二次根式教学设计
人教版初中数学八年级下册《二次根式》教学设计

人教版初中数学八年级下册《二次根式》教学设计一. 教材分析人教版初中数学八年级下册的《二次根式》是数学课程中重要的一部分。
这部分内容主要介绍了二次根式的定义、性质和运算方法。
通过学习二次根式,学生能够更好地理解实数的概念,提高解决问题的能力。
教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析在八年级下册,学生已经学习了实数、有理数等基础知识,对数学概念和运算有一定的理解。
但部分学生可能对二次根式的概念和性质理解不深,运算能力有待提高。
因此,在教学过程中,要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的数学素养。
三. 教学目标1.知识与技能:使学生掌握二次根式的定义、性质和运算方法,能够熟练地运用二次根式解决实际问题。
2.过程与方法:通过观察、思考、讨论等方法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极向上的学习态度。
四. 教学重难点1.重点:二次根式的定义、性质和运算方法。
2.难点:二次根式在不同情境下的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解二次根式的实际意义。
2.启发式教学法:引导学生主动思考、探讨,提高他们的逻辑思维能力。
3.小组合作学习:鼓励学生互相讨论、交流,培养团队合作精神。
六. 教学准备1.教学PPT:制作包含二次根式相关知识的教学PPT。
2.练习题:准备适量的练习题,以便在课堂上进行操练和巩固。
3.教学素材:收集与二次根式相关的实际问题,用于课堂讨论。
七. 教学过程1.导入(5分钟)利用生活实例,如计算物体体积、求解实际问题等,引入二次根式的概念。
引导学生思考:为什么需要引入二次根式?2.呈现(10分钟)呈现二次根式的定义、性质和运算方法。
通过PPT展示,使学生清晰地了解二次根式的相关知识。
3.操练(10分钟)根据呈现的知识点,让学生进行相关的运算练习。
教师及时给予指导和解答,确保学生掌握二次根式的运算方法。
八年级数学二次根式教学设计6篇

八年级数学二次根式教学设计6篇二次根式的混合运算(1)教学目的:会进行二次根式的加减、乘混合运算。
重点:二次根式的加减乘混合运算。
难点:运算法则的综合运用。
关键:掌握混合运算顺序和步骤。
教学过程:复习提问:1.叙述二次根式加减法的两个步骤。
2.填空:当a≥0,b≥0时,;3.叙述单项式乘以多项式运算顺序;4.叙述多项式乘以多项式的运算法则。
二次根式的乘法:(a≥0,b≥0)二次根式的除法:(a≥0,b>0)新课:形如的式子,表示什么?a需要满足什么条件?根据平方根的定义,当a≥0时,表示a的算术平方根,是一个非负数,它的平方等于a;当a16.1第一课时二次根式的概念教学目标:1、解决实际问题,体会学习二次根式是实际的需要。
2、通过二次根式概念的学习,经历观察、概括的思维过程,理解二次根式的概念。
3、通过二次根式概念的建立,理解二次根式中被开方数中字母的取值范围。
教学重点:二次根式概念的理解。
教学难点:二次根式概念的理解。
教学方法:自主学习问题启发相结合。
教学手段:多媒体课件、学案。
教学过程:一、复习1、式子(﹣3)2中,-3叫2叫2、求数4,5,10,49,0的平方根和算术平方根,4的立方根是3、-4有没有算术平方根?我们已经学习了平方根和算术平方根的定义,引进了一个新的符号word/media/image1_1.png。
今天我们学习一个和前面的算术平方根有关的知识:二次根式2、探究定义1、观察:完成课本第二页“思考”的内容。
观察word/media/image2_1.png,word/media/image3_1.png,word/media/image4_1.png,word/media/image5_1.png这些式子在形式上有什么共同特点?2、思考:(1)都含有word/media/image1_1.png(2)被开方数都是非负数(S表示面积,h是高度。
