实际应用中,解法公式可以帮助我们快速求解一元一次方程,从而解决实际问题。
下面,我们通过一个具体的例子来说明解法公式的应用。
假设一个小明去超市买了一些东西,总共花费了50元,他买了一些苹果和一些橙子。
已知苹果的单价是2元,橙子的单价是3元,我们需要求解小明买了多少个苹果和多少个橙子。
我们可以设苹果的数量为x,橙子的数量为y。
根据题意,我们可以列出一个一元一次方程2x+3y=50。
现在,我们可以直接使用解法公式来解决这个问题。
将方程的系数代入解法公式中,我们可以得到x=-3/2,y=25。
这个结果告诉我们,小明买了-3/2个苹果和25个橙子。
显然,这个结果是不符合实际情况的。
这是因为一元一次方程的解法公式只能得到方程的解,而不能判断解是否合理。
为了得到合理的解,我们需要对方程进行进一步的分析。
一元一次方程应用题公式大全

一元一次方程应用题公式大全一、行程问题。
1. 基本公式。
- 路程 = 速度×时间(s = vt)。
- 速度=s÷ t,时间=s÷ v。
2. 相遇问题。
- 公式:s_总=v_1t + v_2t=(v_1+v_2)t(s_总表示总路程,v_1、v_2分别表示两者的速度,t表示相遇时间)。
- 例题:甲、乙两人分别从相距20千米的两地同时出发相向而行,甲的速度是3千米/小时,乙的速度是2千米/小时,几小时后两人相遇?- 解析:设t小时后两人相遇。
根据相遇问题公式s_总=(v_1+v_2)t,这里s_总 = 20千米,v_1=3千米/小时,v_2=2千米/小时。
则(3 + 2)t=20,5t = 20,解得t = 4小时。
3. 追及问题。
- 公式:s_追及=v_1t - v_2t=(v_1-v_2)t(s_追及表示追及路程,v_1表示快者速度,v_2表示慢者速度,t表示追及时间)。
- 例题:甲、乙两人相距5千米,甲以6千米/小时的速度追赶乙,乙以4千米/小时的速度逃跑,甲几小时能追上乙?- 解析:设甲t小时能追上乙。
根据追及问题公式s_追及=(v_1-v_2)t,这里s_追及=5千米,v_1=6千米/小时,v_2=4千米/小时。
则(6 - 4)t=5,2t = 5,解得t = 2.5小时。
二、工程问题。
- 工作总量 = 工作效率×工作时间(W = p× t)。
- 工作效率=W÷ t,工作时间=W÷ p。
通常把工作总量看成单位“1”。
2. 合作问题。
- 公式:1=(p_1+p_2)t(p_1、p_2分别表示两者的工作效率,t表示合作时间)。
- 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要几天完成?- 解析:设两人合作需要t天完成。
甲的工作效率p_1=(1)/(10),乙的工作效率p_2=(1)/(15)。
根据合作问题公式1 = ((1)/(10)+(1)/(15))t,(1)/(10)+(1)/(15)=(3 +2)/(30)=(1)/(6),则(1)/(6)t = 1,解得t = 6天。
初中数学方程式公式大全

初中数学方程式公式大全下面是一份初中数学方程式和公式的大全:1.一元一次方程:-一元一次方程的定义:ax+b=0-解一元一次方程:x=-b/a2.一元一次方程组:-一元一次方程组的定义:{ax+by=c,dx+ey=f}-解一元一次方程组:通过消元或代入法求解未知数的值。
3.二次方程:-二次方程的定义:ax^2+bx+c=0-求解二次方程:使用配方法、因式分解、求根公式等方法求解方程。
4.二次函数:-二次函数的标准式:y=ax^2+bx+c,a≠0-二次函数的顶点坐标:(-b/2a,f(-b/2a))5.等差数列:-等差数列的通项公式:an=a1+(n-1)d-等差数列前n项和公式:Sn=(n/2)(a1+an)6.等比数列:-等比数列的通项公式:an=a1*r^(n-1)-等比数列前n项和公式:Sn=a1*(1-r^n)/(1-r)7.平方差公式:-(a+b)^2=a^2+2ab+b^2-(a-b)^2=a^2-2ab+b^28.三角函数:-正弦定理:a/sinA=b/sinB=c/sinC-余弦定理:c^2=a^2+b^2-2abcosC9.圆的面积和周长:-圆的面积公式:S=πr^2-圆的周长公式:C=2πr10.直角三角形:-勾股定理:c^2=a^2+b^2-特殊直角三角形:45°-45°-90°三角形、30°-60°-90°三角形。
这只是初中数学中一部分常用的方程式和公式,还有许多其他的方程式和公式可根据具体需要进行补充。
在学习过程中,掌握这些方程式和公式,能够帮助学生更好地解决问题、计算数值,并在应用题中灵活运用。
同时,也需要理解这些方程式和公式的原理和推导过程,加深对数学概念和方法的理解。
一元一次方程6种解法是什么