)。
3、归纳:二次根式的定义形如word/media/image6_1.png(a≥0)的式子叫作二次根式,根号下的数叫作被开方数。
八年级数学下册《二次根式应用》教案、教学设计

八年级的学生已经具备了一定的数学基础,对二次根式的概念和性质有初步的了解。但在实际应用中,他们可能还存在着对二次根式运算规则掌握不熟练、解决问题时思路不清晰等问题。此外,学生在解决实际问题时,可能缺乏将问题转化为数学模型的能力。因此,在教学过程中,应关注以下几个方面:
1.针对学生对二次根式运算规则掌握不熟练的问题,通过设计不同难度的练习题,帮助学生巩固基础知识,提高运算能力。
八年级数学下册《二次根式应用》教案、教学设计
一、教学目标
(一)知识与技能
1.掌握二次根式的定义及性质,能够熟练地进行二次根式的化简、乘除运算。
2.理解二次根式的实际意义,能够将实际问题转化为二次根式问题,并运用所学知识解决。
3.学会运用二次根式解决几何问题,如计算三角形、四边形的面积等。
4.能够运用二次根式进行数据处理,解决实际生活中的问题。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将利用一个与学生生活密切相关的问题来激发学生的学习兴趣。例如:“同学们,你们在体育课上测量过跳远的成绩吗?如果跳远成绩是2.5米,那么如何用数学知识来表示这个距离与标准距离之间的差距呢?”通过这个问题,引导学生回顾已学的二次根式知识,为新课的学习做好铺垫。
三、教学重难点和教学设想
(一)教学重难点
1.重点:二次根式的化简、乘除运算,以及二次根式的实际应用。
2.难点:将实际问题转化为二次根式问题,运用二次根式解决几何问题。
(二)教学设想
1.教学方法:
(1)采用启发式教学法,引导学生自主探究二次根式的性质和运算规则,培养学生独立思考的能力。
(2)结合生活实例,采用情境教学法,让学生在实际问题中感受二次根式的应用,提高学生解决实际问题的能力。
人教版八年级数学下册16.1.1二次根式(第1课时)一等奖优秀教学设计

1 人教版义务教育课程标准实验教科书八年级下册 16.1.1二次根式(第1课时)教学设计
一、教材分析 1、地位作用:本章主要内容是初中代数运算的基础内容, 在整个中学代数中起承上启下的重要作用,内容有两部分,它们是二次根式的有关概念、性质和二次根式的四则运算。 本章的第一部分是二次根式的有关概念、性质。它是把前面学习的实数写成式子进行运算,体现了由特殊到一般的数学思想,同时二次根式的概念和性质又是今后学习根式运算、函数的知识储备. 2、教学目标:
(1)了解二次根式的概念,能判断一个式子是不是二次根式。 (2) 掌握二次根式有意义的条件。 (3) 掌握二次根式的基本性质:)0(0aa (4)数学思考:通过计算、观察、类比、归纳、猜想,经历探索二次根式的概念、性质的发生过程;发展学生合情推理能力和演绎推理能力.
3、重点、难点 教学重点:掌握二次根式的有关概念、性质;能熟练地运用二次根式的有关概念、性质进行计算,并能利用它解决简单的实际问题. 教学难点:能熟练地运用二次根式的有关概念、性质进行计算,并能利用它解决简单的实际问题. 教学重点、难点突破方法:通过类比平方根和算术平方根的有关概念、性质突破难点 二、教学准备:多媒体课件 三、教学方法:讲练结合 四、教学过程
教学内容与教师活动 学生活动 设计意图 一.创设情境,引入新课: (1)已知x2 = a,那么a是x的______; x是a的________, 记为______,a一定是_______数。
(2)4的算术平方根为2,用式子表示为 学生思考,动手试一试,获得感 复习巩固平方根和算术平方根的概念和性质
为探讨二次根式的概念和性质作4 2
=__________; 正数a的算术平方根为_______,0的算术平方根为_______;
)0(0aa的意义是 。 二.自主探究 合作交流 构建知识: 自学课本第2页例前的内容,完成下面的问题: 1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?
人教版数学八年级下册16章《二次根式》单元整体教学设计

(五)总结归纳
在总结归纳环节,我将引导学生回顾本节课所学内容,总结二次根式的性质、化简方法和运算规则。
1.回顾总结:请学生回顾本节课所学的内容,总结二次根式的性质、化简方法和运算规则。
2.归纳提升:引导学生发现数学规律,提高数学思维能力。
3.反馈评价:教师对学生的学习情况进行反馈,给予鼓励和指导,激发学生的学习动力。
-学会化简二次根式,包括分解质因数、提取平方因子等方法,使二次根式达到最简形式。
2.学会解决实际问题中涉及二次根式的计算,如长度、面积和体积的计算等。
-能够将实际问题转化为数学问题,建立二次根式相关的数学模型。
-运用二次根式的运算方法解决实际问题,培养将数学知识应用于实际生活的能力。
3.了解二次根式在几何图形中的应用,如勾股定理等。
4.运算讲解:详细讲解二次根式的乘除法运算规则,通过例题使学生熟练掌握运算方法。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行合作学习,共同探讨二次根式的性质、化简和运算规则。
1.分组讨论:将学生分成若干小组,每组选一个组长,负责组织讨论。
2.讨论主题:每组针对二次根式的性质、化简方法和运算规则进行讨论,探讨解决实际问题的方法。
3.拓展应用:
-探究题:让学生自主探索二次根式在几何图形中的其他应用,如圆的面积、体积计算等,并撰写探究报告。
-研究性学习:小组合作,选择一个与二次根式相关的研究主题,如二次根式在建筑、工程中的应用,进行深入研究,并制作PPT进行课堂分享。
-数学阅读:推荐阅读相关数学历史资料,了解二次根式的历史背景和发展过程,拓宽学生的数学视野。
五、作业布置
为了巩固学生对二次根式的理解和应用,作业布置将包括基础巩固、能力提升和拓展应用三个层次,确保学生在课后能够自主复习、巩固所学知识,并提高解决问题的能力。
人教版数学八年级下册16.1第2课时《 二次根式的性质》教学设计

人教版数学八年级下册16.1第2课时《二次根式的性质》教学设计一. 教材分析人教版数学八年级下册16.1第2课时《二次根式的性质》是初中数学的重要内容,主要让学生了解和掌握二次根式的性质。
教材通过引入实际问题,引导学生探究二次根式的性质,从而培养学生的抽象思维能力和解决问题的能力。
本节课的内容为后续学习二次根式的运算和应用打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的代数基础。
同时,学生已经学习了二次根式的概念和简单的运算。
但学生在理解和运用二次根式的性质方面还存在一定的困难,因此,教师在教学过程中要注重引导学生理解和运用二次根式的性质。
三. 教学目标1.理解二次根式的性质,并能熟练运用。
2.培养学生的抽象思维能力和解决问题的能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.二次根式的性质及其运用。
2.引导学生理解和运用二次根式的性质。
五. 教学方法1.情境导入:通过实际问题引入二次根式的性质,激发学生的学习兴趣。
2.自主探究:引导学生独立思考,探究二次根式的性质。
3.合作交流:分组讨论,让学生在讨论中理解和掌握二次根式的性质。
4.巩固练习:设计有针对性的练习,让学生在实践中运用二次根式的性质。
5.总结提升:引导学生总结二次根式的性质,并展望后续学习。
六. 教学准备1.准备相关的实际问题,用于导入新课。
2.准备PPT,展示二次根式的性质及相关例题。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过呈现一个实际问题,引导学生思考二次根式的性质。
例如:一个正方形的对角线长度为8,求正方形的边长。
2.呈现(10分钟)教师通过PPT展示二次根式的性质,引导学生理解和掌握。
例如:二次根式√a的性质有:(1)√a2=a(a≥0);(2)√a⋅√b=√ab(a≥0,b≥0);(3)√a√b =√ab(a≥0,b>0)。
《二次根式的除法》 教学设计
《二次根式的除法》教学设计一、教学目标1、知识与技能目标(1)理解二次根式的除法法则,并能熟练运用法则进行计算。
(2)能将分母中含有二次根式的式子进行分母有理化。
2、过程与方法目标(1)通过探究二次根式的除法法则,培养学生的观察、分析和归纳能力。
(2)在分母有理化的过程中,体会转化的数学思想,提高运算能力。
3、情感态度与价值观目标(1)在学习过程中,培养学生严谨的治学态度和勇于探索的精神。