一元一次方程6种解法是什么一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
接下来给大家分享一元一次方程的6种解法。
6种解一元一次方程的方法(1)一般方法①去分母:去分母是指等式两边同时乘以分母的最小公倍数。
②去括号:括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变。
括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。
③移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
④合并同类项:通过合并同类项把一元一次方程式化为最简单的形式:ax=b(a≠0)。
⑤系数化为1:设方程经过恒等变形后最终成为ax=b型(a≠1且a≠0),那么过程ax=b→x=b/a叫做系数化为1。
(2)求根公式法对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a。
(3)去括号方法①方程两边同时乘以一个数,去掉方程的括号;②移项;③合并同类项;④系数化为1。
(4)约分方法例如:(7/2)2=21/4(x-4/3)解法:两边同时除以21/4,得到7/3=x-4/3,求解:x=11/3。
(5)比例性质法根据比例的基本性质,去括号,移项,合并同类项,系数化为1。
(6)图像法对于关于x的一元一次方程ax+b=0(a≠0),可以通过做出一次函数f(x)=ax+b来解决。
一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。
一元一次方程公式笔记

一元一次方程公式笔记
一元一次方程公式的笔记如下:
1.一元一次方程是一种简单的线性方程,它的公式形式为:ax+b=0,其中a和
b是已知的数,x是未知数。
2.解一元一次方程有两个步骤:①把常数项移到方程的右边:ax=-b;②把方程
两边同除以未知数的系数a:x=-b/a。
3.这个公式用来解一元一次方程的基本思想是通过移项和除法运算,把方程变
形为x=-b/a的形式,其中a和b是已知数。
4.注意事项:一元一次方程的基本形式为ax+b=0,其中a不为0。
如果a等
于0,那么这个方程就没有解,因为当a等于0时,方程ax+b=0变为b=0,与x的取值无关。
5.举一个例子:如果我们要解方程3x+2=0,按照上述步骤,我们可以把方程
变形为3x=-2,然后把方程两边同时除以3得到x=-2/3。
因此方程3x+2=0的解为x=-2/3。
1/ 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程应用题公式大全
1、行程问题 *
基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题
快行距+慢行距=原距
(2)追及问题
快行距-慢行距=原距
(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度
逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系
一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
2、工程问题 *
一、工程问题中的数量关系:
(1)工作时间工作效率工作总量⨯= (2)完成工作总量的时间工作时间工作效率=
(3)
工作效率工作总量
工作时间= (4)各队工作量之和全部工作量之和=
(5)各队工作效率之和各队合作工作效率=
二、考点归纳
考点1 工作总量 = 工作效率×工作时间
一件工作,甲单独做x 小时完成,乙单独做y 小时完成,那么甲、乙的工作效率分别为x 1、y 1
;甲、乙
合作m 天可以完成的工作量为y m x m +或 m y x ⎪⎪⎭
⎫ ⎝⎛+11 考点2 全部工作量之和=各队工作量之和
相等关系:全部工作量=甲独做工作量+甲、乙合作工作量
考点3 甲完成工作量+乙完成工作量=1
变式:甲x 天完成的工作量 + 乙y 天完成的工作量 = 1
3、利润问题 *
利润问题中常用数量:成本价(进价),售价,定价,标价,利润(获利),利润,利润率,盈利; 亏损; 折扣, 原价,现价,
【知识点一】折扣问题
常用数量:原价, 现价 ,折扣,
常用数量关系:现价=原价×折扣
折扣=现价÷原价
【知识点二】通过了解利润问题的数量关系解决实际问题
利润中常用数量及等量关系:.进价(成本)、售价(定价。
标价。
)、利润、利润率 的关系式:
利润 = 售价 —
售价=标价×折扣数 ()
利润 ×100%=利润率 定价=进价×(1+利润率)
利润=进价×利润率
4、数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
(2)数字问题中一些表示:
①两个连续整数之间的关系:较大的比较小的大1;
②偶数用2n 表示,连续的偶数用2n+2或2n —2表示;
③奇数用2n+1或2n —1表示。
④如果一个两位数十位数字是a ,个位数字是b ,则这个两位数是: 10a+b
5、金融类问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
利息的20%付利息税
⑵ 利息=本金×利率×期数
本息和=本金+利息利息税=利息×税率(20%)
6、浓度问题
浓度类问题:溶质=溶液×浓度,浓度=溶质÷溶液,溶液=溶质÷浓度
溶液=溶质+溶剂。
溶液:一种或以上的物质溶解在另一种物质中形成的均一、稳定的混合物。
溶质:被溶解的物质(如溶于水中的糖、盐、酒精、硫酸等)
溶剂:能溶解其他物质的物质
7、调配问题
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变。
比例分配问题
比例分配问题:这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量
8、年龄问题
年龄问题其基本数量关系:大小两个年龄差不会变。
这类问题主要寻找的等量关系是:抓住年龄增长,一年一岁,人人平等。