(2)通过小组合作学习,增强学生的团队合作意识和交流能力。
二、教学重难点1、教学重点(1)二次根式的除法法则。
(2)分母有理化。
2、教学难点分母有理化的方法和技巧。
三、教学方法讲授法、启发式教学法、小组合作探究法四、教学过程1、导入新课通过复习二次根式的乘法法则,引导学生思考二次根式的除法运算应该如何进行,从而引出本节课的主题——二次根式的除法。
例如:计算$\sqrt{12} \times \sqrt{3} =\sqrt{36} = 6$,那么如果是除法运算,如$\sqrt{12} \div \sqrt{3}$又该如何计算呢?2、探索新知(1)提出问题计算:$\frac{\sqrt{4}}{\sqrt{2}}=$?$\frac{\sqrt{16}}{\sqrt{4}}=$?$\frac{\sqrt{25}}{\sqrt{5}}=$?(2)观察分析引导学生观察上述算式的计算结果,思考其中的规律。
(3)得出法则经过观察和讨论,得出二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}(a\geq 0, b > 0)$强调法则成立的条件:被开方数非负,除数不为零。
3、例题讲解例 1:计算(1)$\frac{\sqrt{24}}{\sqrt{3}}$(2)$\frac{\sqrt{50}}{\sqrt{10}}$解:(1)$\frac{\sqrt{24}}{\sqrt{3}}=\sqrt{\frac{24}{3}}=\sqrt{8} = 2\sqrt{2}$(2)$\frac{\sqrt{50}}{\sqrt{10}}=\sqrt{\frac{50}{10}}=\sqrt{5}$例 2:化简(1)$\frac{\sqrt{12}}{\sqrt{27}}$(2)$\frac{3}{\sqrt{5}}$解:(1)$\frac{\sqrt{12}}{\sqrt{27}}=\sqrt{\frac{12}{27}}=\sqrt{\frac{4}{9}}=\frac{2}{3}$(2)$\frac{3}{\sqrt{5}}=\frac{3\times\sqrt{5}}{\sqrt{5}\times\sqrt{5}}=\frac{3\sqrt{5}}{5}$4、小组合作探究给出一些分母中含有二次根式的式子,如$\frac{1}{\sqrt{2}}$,$\frac{\sqrt{3}}{2\sqrt{5}}$等,让学生以小组为单位进行讨论,如何将其分母有理化。
浙教版数学八年级下册1.1《二次根式》教学设计
浙教版数学八年级下册1.1《二次根式》教学设计一. 教材分析《二次根式》是浙教版数学八年级下册第1.1节的内容,本节主要让学生了解二次根式的概念,掌握二次根式的性质和运算方法。
教材通过引入二次根式,让学生在已有实数知识的基础上,进一步拓展对实数的认识。
本节内容是后续学习二次根式混合运算的基础,对于学生来说,理解并掌握二次根式的概念和性质至关重要。
二. 学情分析学生在学习本节内容前,已经学习了实数、有理数和无理数的相关知识,具备了一定的数学基础。
但二次根式较为抽象,学生可能在学习过程中存在理解上的困难。
因此,在教学过程中,需要关注学生的学习情况,针对学生的实际水平,采取合适的教学策略。
三. 教学目标1.了解二次根式的概念,掌握二次根式的性质。
2.能够进行二次根式的运算。
3.培养学生的抽象思维能力和数学运算能力。
四. 教学重难点1.二次根式的概念及其性质。
2.二次根式的运算方法。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次根式的性质和运算方法。
2.利用多媒体辅助教学,直观展示二次根式的运算过程。
3.采用小组合作学习,让学生在讨论中加深对二次根式的理解。
4.注重个体差异,针对不同学生采取有针对性的教学策略。
六. 教学准备1.多媒体教学设备。
2.教学课件。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如计算物体体积、求解方程等,引导学生思考如何利用二次根式解决问题。
从而引出二次根式的概念。
2.呈现(10分钟)讲解二次根式的定义,让学生了解二次根式的基本形式。
并通过示例,展示二次根式的性质,如平方、乘除等。
3.操练(10分钟)让学生进行二次根式的基本运算练习,如化简、求值等。
教师引导学生运用二次根式的性质进行运算,并及时给予反馈。
4.巩固(10分钟)让学生分组讨论,总结二次根式的运算规律。
教师参与讨论,指导学生得出正确结论。
5.拓展(10分钟)利用多媒体展示一些二次根式的实际应用问题,让学生运用所学知识解决问题。
八年级数学下册《二次根式》教案、教学设计
4.介绍二次根式的有理化方法,如将√2/3有理化,并解释有理化的意义。
5.结合实际案例,讲解二次根式在实际问题中的应用,如求矩形面积、三角形面积等。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组分配一个讨论题目,如:“二次根式的性质有哪些?请举例说明。”
5.培养学生的集体荣誉感,使学生懂得团结协作的重要性。
二、学情分析
八年级学生已经具备了一定的数学基础,对算术运算、代数式等概念有了较为深入的了解。在此基础上,学生对二次根式的学习有以下特点:
1.学生对根式的概念已有初步认识,但二次根式的性质和运算法则尚不熟悉,需要通过具体实例和练习逐步引导。
2.学生在解决实际问题时,对二次根式的运用能力有待提高。教师应注重培养学生的实际应用能力,引导学生将所学知识运用到生活实践中。
3.教师选取部分学生的作业进行展示,组织学生讨论解题思路和技巧。
4.针对学生的错误,教师进行错题分析,帮助学生找出原因,提高解题能力。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结二次根式的定义、性质、化简方法、有理化方法等。
2.学生分享学习心得,交流学习过程中遇到的困难和解决方法。
(二)过程与方法
1.通过问题导入,激发学生的学习兴趣,引导学生主动探究二次根式的性质和运算法则。
2.利用实际例子,让学生体会二次根式在生活中的应用,培养学生学以致用的能力。
3.采用小组合作、讨论交流等形式,让学生在合作中发现问题、解决问题,提高学生的团队协作能力。
4.设计不同难度的练习题,使学生在解决问题中逐步掌握二次根式的化简、有理化等方法,提高学生的解题能力。
人教版初中数学八年级下册《二次根式的乘法》教学设计
人教版初中数学八年级下册《二次根式的乘法》教学设计一. 教材分析人教版初中数学八年级下册《二次根式的乘法》是本册教材中的一个重要内容,它涉及了二次根式的乘除运算,为学习二次根式的进一步运算奠定了基础。
此章节通过引入实际问题,引导学生探究二次根式的乘法运算规律,从而让学生掌握二次根式的乘法运算方法。
教材通过丰富的例题和练习题,使学生在实践中巩固所学知识,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数和无理数的基本概念,具备了一定的数学运算能力。
同时,学生对二次根式的概念、性质和加减法运算已经有了一定的了解。
因此,在教学过程中,可以充分利用学生已有的知识基础,通过启发式教学,引导学生探究二次根式的乘法运算规律。
三. 教学目标1.知识与技能:使学生掌握二次根式的乘法运算方法,能正确进行二次根式的乘法运算。
2.过程与方法:通过小组合作、讨论交流等方法,培养学生的合作意识和团队精神。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:二次根式的乘法运算方法。
2.难点:理解并掌握二次根式乘法运算的规律,能灵活运用所学知识解决实际问题。
五. 教学方法1.启发式教学:通过设置疑问,引导学生主动探究二次根式的乘法运算规律。
2.小组合作:学生进行小组讨论,培养学生的团队协作能力。
3.实践性教学:让学生在实际操作中感受二次根式乘法运算的方法,提高运算能力。
六. 教学准备1.教学PPT:制作涵盖本节课主要内容的教学PPT。
2.例题及练习题:准备适量的例题和练习题,以便进行课堂练习和巩固。
3.教学素材:准备一些与生活实际相关的问题,引导学生运用所学知识解决实际问题。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何进行二次根式的乘法运算。
例如,计算下列式子:√2×√3√4×√9通过这些问题,激发学生的学习兴趣,引出本节课的主题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题 16.2二次根式的加减(第2课时) 教学设计 课型 新授
教 具
多媒体 教法 类比法
教
学 目 标 知识 目标 在有理数的混合运算及整式的混合运算的基础上,使学生了解二次根式的混合运算与以前所学知识的关系,在比较中求得方法,并能熟练地进行二次根式的混合运算. 能力 目标 1.注意运算的顺序及运算律在计算过程中的作用.并感受数的
扩充过程中运算性质和运算律的一致性以及数式通性.
2.在运算中运用多项式的乘法法则和整式的乘法公式,体会二
次根式的运算与整式的运算的联系.
情感 态度 通过独立思考与小组讨论,培养良好的学习态度,并且注重培
养学生的类比思想。
教学重点
混合运算的法则,运算律的合理使用.
教学难点
由整式运算知识迁移到含二次根式的运算,灵活运用运算律、
乘法公式等技巧,使计算简便.
教学过程设计
教学程序及教学内容 师生行为
设计意
图
一、复习引入
导语设计:到目前为止,我们已经学习了二次根式的
乘除、加减运算,这节课来学习二次根式的混合运算.
二、探究新知
(一)二次根式混合运算法则
活动1、类比计算,说明理由
(1)(2a+3b)a; ( 3322)6
(2)(2a+3b)(a-b)3262
(3)(3ab–4a2 )÷a ;3126
思考:
(1)在有理数范围内成立的运算律,在实数范围内
能否继续使用?
(2)二次根式的混合运算与整式的混合运算相同
之处是什么?
(3)左边式子中的字母a、b可以表示二次根式
吗?
(4)模仿整式的混合运算怎样进行二次根式的混合
运算?
活动2、给出二次根式的混合运算的一般步骤.
点题,板书课题. 学生计算,观察对比,类比整式混合运算知识尝试计算 教师组织学生小组交流,进行讨论.
让学生尝试
经历从已知
到未知的迁
移,感受式
数通性.
为总结二
次根式的
混合运算
法则做铺
垫,更好地
分析法则: (1)进行二次根式混合运算时,运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的(或先去掉括号). (2)对于二次根式混合运算,原来学过的所有运算律、运算法则仍然适用,整式、分式的运算法则仍然适用。 (3)有括号的二次根式混合运算,去掉括号是最关键的一步. 讲解例题: ○1课本例3,之后补充 (3)27)64148( ○2课本例4,之后补充 2)5225( 分析说明:○1中补充(3)是不能除尽(含分数线)的类型。○2中补充完全平方公式应用. 归纳:二次根式混合运算时,乘法公式仍然适用,仔细观察式子的特征,灵活运用完全平方公式、平方差公式来简化运算. (二)二次根式混合运算的应用 1.若x=12,则x2+x+1= 2.已知23,23yx, 求1yxxy;22622yxyx的值. 三、课堂训练 完成课本练习 .14页1、2 四、小结归纳 1.进行二次根式混合运算的一般步骤. 2.二次根式混合运算时,仔细观察式子的特征,灵活运用运算法则、运算律、公式来简化运算. 2.二次根式混合运算的应用. 五、作业设计 15页4、6 结合探究内容师生总结 学生板演,并说明每一步的依据,然后师生订正. 引导学生先观察、分析,找学生说明解题思路,解题后养成说明理由的反思习惯. 学生独立完成练习,巩固新知,师生订正 指导学生交流,学生总结 理解和运
用法则
初步进行
计算
感受二次
根式混合
运算的应
用
熟练计算
和解题
纳入知识
系统
板 书 设 计
课题 二次根式混合运算法法则 例3 补充 例4
补充
教 学 反 思